summaryrefslogtreecommitdiff
path: root/thesis/results.tex
blob: b826138160eefa037db8951a35ac23dd63e262c7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
\section{Results}
\label{sec:results}

\begin{table*}[b]
	\centering
	\small
	\setlength{\tabcolsep}{0.2em}
	\makebox[\textwidth]{%
		\begin{tabular}{l l *{18}{c}}
				&               & Ack  & E    & Fib  & FSve & Ham  & LQns & Mat  & Perm & Psc  & Rev  & RevTw & RFib & SQns & Sve  & STw  & Tak  & Tw   & WSeq \\\hline
			\multirow{3}{*}{Size}                                                                                              
				& ARM (b)       & 188  & 2388 &  164 & 1036 & 1576 & 2708 & 4452 & 1756 & 2940 &  796 &   820 &  248 & 1660 & 1200 &  340 &  232 &  360 & 2628 \\
				& Thumb (b)     & 164  & 1944 &  148 &  840 & 1200 & 2196 & 3392 & 1332 & 2452 &  636 &   632 &  248 & 1328 &  936 &  304 &  204 &  312 & 2020 \\
				& Diff. ($-\%$) & 12.8 & 18.6 &  9.8 & 18.9 & 23.9 & 18.9 & 23.8 & 24.1 & 16.6 & 20.1 &  22.9 &  0.0 & 20.0 & 22.0 & 10.6 & 12.1 & 13.3 & 23.1 \\\hline
			\multirow{3}{*}{Time}                                                                                               
				& ARM (s)       & 0.59 & 1.39 & 0.59 & 1.18 & ---  & 1.64 & ---  & ---  & ---  & 4.09 &  1.07 & 1.15 & 1.16 & 0.99 & ---  & 0.87 & ---  & ---  \\
				& Thumb (s)     & 0.66 & 1.44 & 0.62 & 1.11 & ---  & 1.70 & ---  & ---  & ---  & 4.31 &  1.08 & 1.18 & 1.22 & 0.99 & ---  & 0.94 & ---  & ---  \\
				& Diff. (\%)    & 11.9 &  3.6 &  5.1 &  5.9 & ---  &  3.7 & ---  & ---  & ---  &  5.4 &   0.9 &  2.6 &  5.2 &  0.0 & ---  &  8.0 & ---  & ---  \\
		\end{tabular}
	}
	\caption{Code size and running time comparison for ARM and Thumb-2.\label{tab:results}}
\end{table*}

% Program         Code size             Running time (+gc)   Nr. runs
%                 ARM       Thumb       ARM       Thumb
% acker 3 10      188       164         0.59s     0.66s      20
% e 2000          2388      1944        1.39s     1.44s      10
% fsieve 50000    1036      840         1.18s     1.11s      10
% hamming 300     1576      1200        negligible           -
% invperm 16nrs   1756      1332        negligible           -
% lqueen 11       2708      2196        1.64s     1.70s      10
% mulmat 6        4452      3392        negligible           -
% nfib 35         164       148         0.59s     0.62s      10
% pascal 18 40    2940      2452        negligible           -
% reverse 10000   796       636         4.09s     4.31s      10
% revtwice 1 500  820       632         1.07s     1.08s      10      (-h 500m)
% rfib 35.0       248       248         1.15s     1.18s      10
% sieve 3000      1200      936         0.99s     0.99s      10
% squeen 11       1660      1328        1.16s     1.22s      10
% str_arit      SEGFAULT
% stwice          340       304         negligible           -
% tak 32 16 8     232       204         0.87s     0.94s      10
% twice           360       312         negligible           -
% war_seq         2628      2020        negligible           -

\begin{multicols}{2}

\subsection{Test suite}
\label{sec:results:testsuite}
We use a standard set of Clean programs to compare ARM and Thumb performance.
These programs are included in the \texttt{examples} directory of every Clean release~\parencite{clean}.
They are:

\begin{description}[itemsep=0pt]
	\item[Ack]
		$A(3,10)$, where $A$ is the Ackermann function.
	\item[E]
		The approximation of $e$ to 2000 digits.
	\item[Fib]
		Computing the 35\textsuperscript{th} Fibonacci number using naive recursion.
	\item[FSve]
		The sieve of Eratosthenes (optimised), computing the first 50,000 primes.
	\item[Ham]
		The Hamming function, computing the first 300 numbers with only 2, 3 and 5 as prime factors.
	\item[LQns]
		Computing the possibilities to place 11 queens on an $11\times11$ \enquote{chess} board (not optimised).
	\item[Mat]
		Multiplying two $6\times6$ matrices.
	\item[Perm]
		Inverting a permutation of \clean{[1..16]}.
	\item[Psc]
		Pretty-printing the first 18 rows of the triangle of Pascal.
	\item[Rev]
		Reversing a 10,000-elements list, 10,000 times.
	\item[RevTw]
		Reversing a list of 500 elements 65,536 times using the higher-order function \clean{twice} (with a heap size of 500M%
			\footnote{The large heap size is needed to prevent switching to another garbage collector, which had not yet been finished at the moment of writing.}).
	\item[RFib]
		Computing the 35\textsuperscript{th} Fibonacci number using naive recursion and \clean{Real}s instead of \clean{Int}s.
	\item[SQns]
		Computing the possibilities to place 11 queens on a $11\times11$ \enquote{chess} board (optimised).
	\item[Sve]
		The sieve of Eratosthenes (not optimised), computing the first 3,000 primes.
	\item[STw]
		Incrementing an integer 65,536 times using the higher-order function \clean{twice} (optimised).
	\item[Tak]
		$\tau(32,16,8)$, where $\tau$ is the Takeuchi function.
	\item[Tw]
		Incrementing an integer 65,536 times using the higher-order function \clean{twice} (not optimised).
	\item[WSeq]
		A sequential version of Warshall's shortest path algorithm on a $6\times6$ matrix.
\end{description}

\subsection{Code size}
\label{sec:results:size}
We compared the code size for the code generated by the ARM and Thumb backends for all programs in the test suite.
This does not include the run-time system, but does include parts of Clean's standard library, StdEnv, that are necessary for the program.
The results are in \cref{tab:results}.

The Thumb backend produces on average
	17.3\% smaller code, with a standard deviation of 6.3pp.
If we ignore those programs for which the ARM code size is less than 1,000 bytes, this is
	21.0\%, with a standard deviation of 2.6pp.,
	comparable to the 19.3\% found for the Clean compiler in \cref{sec:reg-alloc:results}.
Small programs with short function blocks skew the data,
	because they contain relatively many jumps which are longer in Thumb than in ARM (see \cref{sec:storing-pc}).

\subsection{Running time}
\label{sec:results:time}
For the same programs, we compare the running time.
Some of the examples as provided in the Clean releases have a too short running time to be able to compare them,
	so the parameters had to be tweaked.
In this case, the new parameters are mentioned in \cref{sec:results:testsuite}.
For some examples it was not possible to increase the running time enough.
\Cref{tab:results} lists \enquote{---} for these programs.

The increase in running time is relatively low compared to the decrease in code size:
	4.8\% on average with a standard deviation of 3.1pp.
For the larger programs, this is
	3.7\% with a standard deviation of 2.04pp. (though this is based on only five programs).

\end{multicols}

% vim: nowrap