diff options
author | Camil Staps | 2015-09-18 16:54:41 +0200 |
---|---|---|
committer | Camil Staps | 2015-09-18 16:54:41 +0200 |
commit | f2022fbfb518969cff03b7cadd313cec57b345fc (patch) | |
tree | da3091fa6304c95eadb7781b9942302f60f96ebf | |
parent | Week 3 - ex 4 a.o. (diff) |
Finish assignment 3
-rw-r--r-- | assignment3.tex | 42 |
1 files changed, 38 insertions, 4 deletions
diff --git a/assignment3.tex b/assignment3.tex index 8428b35..cb6165a 100644 --- a/assignment3.tex +++ b/assignment3.tex @@ -161,15 +161,49 @@ \item We take $\{(x,f(x)) \mid f'(x)=0\} = \{(2,f(2)),(-6,f(-6))\} = \{(2,0),(-6,-16)\}$. - \item At $x=2$ we have $f''(x)=\frac12>0$, so $(2,0)$ is a local minimum. At $x=-6$ we have $f''(x)=-\frac12<0$, so $(-6,-16)$ is a local maximum. + \item At $x=2$ we have $f''(x)=\frac12>0$, so $(2,0)$ is a local minimum. - \item %todo + At $x=-6$ we have $f''(x)=-\frac12<0$, so $(-6,-16)$ is a local maximum. - \item %todo + \item From $f''(x) > 0$ follows $(x+2)^3 > 0$ and so $x > -2$. Therefore, $f$ is convex on $(-2,\infty)$. + + From $f''(x) < 0$ follows $(x+2)^3 < 0$ and so $x < -2$. Therefore, $f$ is concave on $(-\infty,-2)$. + + On $x=-2$ we could have had a point of inflection (it's the only $x\in\mathbb R$ on which $f$ is neither convex nor concave), however, $-2$ is not in the domain of $f$. Therefore, this function does not have a point of inflection. + + \item We have + \begin{align*} + f(x) - (x-6) &= \frac{x^2-4x+4}{x+2} - \frac{x^2 - 4x + 36}{x+2}\\ + &= -\frac{32}{x+2}. + \end{align*} + + Then obviously both limits mentioned in the exercise are equal to zero. Therefore, $y=x-6$ is a slant asymptote of $f$. \end{enumerate} - \item %todo + \item \begin{enumerate} + \item \begin{align*} + f'(x) &= \frac1{\cos(\ln(\cos x))}\cdot\cos(\ln(\cos x))'\\ + &= \frac1{\cos(\ln(\cos x))}\cdot -\sin(\ln(\cos x))\cdot (\ln(\cos x))'\\ + &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))}\cdot \frac1{\cos x}\cdot (\cos x)'\\ + &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))\cdot\cos x}\cdot -\sin x\\ + &= \frac{\sin(\ln(\cos x))\cdot\sin x}{\cos(\ln(\cos x))\cdot\cos x}\\ + &= \tan(\ln(\cos x))\cdot\tan x. + \end{align*} + + \item For example $f(x) = -\frac12\ln(\cos(2x))$ works: + \begin{align*} + f'(x) &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot(\cos(2x))'\\ + &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot-\sin(2x)\cdot2\\ + &= \frac{\sin(2x)}{\cos(2x)}\\ + &= \tan(2x). + \end{align*} + + \item For example take $f_1(x) = -\frac14\cos(2x)$, then we have the derivative $$f_1'(x) = -\frac14\cdot-\sin(2x)\cdot2 = \frac12\sin(x+x) = \frac12(\sin x\cos x +\sin x\cos x) = \sin x\cos x.$$ + + Now we define $f_i(x) = -\frac14\cos(2x) + i - 1$ for all $i \in\mathbb R$, which gives us infinitely many functions with the same derivative. + + \end{enumerate} \end{enumerate} |