Require Import Omega. Require Import Wellfounded. Inductive Exp : Set := | elit : nat -> Exp | eadd : Exp -> Exp -> Exp. Fixpoint eval (e : Exp) := match e with | elit n => n | eadd a b => eval a + eval b end. Inductive RPN := | rpnnil : RPN | rpnlit : nat -> RPN -> RPN | rpnadd : RPN -> RPN. Fixpoint append_rpn (a : RPN) (b : RPN) := match a with | rpnnil => b | rpnlit n a => rpnlit n (append_rpn a b) | rpnadd a => rpnadd (append_rpn a b) end. Fixpoint rpn (e : Exp) := match e with | elit n => rpnlit n rpnnil | eadd a b => rpnadd (append_rpn (rpn a) (rpn b)) end. Fixpoint rpn_eval' (rpn : RPN) := match rpn with | rpnnil => Some nil | rpnlit n a => match rpn_eval' a with | Some stack => Some (cons n stack) (* TODO: use functor *) | None => None end | rpnadd a => match rpn_eval' a with | Some (cons x (cons y stack)) => Some (cons (x+y) stack) | _ => None end end. Function rpn_eval (rpn : RPN) := match rpn_eval' rpn with | Some (cons x nil) => Some x | _ => None end. Fixpoint exprsize e := match e with | elit _ => 1 | eadd a b => 1 + exprsize a + exprsize b end. Lemma exprsize_left e1 e2 : exprsize e1 < exprsize (eadd e1 e2). Proof. simpl. omega. Qed. Lemma exprsize_right e1 e2 : exprsize e1 < exprsize (eadd e2 e1). Proof. simpl. omega. Qed. Lemma append_assoc a b c : append_rpn (append_rpn a b) c = append_rpn a (append_rpn b c). Proof. induction a; simpl; try rewrite IHa; reflexivity. Qed. Lemma free_append' e1 : forall rest rest_results, Some rest_results = rpn_eval' rest -> Some (eval e1 :: rest_results)%list = rpn_eval' (append_rpn (rpn e1) rest). Proof. induction e1 using (well_founded_induction (wf_inverse_image _ nat _ exprsize PeanoNat.Nat.lt_wf_0)). intros. destruct e1. simpl. rewrite <- H0. reflexivity. simpl. rewrite append_assoc. assert (Some (eval e1_1 :: eval e1_2 :: rest_results)%list = rpn_eval' (append_rpn (rpn e1_1) (append_rpn (rpn e1_2) rest))). apply H. apply exprsize_left. apply H. apply exprsize_right. assumption. rewrite <- H1. reflexivity. Qed. Lemma append_nil_at_end r : append_rpn r rpnnil = r. Proof. induction r; simpl; try rewrite IHr; reflexivity. Qed. Lemma correctness e : Some (eval e) = rpn_eval (rpn e). Proof. assert (Some (eval e :: nil)%list = rpn_eval' (rpn e)). assert (append_rpn (rpn e) rpnnil = rpn e). apply append_nil_at_end. rewrite <- H. apply free_append'. simpl. reflexivity. unfold rpn_eval. rewrite <- H. reflexivity. Qed.