aboutsummaryrefslogtreecommitdiff
path: root/assignment3.tex
blob: cb6165a078bd07f3bf4ea5dbef2ab81ec7559544 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
\documentclass[10pt,a4paper]{article}

\usepackage[utf8]{inputenc}
\usepackage[margin=2cm]{geometry}

\usepackage{enumitem}
\setenumerate[1]{label=\arabic*.}
\setenumerate[2]{label=(\alph*)}

% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}

\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}

\usepackage{amsmath}
\usepackage{amsfonts}

\parindent0pt

\title{Calculus en Kansrekenen - assignment 3}
\author{Camil Staps\\\small{s4498062, group Bram}}

\begin{document}

\maketitle
\thispagestyle{fancy}

\begin{enumerate}
    \item \begin{enumerate}
            \item The domain of $\arcsin$ is the range of $\sin$, so $[-1,1]$.
            \item Filling in $x=\sin1$ gives us $x=(2k+\frac12)\cdot\pi$ with $k\in\mathbb Z$. Therefore, $\arcsin(1) = \frac\pi2$; we fill in $k=0$ which is the only $k$ s.t. $(2k+\frac12)\pi \in [-\frac\pi2,\frac\pi2]$.

                Similarly, $x=\sin0$ gives us $x=k\cdot\pi$ with $k\in\mathbb Z$. We fill in $k=0$, so $\arcsin(0) = 0$.

                Finally, we know $x=\sin\frac{\sqrt3}2$ gives $x=(2k+\frac13)\cdot\pi$ or $x=(2k+\frac23)\cdot\pi$ with $k\in\mathbb Z$. The only possible $x$ would then be $(2k+\frac13)\pi$ with $k=0$, so $\arcsin\frac{\sqrt3}2 = \frac\pi3$.
            \item \begin{align*}
                    f'(x) &= \left(\arcsin\frac{2x}{1-x}\right)' \\
                          &= \frac1{1-\left(\frac{2x}{1-x}\right)^2} \cdot \left(\frac{2x}{1-x}\right)' \\
                    %todo
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item We know $\lim_{x\to\infty}\ln(2015x) = \infty = \lim_{x\to\infty} x^3$, so let's try to apply l'Hôpital:
                \begin{align*}
                    (\ln(2015x))' &= (\ln 2015 + \ln x)' = \frac1x.\\
                    (x^3)'        &= 3x^2.\\
                    \lim\limits_{x\to\infty} \frac{\frac1x}{3x^2} &= \lim\limits_{x\to\infty} \frac1{3x^3} = 0.
                \end{align*}

                Since we saw that both numerator and denominator are differentiable and that the fraction of their derivatives has a limit for $x\to\infty$, this limit is equal to the limit of the original fraction.

            \item We know $\lim_{a\to-3}\sin(a\pi) = 0 = \lim_{a\to-3}a^2-9$, so let's try to apply l'Hôpital:
                \begin{align*}
                    (\sin(a\pi))' &= \cos(a\pi)\cdot\pi. \\
                    (a^2-9)'      &= 2a.\\
                    \lim\limits_{a\to-3}\frac{\pi\cdot\cos(a\pi)}{2a} &= \frac\pi6.
                \end{align*}

                Since we saw that both numerator and denominator are differentiable and that the fraction of their derivatives has a limit for $a\to-3$, this limit is equal to the limit of the original fraction.

            \item We know $\lim_{x\to-\infty}e^{3-x} = \infty = \lim_{x\to-\infty}7x^2$, so let's try to apply l'Hôpital:
                \begin{align*}
                    \left(e^{3-x}\right)' &= e^{3-x}\cdot-1 = -e^{3-x}.\\
                    (7x^2)'               &= 14x.\\
                \end{align*}

                Now we know $\lim_{x\to-\infty} -e^{3-x} = -\infty = \lim_{x\to-\infty} 14x$, so to find $\lim_{x\to-\infty}\frac{-e^{3-x}}{14x}$ we can again try to apply l'Hôpital:
                \begin{align*}
                    \left(-e^{3-x}\right)' &= e^{3-x}.\\
                    (14x)'                 &= 14.\\
                    \lim\limits_{x\to-\infty}\frac{e^{3-x}}{14} &= \infty.
                \end{align*}
                
                And since we saw that in both steps numerator and denominator are differentiable, and that the fractions of their derivatives has a limit for $x\to-\infty$, this limit is equal to the limit of the original fraction.
        \end{enumerate}

    \item \begin{enumerate}
            \item $f(x) = \log_32 + \log_3x$. Then $f'(x) = \frac1{x\ln3}$. Then $f''(x) = -\frac{\ln3}{x^2(\ln3)^2} = -\frac1{x^2\ln3}$. Finally $f'''(x) = -\frac{-2\ln3\cdot x}{x^4\cdot(\ln3)^2} = \frac2{x^3\ln3}$.

            \item Let's look at $f(x) = k\cdot\cos(c\cdot x)$. We can find the following derivatives:
                \begin{align*}
                    f^{(1)}(x)  &= k\cdot-\sin(cx)\cdot c = -ck\cdot\sin(cx).\\
                    f^{(2)}(x)  &= -ck\cdot\cos(xc)\cdot c = -c^2k\cdot\cos(cx).\\
                    f^{(3)}(x)  &= -c^2k\cdot-\sin(cx)\cdot c = c^3k\cdot\sin(cx).\\
                    f^{(4)}(x)  &= c^3k\cdot\cos(cx)\cdot c = c^4k\cdot\cos(cx).\\
                \end{align*}
                Note that $f^{(4)}$ is also of the form $k\cdot\cos(c\cdot x)$. We can thus write for any $f$ of that form: $f^{(4n)}(x) = c^{4n}k\cdot\cos(cx)$ with $n\in\mathbb N$.

                If we fill in $f(x) = g(x)$ and $n=\frac{2012}{4}$, we find $g^{(2012)}(x) = 3^{2012}\cos(3x)$. Then from this we find:
                \begin{align*}
                    g^{(2013)}(x)   &= -3^{2013}\sin(3x).\\
                    g^{(2014)}(x)   &= -3^{2014}\cos(3x).\\
                    g^{(2015)}(x)   &= 3^{2015}\sin(3x).
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item $x-3$, $x+1$ and $x^2$ are all from $\mathbb R$ to $\mathbb R$. Multiplication is from $\mathbb R\times\mathbb R$ to $\mathbb R$. Therefore, $f : \mathbb R \to \mathbb R$. 

            \item To find the roots we equate $f(x)$ with zero and solve for $x$. That gives $x=-1$ or $x=3$, so we have $(-1,0)$ and $(3,0)$ as roots of $f$.

                To find the y-intercept, we fill in $x=0$ in $f(x)$: $(0+1)^2(0-3)=-3$. This gives $(0,-3)$.

            \item $\lim_{x\to\infty}(x+1)^2(x-3)=\infty$, since the limits of $x\to\infty$ for $(x+1)^2$ and $x-3$ are both $\infty$.

                $\lim_{x\to-\infty}(x+1)^2(x-3)=\lim_{x\to\infty}x^3-x^2-5x-3$. $x^3$ is dominant (because it has the highest exponent), so this limit is $\lim_{x\to-\infty}x^3=-\infty$.

            \item $f'(x) = \left((x+1)^2(x-3)\right)' = \left(x^3-x^2-5x-3\right)' = 3x^2 - 2x - 5$.

                $f''(x) = \left(3x^2 - 2x - 5\right)' = 6x - 2$.

            \item $f'(x) = 3x^2-2x-5 = 0$ gives $x=\frac{2 + \sqrt{4+60}}{6} = \frac53$ or $x=\frac{2 - \sqrt{4+60}}{6} = -1$. This gives the points $(\frac53,0)$ and $(-1,0)$.

                $f''(x) = 6x-2 = 0$ gives $x=\frac13$. This gives $(\frac13,0)$.

            \item We already found the $x$s, namely those $x$ where $f'(x)=0$, i.e. $x=-1$ and $x=\frac53$. We then get the critical points $(-1,f(-1)) = (-1,0)$ and $(\frac53,f(\frac53)) = (\frac53, -4\cdot(\frac43)^3)$.

            \item Again we use those $x$ where $f'(x)=0$.

                For $x=\frac53$ we have $f''(x) = 8 > 0$, therefore this (the critical point with this $x$) is a local minimum.

                For $x=-1$ we have $f''(x) = -8 < 0$, therefore this is a local maximum.

            \item $f''(x) > 0$ leads to $x > \frac13$, so $f$ is convex on $(\frac13,\infty)$. $f''(x) < 0$ leads to $x < \frac13$, so $f$ is concave on $(-\infty,\frac13)$. A point of inflection (the only) would then be $(\frac13, f(\frac13)) = (\frac13, \frac{128}{27})$.
        \end{enumerate}

    \item \begin{enumerate}
            \item The function in the numerator goes from $\mathbb R$ to $\mathbb R$, as does the function in the denominator. However, the fraction requires this denominator to be unequal to zero. We thus find as domain $\{x\in\mathbb R \mid x+2\neq 0\} = \mathbb R\setminus\{-2\}$.
                
            \item For the roots of $f$ we solve $f(x)=0$ for $x$. That gives $(x-2)^2=0$, so $(x-2)=0$ and thus $x=2$. This yields the point $(2,0)$.

                The graph of $f$ intersect the $y$ axis at $x=0$; this gives the point $(0,f(0)) = (0, 2)$.
                
            \item %todo
                
            \item \begin{align*}
                    f(x)    &= \frac{(x-2)^2}{x+2} = \frac{x^2 - 4x + 4}{x+2}.\\
                    f'(x)   &= \frac{(x+2)(2x-4)-(x^2-4x+4)(1)}{(x+2)^2}\\
                            &= \frac{x^2 + 4x - 12}{(x+2)^2}\\
                            &= \frac{(x-2)(x+6)}{(x+2)^2}\\
                            &= \frac{x^2+4x-12}{x^2+4x+4}.\\
                    f''(x)  &= \frac{(x^2+4x+4)(2x+4)-(x^2+4x-12)(2x+4)}{(x+2)^4}\\
                            &= \frac{32}{(x+2)^3}.
                \end{align*}
                
            \item Again, we solve $f'(x)=0$ and $f''(x)=0$ for $x$:
                \begin{align*}
                    f'(x)   &= 0\\
                    \frac{(x-2)(x+6)}{(x+2)^2} &= 0
                \end{align*}
                This gives $x=2$ or $x=-6$, with the points $(2,0)$ and $(-6,0)$.

                It is obvious at first sight that $f''(x)$ has no zeroes: it numerator can never be equal to zero.
                
            \item We take $\{(x,f(x)) \mid f'(x)=0\} = \{(2,f(2)),(-6,f(-6))\} = \{(2,0),(-6,-16)\}$.
                
            \item At $x=2$ we have $f''(x)=\frac12>0$, so $(2,0)$ is a local minimum. 
                
                At $x=-6$ we have $f''(x)=-\frac12<0$, so $(-6,-16)$ is a local maximum.
                
            \item From $f''(x) > 0$ follows $(x+2)^3 > 0$ and so $x > -2$. Therefore, $f$ is convex on $(-2,\infty)$.

                From $f''(x) < 0$ follows $(x+2)^3 < 0$ and so $x < -2$. Therefore, $f$ is concave on $(-\infty,-2)$.

                On $x=-2$ we could have had a point of inflection (it's the only $x\in\mathbb R$ on which $f$ is neither convex nor concave), however, $-2$ is not in the domain of $f$. Therefore, this function does not have a point of inflection.
                
            \item We have 
                \begin{align*}
                    f(x) - (x-6) &= \frac{x^2-4x+4}{x+2} - \frac{x^2 - 4x + 36}{x+2}\\
                                 &= -\frac{32}{x+2}.
                \end{align*}
                
                Then obviously both limits mentioned in the exercise are equal to zero. Therefore, $y=x-6$ is a slant asymptote of $f$.
                
        \end{enumerate}

    \item \begin{enumerate}
            \item \begin{align*}
                    f'(x)   &= \frac1{\cos(\ln(\cos x))}\cdot\cos(\ln(\cos x))'\\
                            &= \frac1{\cos(\ln(\cos x))}\cdot -\sin(\ln(\cos x))\cdot (\ln(\cos x))'\\
                            &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))}\cdot \frac1{\cos x}\cdot (\cos x)'\\
                            &= -\frac{\sin(\ln(\cos x))}{\cos(\ln(\cos x))\cdot\cos x}\cdot -\sin x\\
                            &= \frac{\sin(\ln(\cos x))\cdot\sin x}{\cos(\ln(\cos x))\cdot\cos x}\\
                            &= \tan(\ln(\cos x))\cdot\tan x.
                \end{align*}
                
            \item For example $f(x) = -\frac12\ln(\cos(2x))$ works:
                \begin{align*}
                    f'(x)   &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot(\cos(2x))'\\
                            &= -\tfrac12\cdot\frac1{\cos(2x)}\cdot-\sin(2x)\cdot2\\
                            &= \frac{\sin(2x)}{\cos(2x)}\\
                            &= \tan(2x).
                \end{align*}
                
            \item For example take $f_1(x) = -\frac14\cos(2x)$, then we have the derivative $$f_1'(x) = -\frac14\cdot-\sin(2x)\cdot2 = \frac12\sin(x+x) = \frac12(\sin x\cos x +\sin x\cos x) = \sin x\cos x.$$

                Now we define $f_i(x) = -\frac14\cos(2x) + i - 1$ for all $i \in\mathbb R$, which gives us infinitely many functions with the same derivative.
                
        \end{enumerate}

\end{enumerate}

\end{document}