blob: e81346e7d08c47115ff85b7f0ac442251ae4bb65 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
Require Import Omega.
Require Import Wellfounded.
Inductive Exp : Set :=
| elit : nat -> Exp
| eadd : Exp -> Exp -> Exp.
Fixpoint eval (e : Exp) :=
match e with
| elit n => n
| eadd a b => eval a + eval b
end.
Inductive RPN :=
| rpnnil : RPN
| rpnlit : nat -> RPN -> RPN
| rpnadd : RPN -> RPN.
Fixpoint append_rpn (a : RPN) (b : RPN) :=
match a with
| rpnnil => b
| rpnlit n a => rpnlit n (append_rpn a b)
| rpnadd a => rpnadd (append_rpn a b)
end.
Fixpoint rpn (e : Exp) :=
match e with
| elit n => rpnlit n rpnnil
| eadd a b => rpnadd (append_rpn (rpn a) (rpn b))
end.
Fixpoint rpn_eval' (rpn : RPN) :=
match rpn with
| rpnnil => Some nil
| rpnlit n a => match rpn_eval' a with
| Some stack => Some (cons n stack) (* TODO: use functor *)
| None => None
end
| rpnadd a => match rpn_eval' a with
| Some (cons x (cons y stack)) => Some (cons (x+y) stack)
| _ => None
end
end.
Function rpn_eval (rpn : RPN) :=
match rpn_eval' rpn with
| Some (cons x nil) => Some x
| _ => None
end.
Fixpoint exprsize e :=
match e with
| elit _ => 1
| eadd a b => 1 + exprsize a + exprsize b
end.
Lemma exprsize_left e1 e2 : exprsize e1 < exprsize (eadd e1 e2).
Proof. simpl. omega. Qed.
Lemma exprsize_right e1 e2 : exprsize e1 < exprsize (eadd e2 e1).
Proof. simpl. omega. Qed.
Lemma append_assoc a b c : append_rpn (append_rpn a b) c = append_rpn a (append_rpn b c).
Proof.
induction a; simpl; try rewrite IHa; reflexivity.
Qed.
Lemma free_append' e1 :
forall rest rest_results,
Some rest_results = rpn_eval' rest ->
Some (eval e1 :: rest_results)%list = rpn_eval' (append_rpn (rpn e1) rest).
Proof.
induction e1 using (well_founded_induction (wf_inverse_image _ nat _ exprsize PeanoNat.Nat.lt_wf_0)).
intros.
destruct e1.
simpl.
rewrite <- H0.
reflexivity.
simpl.
rewrite append_assoc.
assert (Some (eval e1_1 :: eval e1_2 :: rest_results)%list = rpn_eval' (append_rpn (rpn e1_1) (append_rpn (rpn e1_2) rest))).
apply H. apply exprsize_left.
apply H.
apply exprsize_right.
assumption.
rewrite <- H1.
reflexivity.
Qed.
Lemma append_nil_at_end r : append_rpn r rpnnil = r.
Proof.
induction r; simpl; try rewrite IHr; reflexivity.
Qed.
Lemma correctness e : Some (eval e) = rpn_eval (rpn e).
Proof.
assert (Some (eval e :: nil)%list = rpn_eval' (rpn e)).
assert (append_rpn (rpn e) rpnnil = rpn e).
apply append_nil_at_end.
rewrite <- H.
apply free_append'.
simpl. reflexivity.
unfold rpn_eval.
rewrite <- H.
reflexivity.
Qed.
|