summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Assignment1/assignment1.tex2
-rw-r--r--Assignment1/exercises.tex30
-rw-r--r--Assignment1/semantics.tex10
-rw-r--r--Assignment1/syntax.tex1
4 files changed, 38 insertions, 5 deletions
diff --git a/Assignment1/assignment1.tex b/Assignment1/assignment1.tex
index 027142a..3c9d766 100644
--- a/Assignment1/assignment1.tex
+++ b/Assignment1/assignment1.tex
@@ -9,6 +9,8 @@
\renewcommand{\qedsymbol}{$\blacksquare$}
\let\leq\leqslant
\let\le\leqslant
+\let\geq\geqslant
+\let\ge\geqslant
% See http://www.ams.org/faq?faq_id=212 for the trick to add qed at the end of
% definitions and examples.
\newtheoremstyle{mydefinition}%
diff --git a/Assignment1/exercises.tex b/Assignment1/exercises.tex
index cf2a92a..371dc0f 100644
--- a/Assignment1/exercises.tex
+++ b/Assignment1/exercises.tex
@@ -5,8 +5,38 @@
{\ifshowanswers\par\bgroup\small\textit{Answer:}\else\setbox0\vbox\bgroup\fi}%
{\egroup}
\newcommand{\hint}[1]{\par\textit{Hint: #1}}
+
\camil
\begin{exercise}
+ On page~\pageref{pltl:dual-modalities}, we discussed informally why the dual modalities $\lozenge^{-1}\square^{-1}\phi$ and $\square^{-1}\lozenge^{-1}\phi$ are both equivalent to \enquote{at the first moment in time, $\phi$}.
+ Prove this formally, i.e.\ that for all infinite words $\sigma$ and $i\in\mathbb N$,
+ \[
+ \sigma \vDash_i \lozenge^{-1}\square^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_i \square^{-1}\lozenge^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_0 \phi.
+ \]
+ \begin{answer}
+ The proof follows from the two equivalences
+ \begin{itemize}
+ \def\spacearrow{\enspace\Leftrightarrow\enspace}
+ \item
+ $\sigma \vDash_i \lozenge^{-1}\square^{-1}\phi \spacearrow
+ \exists_{0\le j\le i}[\sigma \vDash_j \square^{-1}\phi] \spacearrow
+ \exists_{0\le j\le i}\forall_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow
+ \sigma \vDash_0 \phi$
+ \enspace\ and
+ \item
+ $\sigma \vDash_i \square^{-1}\lozenge^{-1}\phi \spacearrow
+ \forall_{0\le j\le i}[\sigma \vDash_j \lozenge^{-1}\phi] \spacearrow
+ \forall_{0\le j\le i}\exists_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow
+ \sigma \vDash_0 \phi$.
+ \end{itemize}
+ \end{answer}
+\end{exercise}
+
+\begin{exercise}
In this exercise we prove that PLTL formulas can be exponentially more succinct.
The proof followed here is that of \citet{Markey2003} which, in turn, is based on work by \citet{Etessami2002}.
The proof is achieved by giving an example of a formula which can be expressed in $\mathcal O(n)$ in PLTL but requires $\Omega(n)$ in LTL.
diff --git a/Assignment1/semantics.tex b/Assignment1/semantics.tex
index 43942b5..f851b14 100644
--- a/Assignment1/semantics.tex
+++ b/Assignment1/semantics.tex
@@ -40,9 +40,9 @@ The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\s
\sigma &\vDash_i & \phi_1\land\phi_2 &\text{iff} & \text{$\sigma\vDash_i\phi_1$ and $\sigma\vDash_i\phi_2$}\\
\sigma &\vDash_i & \lnot\phi &\text{iff} & \sigma \nvDash_i \phi\\
\sigma &\vDash_i & \bigcirc\phi &\text{iff} & \sigma \vDash_{i+1} \phi\\
- \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \le 0}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_i \phi_1$ for all $0 \le i < j$}\\
- \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{j \le i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\\
- \sigma &\vDash_i & \Pop\phi &\text{iff} & i \geq 1 \wedge \sigma \vDash_{i-1} \phi
+ \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \ge 0}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_i \phi_1$ for all $0 \le i < j$}\\
+ \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{0 \le j \le i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\\
+ \sigma &\vDash_i & \Pop\phi &\text{iff} & \text{$i \geq 1$ and $\sigma \vDash_{i-1} \phi$}
\end{matrix*}
\]
\end{mdframed}
@@ -70,7 +70,7 @@ Note that we need to add a index $i$, since we must also be able to look in the
Given these definitions, it is possible to derive the formal semantics of the $\Fop^{-1}$ and $\Gop^{-1}$ operators as well:
\[
\begin{matrix*}[l]
- \sigma &\vDash_i &\Fop^{-1}\phi &\text{iff} &\exists_{k \leq i}[\sigma \vDash_k \phi]\\
- \sigma &\vDash_i &\Gop^{-1}\phi &\text{iff} &\forall_{k \leq i}[\sigma \vDash_k \phi]
+ \sigma &\vDash_i &\Fop^{-1}\phi &\text{iff} &\exists_{0 \leq k \leq i}[\sigma \vDash_k \phi]\\
+ \sigma &\vDash_i &\Gop^{-1}\phi &\text{iff} &\forall_{0 \leq k \leq i}[\sigma \vDash_k \phi]
\end{matrix*}
\]
diff --git a/Assignment1/syntax.tex b/Assignment1/syntax.tex
index babf688..6fc0002 100644
--- a/Assignment1/syntax.tex
+++ b/Assignment1/syntax.tex
@@ -117,6 +117,7 @@ we include an arrow that points to the state for which the formula holds.
\end{figure}
\camil
+\label{pltl:dual-modalities}
Dual modalities, like the LTL $\square\lozenge$ \enquote{infinitely often} and \enquote{eventually forever}, are less useful in PLTL.
$\square^{-1}\lozenge^{-1}\phi$ intuitively holds when at every point in the past, $\phi$ held or there was a previous moment at which $\phi$ held.
This is satisfied precisely when $\phi$ held at the first moment in time.