summaryrefslogtreecommitdiff
path: root/Assignment1/exercises.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Assignment1/exercises.tex')
-rw-r--r--Assignment1/exercises.tex30
1 files changed, 30 insertions, 0 deletions
diff --git a/Assignment1/exercises.tex b/Assignment1/exercises.tex
index cf2a92a..371dc0f 100644
--- a/Assignment1/exercises.tex
+++ b/Assignment1/exercises.tex
@@ -5,8 +5,38 @@
{\ifshowanswers\par\bgroup\small\textit{Answer:}\else\setbox0\vbox\bgroup\fi}%
{\egroup}
\newcommand{\hint}[1]{\par\textit{Hint: #1}}
+
\camil
\begin{exercise}
+ On page~\pageref{pltl:dual-modalities}, we discussed informally why the dual modalities $\lozenge^{-1}\square^{-1}\phi$ and $\square^{-1}\lozenge^{-1}\phi$ are both equivalent to \enquote{at the first moment in time, $\phi$}.
+ Prove this formally, i.e.\ that for all infinite words $\sigma$ and $i\in\mathbb N$,
+ \[
+ \sigma \vDash_i \lozenge^{-1}\square^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_i \square^{-1}\lozenge^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_0 \phi.
+ \]
+ \begin{answer}
+ The proof follows from the two equivalences
+ \begin{itemize}
+ \def\spacearrow{\enspace\Leftrightarrow\enspace}
+ \item
+ $\sigma \vDash_i \lozenge^{-1}\square^{-1}\phi \spacearrow
+ \exists_{0\le j\le i}[\sigma \vDash_j \square^{-1}\phi] \spacearrow
+ \exists_{0\le j\le i}\forall_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow
+ \sigma \vDash_0 \phi$
+ \enspace\ and
+ \item
+ $\sigma \vDash_i \square^{-1}\lozenge^{-1}\phi \spacearrow
+ \forall_{0\le j\le i}[\sigma \vDash_j \lozenge^{-1}\phi] \spacearrow
+ \forall_{0\le j\le i}\exists_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow
+ \sigma \vDash_0 \phi$.
+ \end{itemize}
+ \end{answer}
+\end{exercise}
+
+\begin{exercise}
In this exercise we prove that PLTL formulas can be exponentially more succinct.
The proof followed here is that of \citet{Markey2003} which, in turn, is based on work by \citet{Etessami2002}.
The proof is achieved by giving an example of a formula which can be expressed in $\mathcal O(n)$ in PLTL but requires $\Omega(n)$ in LTL.