aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCamil Staps2015-09-18 16:54:41 +0200
committerCamil Staps2015-09-18 16:54:41 +0200
commitf2022fbfb518969cff03b7cadd313cec57b345fc (patch)
treeda3091fa6304c95eadb7781b9942302f60f96ebf
parentWeek 3 - ex 4 a.o. (diff)
Finish assignment 3
-rw-r--r--assignment3.tex42
1 files changed, 38 insertions, 4 deletions
diff --git a/assignment3.tex b/assignment3.tex
index 8428b35..cb6165a 100644
--- a/assignment3.tex
+++ b/assignment3.tex
@@ -161,15 +161,49 @@
\item We take $\{(x,f(x)) \mid f'(x)=0\} = \{(2,f(2)),(-6,f(-6))\} = \{(2,0),(-6,-16)\}$.
- \item At $x=2$ we have $f''(x)=\frac12>0$, so $(2,0)$ is a local minimum. At $x=-6$ we have $f''(x)=-\frac12<0$, so $(-6,-16)$ is a local maximum.
+ \item At $x=2$ we have $f''(x)=\frac12>0$, so $(2,0)$ is a local minimum.
- \item %todo
+ At $x=-6$ we have $f''(x)=-\frac12<0$, so $(-6,-16)$ is a local maximum.
- \item %todo
+ \item From $f''(x) > 0$ follows $(x+2)^3 > 0$ and so $x > -2$. Therefore, $f$ is convex on $(-2,\infty)$.
+
+ From $f''(x) < 0$ follows $(x+2)^3 < 0$ and so $x < -2$. Therefore, $f$ is concave on $(-\infty,-2)$.
+
+ On $x=-2$ we could have had a point of inflection (it's the only $x\in\mathbb R$ on which $f$ is neither convex nor concave), however, $-2$ is not in the domain of $f$. Therefore, this function does not have a point of inflection.
+
+ \item We have
+ \begin{align*}
+ f(x) - (x-6) &= \frac{x^2-4x+4}{x+2} - \frac{x^2 - 4x + 36}{x+2}\\
+ &= -\frac{32}{x+2}.
+ \end{align*}
+
+ Then obviously both limits mentioned in the exercise are equal to zero. Therefore, $y=x-6$ is a slant asymptote of $f$.
\end{enumerate}
- \item %todo
+ \item \begin{enumerate}
+ \item \begin{align*}
+ f'(x) &= \frac1{\cos(\ln(\cos x))}\cdot\cos(\ln(\cos x))'\\
+ &= \frac1{\cos(\ln(\cos x))}\cdot -\sin(\ln(\cos x))\cdot (\ln(\cos x))'\\
+ &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))}\cdot \frac1{\cos x}\cdot (\cos x)'\\
+ &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))\cdot\cos x}\cdot -\sin x\\
+ &= \frac{\sin(\ln(\cos x))\cdot\sin x}{\cos(\ln(\cos x))\cdot\cos x}\\
+ &= \tan(\ln(\cos x))\cdot\tan x.
+ \end{align*}
+
+ \item For example $f(x) = -\frac12\ln(\cos(2x))$ works:
+ \begin{align*}
+ f'(x) &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot(\cos(2x))'\\
+ &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot-\sin(2x)\cdot2\\
+ &= \frac{\sin(2x)}{\cos(2x)}\\
+ &= \tan(2x).
+ \end{align*}
+
+ \item For example take $f_1(x) = -\frac14\cos(2x)$, then we have the derivative $$f_1'(x) = -\frac14\cdot-\sin(2x)\cdot2 = \frac12\sin(x+x) = \frac12(\sin x\cos x +\sin x\cos x) = \sin x\cos x.$$
+
+ Now we define $f_i(x) = -\frac14\cos(2x) + i - 1$ for all $i \in\mathbb R$, which gives us infinitely many functions with the same derivative.
+
+ \end{enumerate}
\end{enumerate}