implementation module type
import StdEnv
import syntax, typesupport, check, analtypes, overloading, unitype, refmark, predef, utilities, compare_constructor // , RWSDebug
import cheat, compilerSwitches
import generics // AA
:: TypeInput =
{ ti_common_defs :: !{# CommonDefs }
, ti_functions :: !{# {# FunType }}
, ti_main_dcl_module_n :: !Int
}
:: TypeState =
{ ts_fun_env :: !.{! FunctionType}
, ts_var_store :: !Int
, ts_attr_store :: !Int
, ts_var_heap :: !.VarHeap
, ts_type_heaps :: !.TypeHeaps
, ts_expr_heap :: !.ExpressionHeap
, ts_td_infos :: !.TypeDefInfos
, ts_error :: !.ErrorAdmin
, ts_out :: !.File
}
:: TypeCoercion =
{ tc_demanded :: !AType
, tc_offered :: !AType
, tc_position :: !CoercionPosition
, tc_coercible :: !Bool
}
:: SharedAttribute =
{ sa_attr_nr :: !Int
, sa_position :: !Expression
}
:: Requirements =
{ req_overloaded_calls :: ![ExprInfoPtr]
, req_type_coercions :: ![TypeCoercion]
, req_type_coercion_groups:: ![TypeCoercionGroup]
, req_attr_coercions :: ![AttrCoercion]
, req_cons_variables :: ![[TempVarId]]
, req_case_and_let_exprs :: ![ExprInfoPtr]
}
:: TypeCoercionGroup =
{ tcg_type_coercions :: ![TypeCoercion]
, tcg_position :: !Position
}
instance toString BoundVar
where
toString varid = varid.var_name.id_name
class arraySubst type :: !type !u:{!Type} -> (!Bool,!type, !u:{! Type})
instance arraySubst AType
where
arraySubst atype=:{at_type} subst
# (changed, at_type, subst) = arraySubst at_type subst
| changed
= (True, { atype & at_type = at_type }, subst)
= (False, atype, subst)
instance arraySubst Type
where
arraySubst tv=:(TempV tv_number) subst
#! type = subst.[tv_number]
= case type of
TE -> (False,tv, subst)
_
# (_, type, subst) = arraySubst type subst
-> (True, type, subst)
arraySubst type=:(arg_type --> res_type) subst
# (changed, (arg_type, res_type), subst) = arraySubst (arg_type, res_type) subst
| changed
= (changed, arg_type --> res_type, subst)
= (False, type, subst)
arraySubst type=:(TA cons_id cons_args) subst
# (changed, cons_args, subst) = arraySubst cons_args subst
| changed
= (True, TA cons_id cons_args, subst)
= (False,type, subst)
arraySubst tcv=:(TempCV tv_number :@: types) subst
#! type = subst.[tv_number]
= case type of
TE
# (changed,types, subst) = arraySubst types subst
| changed
-> (True, TempCV tv_number :@: types, subst)
-> (False, tcv, subst)
_
# (_, (type, types), subst) = arraySubst (type, types) subst
(ok, simplified_type) = simplifyTypeApplication type types
| ok
-> (True, simplified_type, subst)
-> (False, tcv, subst)
//AA..
arraySubst type=:(TArrow1 arg_type) subst
# (changed, arg_type, subst) = arraySubst arg_type subst
| changed
= (changed, TArrow1 arg_type, subst)
= (False, type, subst)
//..AA
arraySubst tfa_type=:(TFA vars type) subst
# (changed, type, subst) = arraySubst type subst
| changed
= (changed, TFA vars type, subst)
= (False, tfa_type, subst)
arraySubst type subst
= (False, type, subst)
instance arraySubst (a,b) | arraySubst a & arraySubst b
where
arraySubst (x,y) subst
# (changed_x, x, subst) = arraySubst x subst
(changed_y, y, subst) = arraySubst y subst
= (changed_x || changed_y, (x,y), subst)
instance arraySubst [a] | arraySubst a
where
arraySubst [] subst
= (False, [], subst)
arraySubst t=:[type : types ] subst
# (changed, (type, types), subst) = arraySubst (type, types) subst
| changed
= (True, [type : types ], subst)
= (False, t, subst)
instance arraySubst TempSymbolType
where
arraySubst tst=:{tst_args,tst_result,tst_context} subst
# (changed, (tst_args, (tst_result, tst_context)), subst) = arraySubst (tst_args, (tst_result, tst_context)) subst
| changed
= (True, {tst & tst_args = tst_args, tst_result = tst_result, tst_context = tst_context}, subst)
= (False, tst, subst)
instance arraySubst TypeContext
where
arraySubst tc=:{tc_types} subst
# (changed, tc_types, subst) = arraySubst tc_types subst
| changed
= (True,{ tc & tc_types = tc_types}, subst)
= (False, tc, subst)
instance arraySubst CaseType
where
arraySubst ct=:{ct_pattern_type, ct_result_type, ct_cons_types} subst
# (changed, (ct_pattern_type, (ct_result_type, ct_cons_types)), subst) = arraySubst (ct_pattern_type, (ct_result_type, ct_cons_types)) subst
| changed
= (True,{ ct & ct_pattern_type = ct_pattern_type, ct_result_type = ct_result_type, ct_cons_types = ct_cons_types }, subst)
= (False, ct, subst)
class containsTypeVariable a :: !Int !a !{!Type} -> Bool
instance containsTypeVariable [a] | containsTypeVariable a
where
containsTypeVariable var_id [elem:list] subst
= containsTypeVariable var_id elem subst || containsTypeVariable var_id list subst
containsTypeVariable var_id [] _
= False
instance containsTypeVariable AType
where
containsTypeVariable var_id {at_type} subst = containsTypeVariable var_id at_type subst
instance containsTypeVariable Type
where
containsTypeVariable var_id (TempV tv_number) subst
# type = subst.[tv_number]
| isIndirection type
= containsTypeVariable var_id type subst
= tv_number == var_id
containsTypeVariable var_id (arg_type --> res_type) subst
= containsTypeVariable var_id arg_type subst || containsTypeVariable var_id res_type subst
//AA..
containsTypeVariable var_id (TArrow1 arg_type) subst
= containsTypeVariable var_id arg_type subst
//..AA
containsTypeVariable var_id (TA cons_id cons_args) subst
= containsTypeVariable var_id cons_args subst
containsTypeVariable var_id (type :@: types) subst
= containsTypeVariable var_id type subst || containsTypeVariable var_id types subst
containsTypeVariable _ _ _
= False
instance containsTypeVariable ConsVariable
where
containsTypeVariable var_id (TempCV tv_number) subst
# type = subst.[tv_number]
| isIndirection type
= containsTypeVariable var_id type subst
= tv_number == var_id
containsTypeVariable var_id _ _
= False
type_error =: "Type error"
type_error_format =: { form_properties = cNoProperties, form_attr_position = No }
cannotUnify t1 t2 position=:(CP_Expression expr) err=:{ea_loc=[ip:_]}
= case tryToOptimizePosition expr of
Yes (id_name, line)
# err = pushErrorAdmin { ip & ip_ident.id_name = id_name, ip_line = line } err
err = errorHeading type_error err
err = popErrorAdmin err
// -> { err & ea_file = err.ea_file <<< " cannot unify " <:: (type_error_format, t1, Yes initialTypeVarBeautifulizer)
// <<< " with " <:: (type_error_format, t2, Yes initialTypeVarBeautifulizer) <<< '\n' }
-> { err & ea_file = err.ea_file <<< " cannot unify " <:: (type_error_format, t1, No)
<<< " with " <:: (type_error_format, t2, No) <<< '\n' }
_
-> cannot_unify t1 t2 position err
cannotUnify t1 t2 position err
= cannot_unify t1 t2 position err
cannot_unify t1 t2 position err
# (err=:{ea_file}) = errorHeading type_error err
ea_file = case position of
CP_FunArg _ _
-> ea_file <<< "\"" <<< position <<< "\""
_
-> ea_file
ea_file = ea_file <<< " cannot unify " <:: (type_error_format, t1, No)
<<< " with " <:: (type_error_format, t2, No)
// ea_file = ea_file <<< " cannot unify " <:: (type_error_format, t1, Yes initialTypeVarBeautifulizer)
// <<< " with " <:: (type_error_format, t2, Yes initialTypeVarBeautifulizer)
ea_file = case position of
CP_FunArg _ _
-> ea_file
_
-> ea_file <<< " near " <<< position
= { err & ea_file = ea_file <<< '\n' }
tryToOptimizePosition (Case {case_ident=Yes {id_name}})
= optBeautifulizeIdent id_name
tryToOptimizePosition (App {app_symb={symb_name}})
= optBeautifulizeIdent symb_name.id_name
tryToOptimizePosition (fun @ _)
= tryToOptimizePosition fun
tryToOptimizePosition _
= No
isIndirection TE = False
isIndirection type = True
class unify a :: !a !a !TypeInput !*{! Type} !*TypeHeaps -> (!Bool, !*{! Type}, !*TypeHeaps)
instance unify (a, b) | unify a & unify b
where
unify (t1x, t1y) (t2x, t2y) modules subst heaps
# (succ, subst, heaps) = unify t1y t2y modules subst heaps
| succ
= unify t1x t2x modules subst heaps
= (False, subst, heaps)
instance unify [a] | unify a
where
unify [t1 : ts1] [t2 : ts2] modules subst heaps
= unify (t1,ts1) (t2,ts2) modules subst heaps
unify [] [] modules subst heaps
= (True, subst, heaps)
unify _ _ modules subst heaps
= (False, subst, heaps)
instance unify AType
where
unify t1 t2 modules subst heaps = unifyTypes t1.at_type t1.at_attribute t2.at_type t2.at_attribute modules subst heaps
unifyTypes :: !Type !TypeAttribute !Type !TypeAttribute !TypeInput !*{! Type} !*TypeHeaps -> (!Bool, !*{! Type}, !*TypeHeaps)
unifyTypes tv=:(TempV tv_number) attr1 type2 attr2 modules subst heaps
# (type1, subst) = subst![tv_number]
| isIndirection type1
= unifyTypes type1 attr1 type2 attr2 modules subst heaps
# (succ, subst) = unify_variable_with_type tv_number type2 subst
= (succ, subst, heaps)
where
unify_variable_with_type tv_number1 tv=:(TempV tv_number2) subst
# (type2, subst) = subst![tv_number2]
| isIndirection type2
= unify_variable_with_type tv_number type2 subst
| tv_number1 == tv_number2
= (True, subst)
= (True, { subst & [tv_number1] = tv})
unify_variable_with_type tv_number type subst
| containsTypeVariable tv_number type subst
= (False, subst)
= (True, { subst & [tv_number] = type})
unifyTypes type attr1 tv=:(TempV _) attr2 modules subst heaps
= unifyTypes tv attr2 type attr1 modules subst heaps
unifyTypes t1=:(TB tb1) attr1 t2=:(TB tb2) attr2 modules subst heaps
| tb1 == tb2
= (True, subst, heaps)
= (False, subst, heaps)
unifyTypes (arg_type1 --> res_type1) attr1 (arg_type2 --> res_type2) attr2 modules subst heaps
= unify (arg_type1,res_type1) (arg_type2,res_type2) modules subst heaps
//AA..
unifyTypes TArrow attr1 TArrow attr2 modules subst heaps
= (True, subst, heaps)
unifyTypes (TArrow1 t1) attr1 (TArrow1 t2) attr2 modules subst heaps
= unify t1 t2 modules subst heaps
//..AA
unifyTypes t1=:(TA cons_id1 cons_args1) attr1 t2=:(TA cons_id2 cons_args2) attr2 modules subst heaps
| cons_id1 == cons_id2
= unify cons_args1 cons_args2 modules subst heaps
# (succ1, t1, heaps) = tryToExpand t1 attr1 modules.ti_common_defs heaps
(succ2, t2, heaps) = tryToExpand t2 attr2 modules.ti_common_defs heaps
| succ1 || succ2
= unifyTypes t1 attr1 t2 attr2 modules subst heaps
= (False, subst, heaps)
unifyTypes (cons_var :@: types) attr1 type2 attr2 modules subst heaps
# (_, type2, heaps) = tryToExpand type2 attr2 modules.ti_common_defs heaps
= unifyTypeApplications cons_var attr1 types type2 attr2 modules subst heaps
unifyTypes type1 attr1 (cons_var :@: types) attr2 modules subst heaps
# (_, type1, heaps) = tryToExpand type1 attr1 modules.ti_common_defs heaps
= unifyTypeApplications cons_var attr2 types type1 attr1 modules subst heaps
unifyTypes t1=:(TempQV qv_number1) attr1 t2=:(TempQV qv_number2) attr2 modules subst heaps
= (qv_number1 == qv_number2, subst, heaps)
unifyTypes (TempQV qv_number) attr1 type attr2 modules subst heaps
= (False, subst, heaps)
unifyTypes type attr1 (TempQV qv_number1) attr2 modules subst heaps
= (False, subst, heaps)
unifyTypes type1 attr1 type2 attr2 modules subst heaps
# (succ1, type1, heaps) = tryToExpand type1 attr1 modules.ti_common_defs heaps
(succ2, type2, heaps) = tryToExpand type2 attr2 modules.ti_common_defs heaps
| succ1 || succ2
= unifyTypes type1 attr1 type2 attr2 modules subst heaps
= (False, subst, heaps)
tryToExpand :: !Type !TypeAttribute !{# CommonDefs} !*TypeHeaps -> (!Bool, !Type, !*TypeHeaps)
tryToExpand type=:(TA {type_index={glob_object,glob_module}} type_args) type_attr ti_common_defs type_heaps
#! type_def = ti_common_defs.[glob_module].com_type_defs.[glob_object]
= case type_def.td_rhs of
SynType {at_type}
# (res_type, type_heaps) = expandTypeApplication type_def.td_args type_def.td_attribute at_type type_args type_attr type_heaps
-> (True, res_type, type_heaps)
_
-> (False, type, type_heaps)
tryToExpand type type_attr modules type_heaps
= (False, type, type_heaps)
toTV is_exist temp_var_id
| is_exist
= TempQV temp_var_id
= TempV temp_var_id
toCV is_exist temp_var_id
| is_exist
= TempQCV temp_var_id
= TempCV temp_var_id
simplifyTypeApplication :: !Type ![AType] -> (!Bool, !Type)
simplifyTypeApplication (TA type_cons=:{type_arity} cons_args) type_args
= (True, TA { type_cons & type_arity = type_arity + length type_args } (cons_args ++ type_args))
simplifyTypeApplication (cons_var :@: types) type_args
= (True, cons_var :@: (types ++ type_args))
simplifyTypeApplication (TempV tv_number) type_args
= (True, TempCV tv_number :@: type_args)
simplifyTypeApplication (TempQV tv_number) type_args
= (True, TempQCV tv_number :@: type_args)
//AA..
simplifyTypeApplication TArrow [type1, type2]
= (True, type1 --> type2)
simplifyTypeApplication (TArrow1 type1) [type2]
= (True, type1 --> type2)
//..AA
simplifyTypeApplication type type_args
= (False, type)
unifyTypeApplications (TempCV tv_number) attr1 type_args type2 attr2 modules subst heaps
# (type1, subst) = subst![tv_number]
| isIndirection type1
# (ok, simplified_type) = simplifyTypeApplication type1 type_args
| ok
= unifyTypes simplified_type attr1 type2 attr2 modules subst heaps
= (False, subst, heaps)
= unifyCVwithType False tv_number type_args type2 modules subst heaps
unifyTypeApplications (TempQCV tv_number) attr1 type_args type2 attr2 modules subst heaps
= unifyCVwithType True tv_number type_args type2 modules subst heaps
unifyCVwithType is_exist tv_number1 type_args1 type=:(cv :@: type_args2) modules subst heaps
= case cv of
TempCV tv_number2
# (type2, subst) = subst![tv_number2]
| isIndirection type2
# (ok, simplified_type) = simplifyTypeApplication type2 type_args2
| ok
-> unifyCVwithType is_exist tv_number1 type_args1 simplified_type modules subst heaps
-> (False, subst, heaps)
-> unifyCVApplicationwithCVApplication is_exist tv_number1 type_args1 False tv_number2 type_args2 modules subst heaps
TempQCV tv_number2
-> unifyCVApplicationwithCVApplication is_exist tv_number1 type_args1 True tv_number2 type_args2 modules subst heaps
unifyCVwithType is_exist tv_number type_args type=:(TA type_cons cons_args) modules subst heaps
# diff = type_cons.type_arity - length type_args
| diff >= 0
# (succ, subst, heaps) = unify type_args (drop diff cons_args) modules subst heaps
| succ
= unifyTypes (toTV is_exist tv_number) TA_Multi (TA { type_cons & type_arity = diff } (take diff cons_args)) TA_Multi modules subst heaps
= (False, subst, heaps)
= (False, subst, heaps)
// AA..
unifyCVwithType is_exist tv_number [type_arg1, type_arg2] type=:(atype1 --> atype2) modules subst heaps
# (succ, subst, heaps) = unify (type_arg1, type_arg2) (atype1, atype2) modules subst heaps
| succ
= unifyTypes (toTV is_exist tv_number) TA_Multi TArrow TA_Multi modules subst heaps
= (False, subst, heaps)
unifyCVwithType is_exist tv_number [type_arg] type=:(atype1 --> atype2) modules subst heaps
# (succ, subst, heaps) = unify type_arg atype2 modules subst heaps
| succ
= unifyTypes (toTV is_exist tv_number) TA_Multi (TArrow1 atype1) TA_Multi modules subst heaps
= (False, subst, heaps)
// ..AA
unifyCVwithType is_exist tv_number type_args type modules subst heaps
= (False, subst, heaps)
unifyCVApplicationwithCVApplication is_exist1 tv_number1 type_args1 is_exist2 tv_number2 type_args2 modules subst heaps
# arity1 = length type_args1
arity2 = length type_args2
diff = arity1 - arity2
| diff == 0
# (succ, subst) = unify_cv_with_cv is_exist1 tv_number1 is_exist2 tv_number2 subst
| succ
= unify type_args1 type_args2 modules subst heaps
= (False, subst, heaps)
| diff < 0
# diff = 0 - diff
(succ, subst, heaps) = unifyTypes (toTV is_exist1 tv_number1) TA_Multi (toCV is_exist2 tv_number2 :@: take diff type_args2) TA_Multi modules subst heaps
| succ
= unify type_args1 (drop diff type_args2) modules subst heaps
= (False, subst, heaps)
// | otherwise
# (succ, subst, heaps) = unifyTypes (toCV is_exist1 tv_number1 :@: take diff type_args1) TA_Multi (toTV is_exist2 tv_number2) TA_Multi modules subst heaps
| succ
= unify (drop diff type_args1) type_args2 modules subst heaps
= (False, subst, heaps)
where
unify_cv_with_cv is_exist1 tv_number1 is_exist2 tv_number2 subst
| tv_number1 == tv_number2
= (True, subst)
| is_exist1
| is_exist2
= (False, subst)
= (True, { subst & [tv_number2] = TempQV tv_number1})
| is_exist2
= (True, { subst & [tv_number1] = TempQV tv_number2})
= (True, { subst & [tv_number1] = TempV tv_number2})
instance fromInt TypeAttribute
where
fromInt AttrUni = TA_Unique
fromInt AttrMulti = TA_Multi
fromInt av_number = TA_TempVar av_number
class freshCopy a :: !a !*TypeHeaps -> (!a, !*TypeHeaps)
instance freshCopy [a] | freshCopy a
where
freshCopy l ls = mapSt freshCopy l ls
freshCopyOfAttributeVar {av_name,av_info_ptr} attr_var_heap
# (av_info, attr_var_heap) = readPtr av_info_ptr attr_var_heap
= case av_info of
AVI_Attr attr
-> (attr, attr_var_heap)
_
-> abort ("freshCopyOfAttributeVar (type,icl)" ---> av_name)
freshCopyOfTypeAttribute (TA_Var avar) attr_var_heap
= freshCopyOfAttributeVar avar attr_var_heap
/* A temporary hack to handle the new Object IO lib */
/* Should be removed !!!!!!!!!! */
freshCopyOfTypeAttribute (TA_RootVar avar) attr_var_heap
= PA_BUG (TA_TempExVar, attr_var_heap) (freshCopyOfAttributeVar avar attr_var_heap)
freshCopyOfTypeAttribute TA_None attr_var_heap
= (TA_Multi, attr_var_heap)
freshCopyOfTypeAttribute TA_Unique attr_var_heap
= (TA_Unique, attr_var_heap)
freshCopyOfTypeAttribute attr attr_var_heap
= (attr, attr_var_heap)
cIsExistential :== True
cIsNotExistential :== False
freshCopyOfTypeVariable {tv_name,tv_info_ptr} type_heaps=:{th_vars}
# (TVI_Type fresh_var, th_vars) = readPtr tv_info_ptr th_vars
= (fresh_var, { type_heaps & th_vars = th_vars })
freshConsVariable {tv_info_ptr} type_var_heap
# (tv_info, type_var_heap) = readPtr tv_info_ptr type_var_heap
= (to_constructor_variable tv_info, type_var_heap)
where
to_constructor_variable (TVI_Type (TempV temp_var_id))
= TempCV temp_var_id
to_constructor_variable (TVI_Type (TempQV temp_var_id))
= TempQCV temp_var_id
instance freshCopy AType
where
freshCopy type=:{at_type = CV tv :@: types, at_attribute} type_heaps=:{th_vars,th_attrs}
# (fresh_cons_var, th_vars) = freshConsVariable tv th_vars
(fresh_attribute, th_attrs) = freshCopyOfTypeAttribute at_attribute th_attrs
(types, type_heaps) = freshCopy types { type_heaps & th_attrs = th_attrs, th_vars = th_vars }
= ({type & at_type = fresh_cons_var :@: types, at_attribute = fresh_attribute }, type_heaps)
freshCopy type=:{at_type, at_attribute} type_heaps=:{th_attrs}
# (fresh_attribute, th_attrs) = freshCopyOfTypeAttribute at_attribute th_attrs
(fresh_type, type_heaps) = freshCopy at_type { type_heaps & th_attrs = th_attrs }
= ({ type & at_type = fresh_type, at_attribute = fresh_attribute }, type_heaps)
instance freshCopy Type
where
freshCopy (TV tv) type_heaps
= freshCopyOfTypeVariable tv type_heaps
freshCopy (TA cons_id=:{type_index={glob_object,glob_module}} cons_args) type_heaps
# (cons_args, type_heaps) = freshCopy cons_args type_heaps
= (TA cons_id cons_args, type_heaps)
freshCopy (arg_type --> res_type) type_heaps
# (arg_type, type_heaps) = freshCopy arg_type type_heaps
(res_type, type_heaps) = freshCopy res_type type_heaps
= (arg_type --> res_type, type_heaps)
//AA..
freshCopy (TArrow1 arg_type) type_heaps
# (arg_type, type_heaps) = freshCopy arg_type type_heaps
= (TArrow1 arg_type, type_heaps)
//..AA
freshCopy (TFA vars type) type_heaps
# type_heaps = foldSt bind_var_and_attr vars type_heaps
(type, type_heaps) = freshCopy type type_heaps
# type_heaps = clearBindings vars type_heaps
= (TFA vars type, type_heaps)
where
bind_var_and_attr {atv_attribute, atv_variable = tv=:{tv_info_ptr}} type_heaps=:{th_vars,th_attrs}
= { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TV tv)), th_attrs = bind_attr atv_attribute th_attrs }
where
bind_attr var=:(TA_Var {av_info_ptr}) attr_heap
= attr_heap <:= (av_info_ptr, AVI_Attr var)
bind_attr attr attr_heap
= attr_heap
freshCopy type type_heaps
= (type, type_heaps)
freshExistentialVariables type_variables state
= foldSt fresh_existential_variable type_variables state
where
fresh_existential_variable {atv_variable={tv_info_ptr}} (var_heap, var_store)
= (var_heap <:= (tv_info_ptr, TVI_Type (TempQV var_store)), inc var_store)
freshUniversalVariables type_variables state
= foldSt fresh_universal_variable type_variables state
where
fresh_universal_variable {atv_variable={tv_info_ptr}} (var_heap, var_store)
= (var_heap <:= (tv_info_ptr, TVI_Type (TempQV var_store)), inc var_store)
freshAlgebraicType :: !(Global Int) ![AlgebraicPattern] !{#CommonDefs} !*TypeState -> (![[AType]],!AType,![AttrCoercion],!*TypeState)
freshAlgebraicType {glob_module, glob_object} patterns common_defs ts=:{ts_var_store,ts_attr_store,ts_type_heaps,ts_td_infos}
# {td_rhs,td_args,td_attrs,td_name,td_attribute} = common_defs.[glob_module].com_type_defs.[glob_object]
# (th_vars, ts_var_store) = fresh_type_variables td_args (ts_type_heaps.th_vars, ts_var_store)
(th_attrs, ts_attr_store) = fresh_attributes td_attrs (ts_type_heaps.th_attrs, ts_attr_store)
type_heaps = { ts_type_heaps & th_vars = th_vars, th_attrs = th_attrs }
(cons_types, alg_type, ts_var_store, attr_env, type_heaps)
= fresh_symbol_types patterns common_defs.[glob_module].com_cons_defs ts_var_store type_heaps
= (cons_types, alg_type, attr_env, { ts & ts_var_store = ts_var_store, ts_attr_store = ts_attr_store, ts_type_heaps = type_heaps })
// ---> ("freshAlgebraicType", alg_type, cons_types)
where
fresh_symbol_types [{ap_symbol={glob_object}}] cons_defs var_store type_heaps
# {cons_type = {st_args,st_attr_env,st_result}, cons_index, cons_exi_vars} = cons_defs.[glob_object.ds_index]
(th_vars, var_store) = freshExistentialVariables cons_exi_vars (type_heaps.th_vars, var_store)
(attr_env, th_attrs) = fresh_environment st_attr_env ([], type_heaps.th_attrs)
(result_type, type_heaps) = freshCopy st_result { type_heaps & th_attrs = th_attrs, th_vars = th_vars }
(fresh_args, type_heaps) = freshCopy st_args type_heaps
= ([fresh_args], result_type, var_store, attr_env, type_heaps)
fresh_symbol_types [{ap_symbol={glob_object}} : patterns] cons_defs var_store type_heaps
# (cons_types, result_type, var_store, attr_env, type_heaps)
= fresh_symbol_types patterns cons_defs var_store type_heaps
{cons_type = {st_args,st_attr_env}, cons_index, cons_exi_vars} = cons_defs.[glob_object.ds_index]
(th_vars, var_store) = freshExistentialVariables cons_exi_vars (type_heaps.th_vars, var_store)
(attr_env, th_attrs) = fresh_environment st_attr_env (attr_env, type_heaps.th_attrs)
(fresh_args, type_heaps) = freshCopy st_args { type_heaps & th_attrs = th_attrs, th_vars = th_vars }
= ([fresh_args : cons_types], result_type, var_store, attr_env, type_heaps)
fresh_type_variables type_variables state
= foldSt (\{atv_variable={tv_info_ptr}} (var_heap, var_store) -> (var_heap <:= (tv_info_ptr, TVI_Type (TempV var_store)), inc var_store))
type_variables state
fresh_attributes attributes state
= foldSt (\{av_info_ptr} (attr_heap, attr_store) -> (attr_heap <:= (av_info_ptr, AVI_Attr (TA_TempVar attr_store)), inc attr_store))
attributes state
fresh_environment inequalities (attr_env, attr_heap)
= foldSt fresh_inequality inequalities (attr_env, attr_heap)
fresh_inequality {ai_demanded,ai_offered} (attr_env, attr_heap)
# (AVI_Attr dem_temp_attr, attr_heap) = readPtr ai_demanded.av_info_ptr attr_heap
(AVI_Attr off_temp_attr, attr_heap) = readPtr ai_offered.av_info_ptr attr_heap
= case dem_temp_attr of
TA_TempVar dem_attr_var
-> case off_temp_attr of
TA_TempVar off_attr_var
| is_new_ineqality dem_attr_var off_attr_var attr_env
-> ([{ac_demanded = dem_attr_var, ac_offered = off_attr_var} : attr_env ], attr_heap)
-> (attr_env, attr_heap)
_
-> (attr_env, attr_heap)
_
-> (attr_env, attr_heap)
is_new_ineqality dem_attr_var off_attr_var [{ac_demanded, ac_offered} : attr_env]
= (dem_attr_var <> ac_demanded || off_attr_var <> ac_offered) && is_new_ineqality dem_attr_var off_attr_var attr_env
is_new_ineqality dem_attr_var off_attr_var []
= True
cWithFreshContextVars :== True
cWithoutFreshContextVars :== False
freshSymbolType :: !Bool !SymbolType {#u:CommonDefs} !*TypeState -> (!TempSymbolType,![Int],!*TypeState)
freshSymbolType fresh_context_vars st=:{st_vars,st_args,st_result,st_context,st_attr_vars,st_attr_env,st_arity} common_defs
ts=:{ts_var_store,ts_attr_store,ts_type_heaps,ts_td_infos,ts_var_heap}
# (th_vars, ts_var_store) = fresh_type_variables st_vars (ts_type_heaps.th_vars, ts_var_store)
(th_attrs, ts_attr_store) = fresh_attributes st_attr_vars (ts_type_heaps.th_attrs, ts_attr_store)
(attr_env, th_attrs) = freshEnvironment st_attr_env th_attrs
type_heaps = { ts_type_heaps & th_vars = th_vars, th_attrs = th_attrs }
(tst_args, type_heaps) = freshCopy st_args type_heaps
(tst_result, type_heaps) = freshCopy st_result type_heaps
(tst_context, (type_heaps, ts_var_heap)) = freshTypeContexts fresh_context_vars st_context (type_heaps, ts_var_heap)
cons_variables = foldSt (collect_cons_variables_in_tc common_defs) tst_context []
= ({ tst_args = tst_args, tst_result = tst_result, tst_context = tst_context, tst_attr_env = attr_env, tst_arity = st_arity, tst_lifted = 0 }, cons_variables,
{ ts & ts_var_store = ts_var_store, ts_attr_store = ts_attr_store, ts_type_heaps = type_heaps, ts_var_heap = ts_var_heap})
//---> ("freshSymbolType", st, tst_args, tst_result, tst_context)
where
fresh_type_variables :: .[TypeVar] *(*Heap TypeVarInfo,.Int) -> (!.Heap TypeVarInfo,!Int);
fresh_type_variables type_variables state
= foldr (\{tv_info_ptr} (var_heap, var_store) -> (writePtr tv_info_ptr (TVI_Type (TempV var_store)) var_heap, inc var_store))
state type_variables
fresh_attributes :: .[AttributeVar] *(*Heap AttrVarInfo,.Int) -> (!.Heap AttrVarInfo,!Int);
fresh_attributes attributes state
= foldr (\{av_info_ptr} (attr_heap, attr_store) -> (writePtr av_info_ptr (AVI_Attr (TA_TempVar attr_store)) attr_heap, inc attr_store))
state attributes
collect_cons_variables_in_tc common_defs tc=:{tc_class={glob_module,glob_object={ds_index}}, tc_types} collected_cons_vars
# {class_cons_vars} = common_defs.[glob_module].com_class_defs.[ds_index]
= collect_cons_variables tc_types class_cons_vars collected_cons_vars
collect_cons_variables [] class_cons_vars collected_cons_vars
= collected_cons_vars
collect_cons_variables [type : tc_types] class_cons_vars collected_cons_vars
| class_cons_vars bitand 1 == 0
= collect_cons_variables tc_types (class_cons_vars >> 1) collected_cons_vars
= case type of
TempV temp_var_id
-> collect_cons_variables tc_types (class_cons_vars >> 1) (add_variable temp_var_id collected_cons_vars)
// ---> ("collect_cons_variables", temp_var_id)
_
-> collect_cons_variables tc_types (class_cons_vars >> 1) collected_cons_vars
add_variable new_var_id []
= [new_var_id]
add_variable new_var_id vars=:[var_id : var_ids]
| new_var_id == var_id
= vars
= [var_id : add_variable new_var_id var_ids]
freshInequality :: AttrInequality *(Heap AttrVarInfo) -> (!AttrCoercion,!.Heap AttrVarInfo);
freshInequality {ai_demanded,ai_offered} attr_heap
# (av_dem_info, attr_heap) = readPtr ai_demanded.av_info_ptr attr_heap
(av_off_info, attr_heap) = readPtr ai_offered.av_info_ptr attr_heap
(AVI_Attr (TA_TempVar dem_attr_var)) = av_dem_info
(AVI_Attr (TA_TempVar off_attr_var)) = av_off_info
= ({ac_demanded = dem_attr_var, ac_offered = off_attr_var}, attr_heap) // <<- (av_dem_info,av_off_info)
freshEnvironment [ineq : ineqs] attr_heap
# (fresh_ineq, attr_heap) = freshInequality ineq attr_heap
(fresh_env, attr_heap) = freshEnvironment ineqs attr_heap
= ([fresh_ineq : fresh_env], attr_heap)
freshEnvironment [] attr_heap
= ([], attr_heap)
freshTypeContexts fresh_context_vars tcs cs_and_var_heap
= mapSt (fresh_type_context fresh_context_vars) tcs cs_and_var_heap
where
fresh_type_context fresh_context_vars tc=:{tc_types} (type_heaps, var_heap)
# (tc_types, type_heaps) = mapSt fresh_context_type tc_types type_heaps
| fresh_context_vars
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ tc & tc_types = tc_types, tc_var = new_info_ptr }, (type_heaps, var_heap))
= ({ tc & tc_types = tc_types}, (type_heaps, var_heap))
fresh_context_type (CV tv :@: types) type_heaps=:{th_vars}
# (fresh_cons_var, th_vars) = freshConsVariable tv th_vars
(types, type_heaps) = freshCopy types { type_heaps & th_vars = th_vars }
= (fresh_cons_var :@: types, type_heaps)
fresh_context_type type type_heaps
= freshCopy type type_heaps
freshAttributedVariable :: !u:TypeState -> (!AType, !u:TypeState)
freshAttributedVariable ts=:{ts_var_store,ts_attr_store}
= ({ at_attribute = TA_TempVar ts_attr_store, at_annotation = AN_None, at_type = TempV ts_var_store },
{ts & ts_var_store = inc ts_var_store, ts_attr_store = inc ts_attr_store})
freshNonUniqueVariable :: !u:TypeState -> (!AType, !u:TypeState)
freshNonUniqueVariable ts=:{ts_var_store}
= ({ at_attribute = TA_Multi, at_annotation = AN_None, at_type = TempV ts_var_store },
{ts & ts_var_store = inc ts_var_store})
freshAttribute :: !u:TypeState -> (!TypeAttribute, !u:TypeState)
freshAttribute ts=:{ts_attr_store}
= (TA_TempVar ts_attr_store, {ts & ts_attr_store = inc ts_attr_store})
:: PropState =
{ prop_type_heaps :: !.TypeHeaps
, prop_td_infos :: !.TypeDefInfos
, prop_attr_vars :: ![AttributeVar]
, prop_attr_env :: ![AttrInequality]
, prop_error :: !.Optional .ErrorAdmin
}
attribute_error type_attr No
= No // XXX abort ("sanity check nr 723 failed in module type"--->("type_attr", type_attr))
attribute_error type_attr (Yes err)
# err = errorHeading "Type error" err
= Yes { err & ea_file = err.ea_file <<< "* attribute expected instead of " <<< type_attr <<< '\n' }
addPropagationAttributesToAType :: {#CommonDefs} !AType !*PropState -> *(!AType,Int,!*PropState);
addPropagationAttributesToAType modules type=:{at_type = TA cons_id=:{type_index={glob_object,glob_module},type_name} cons_args, at_attribute} ps
# (cons_args, props, ps=:{prop_td_infos,prop_type_heaps,prop_attr_vars,prop_attr_env,prop_error})
= add_propagation_attributes_to_atypes modules cons_args ps
(prop_class, th_vars, prop_td_infos) = propClassification glob_object glob_module props modules prop_type_heaps.th_vars prop_td_infos
(at_attribute, prop_class, th_attrs, prop_attr_vars, prop_attr_env, prop_error)
= determine_attribute_of_cons modules at_attribute cons_args prop_class prop_type_heaps.th_attrs prop_attr_vars prop_attr_env prop_error
= ({ type & at_type = TA cons_id cons_args, at_attribute = at_attribute }, prop_class, { ps & prop_attr_vars = prop_attr_vars,
prop_td_infos = prop_td_infos, prop_attr_env = prop_attr_env,
prop_type_heaps = { prop_type_heaps & th_vars = th_vars, th_attrs = th_attrs}, prop_error = prop_error })
where
add_propagation_attributes_to_atypes modules [] ps
= ([], [], ps)
add_propagation_attributes_to_atypes modules [atype : atypes] ps
# (atype, prop_class, ps) = addPropagationAttributesToAType modules atype ps
(atypes, prop_classes, ps) = add_propagation_attributes_to_atypes modules atypes ps
= ([atype : atypes], [prop_class : prop_classes], ps)
determine_attribute_of_cons modules TA_Unique cons_args prop_class attr_var_heap attr_vars attr_env ps_error
= (TA_Unique, prop_class >> length cons_args, attr_var_heap, attr_vars, attr_env, ps_error)
determine_attribute_of_cons modules cons_attr cons_args prop_class attr_var_heap attr_vars attr_env ps_error
# (cumm_attr, prop_attrs, prop_class) = determine_cummulative_attribute cons_args TA_Multi [] prop_class
(comb_attr, attr_var_heap, attr_vars, attr_env, ps_error)
= combine_attributes cons_attr cumm_attr prop_attrs attr_var_heap attr_vars attr_env ps_error
= (comb_attr, prop_class, attr_var_heap, attr_vars, attr_env, ps_error)
determine_cummulative_attribute [] cumm_attr attr_vars prop_class
= (cumm_attr, attr_vars, prop_class)
determine_cummulative_attribute [{at_attribute} : types ] cumm_attr attr_vars prop_class
| prop_class bitand 1 == 0
= determine_cummulative_attribute types cumm_attr attr_vars (prop_class >> 1)
= case at_attribute of
TA_Unique
-> (TA_Unique, [], prop_class >> length types)
TA_Multi
-> determine_cummulative_attribute types cumm_attr attr_vars (prop_class >> 1)
TA_Var attr_var
-> determine_cummulative_attribute types at_attribute [attr_var : attr_vars] (prop_class >> 1)
TA_MultiOfPropagatingConsVar
-> determine_cummulative_attribute types cumm_attr attr_vars (prop_class >> 1)
combine_attributes (TA_Var attr_var) cumm_attr prop_vars attr_var_heap attr_vars attr_env ps_error
= case cumm_attr of
TA_Unique
-> (TA_Unique, attr_var_heap, attr_vars, attr_env, attribute_error attr_var ps_error)
TA_Multi
-> (TA_Var attr_var, attr_var_heap, attr_vars, attr_env, ps_error)
TA_Var _
-> (TA_Var attr_var, attr_var_heap, attr_vars, foldSt (new_inequality attr_var) prop_vars attr_env, ps_error)
where
new_inequality off_attr_var dem_attr_var []
= [{ ai_demanded = dem_attr_var, ai_offered = off_attr_var }]
new_inequality off_attr_var dem_attr_var ins=:[ inequal : iequals ]
| dem_attr_var.av_info_ptr == inequal.ai_demanded.av_info_ptr && off_attr_var.av_info_ptr == inequal.ai_offered.av_info_ptr
= ins
= [ inequal : new_inequality off_attr_var dem_attr_var iequals ]
combine_attributes _ (TA_Var var) prop_vars attr_var_heap attr_vars attr_env ps_error
# (new_attr_ptr, attr_var_heap) = newPtr AVI_Empty attr_var_heap
new_attr_var = { var & av_info_ptr = new_attr_ptr }
= (TA_Var new_attr_var, attr_var_heap, [new_attr_var : attr_vars],
mapAppend (\ai_demanded -> { ai_demanded = ai_demanded, ai_offered = new_attr_var }) prop_vars attr_env, ps_error)
combine_attributes cons_attr TA_Unique _ attr_var_heap attr_vars attr_env ps_error
= (TA_Unique, attr_var_heap, attr_vars, attr_env, ps_error)
combine_attributes cons_attr _ _ attr_var_heap attr_vars attr_env ps_error
= (cons_attr, attr_var_heap, attr_vars, attr_env, ps_error)
addPropagationAttributesToAType modules type=:{at_type} ps
# (at_type, ps) = addPropagationAttributesToType modules at_type ps
= ({ type & at_type = at_type }, NoPropClass, ps)
addPropagationAttributesToType modules (arg_type --> res_type) ps
# (arg_type, prop_class, ps) = addPropagationAttributesToAType modules arg_type ps
(res_type, prop_class, ps) = addPropagationAttributesToAType modules res_type ps
= (arg_type --> res_type, ps)
addPropagationAttributesToType modules (type_var :@: types) ps
# (types, ps) = addPropagationAttributesToATypes modules types ps
= (type_var :@: types, ps)
//AA..
addPropagationAttributesToType modules (TArrow1 arg_type) ps
# (arg_type, prop_class, ps) = addPropagationAttributesToAType modules arg_type ps
= (TArrow1 arg_type, ps)
//..AA
addPropagationAttributesToType modules type ps
= (type, ps)
addPropagationAttributesToATypes :: {#CommonDefs} ![AType] !*PropState -> (![AType],!*PropState)
addPropagationAttributesToATypes modules types ps
= mapSt (add_propagation_attributes_to_atype modules) types ps
where
add_propagation_attributes_to_atype modules type ps
# (type, prop_class, ps) = addPropagationAttributesToAType modules type ps
= (type, ps)
:: Base :== {! AType}
currySymbolType st=:{tst_args,tst_arity,tst_result,tst_attr_env} req_arity ts=:{ts_attr_store}
| tst_arity == req_arity
= (st, ts)
# (tst_args, rest_args, is_unique) = split_args req_arity tst_args
| is_unique
# (type, _, _) = buildCurriedType rest_args tst_result TA_Unique [] 0
= ({ st & tst_args = tst_args, tst_arity = req_arity, tst_result = type }, ts)
# (type, tst_attr_env, ts_attr_store) = buildCurriedType rest_args tst_result (TA_TempVar ts_attr_store)
(build_attr_env ts_attr_store tst_args tst_attr_env) (inc ts_attr_store)
= ({ st & tst_args = tst_args, tst_arity = req_arity, tst_result = type, tst_attr_env = tst_attr_env }, { ts & ts_attr_store = ts_attr_store })
where
split_args 0 args = ([], args, False)
split_args n [atype=:{at_attribute} : args]
# (left, right, is_unique) = split_args (dec n) args
= ([ atype : left ], right, is_unique || attr_is_unique at_attribute)
attr_is_unique TA_Unique = True
attr_is_unique _ = False
build_attr_env cum_attr_var [] attr_env
= attr_env
build_attr_env cum_attr_var [{at_attribute=(TA_TempVar attr_var)} : args] attr_env
= build_attr_env cum_attr_var args [{ ac_demanded = attr_var, ac_offered = cum_attr_var } : attr_env]
build_attr_env cum_attr_var [_ : args] attr_env
= build_attr_env cum_attr_var args attr_env
emptyIdent =: { id_name = "", id_info = nilPtr }
buildCurriedType [] type cum_attr attr_env attr_store
= (type, attr_env, attr_store)
buildCurriedType [at=:{at_attribute}:ats] type cum_attr attr_env attr_store
# (next_cum_attr, attr_env, attr_store) = combine_attributes at_attribute cum_attr attr_env attr_store
(res_type, attr_env, attr_store) = buildCurriedType ats type next_cum_attr attr_env attr_store
= ({at_annotation = AN_None, at_attribute = cum_attr , at_type = at --> res_type }, attr_env, attr_store)
where
combine_attributes TA_Unique cum_attr attr_env attr_store
= (TA_Unique, attr_env, attr_store)
combine_attributes (TA_TempVar attr_var) (TA_TempVar cum_attr_var) attr_env attr_store
= (TA_TempVar attr_store, [{ ac_demanded = cum_attr_var,ac_offered = attr_store },{ ac_demanded = attr_var,ac_offered = attr_store }:attr_env], inc attr_store)
combine_attributes (TA_TempVar _) cum_attr attr_env attr_store
= (cum_attr, attr_env, attr_store)
combine_attributes _ (TA_TempVar cum_attr_var) attr_env attr_store
= (TA_TempVar attr_store, [{ ac_demanded = cum_attr_var,ac_offered = attr_store }:attr_env], inc attr_store)
combine_attributes _ cum_attr attr_env attr_store
= (cum_attr, attr_env, attr_store)
determineSymbolTypeOfFunction ident act_arity st=:{st_args,st_result,st_attr_vars,st_attr_env} type_ptr common_defs ts=:{ts_var_heap}
# (type_info, ts_var_heap) = readPtr type_ptr ts_var_heap
ts = { ts & ts_var_heap = ts_var_heap }
= case type_info of
VI_PropagationType symb_type
# (copy_symb_type, cons_variables, ts) = freshSymbolType cWithFreshContextVars symb_type common_defs ts
(curried_st, ts) = currySymbolType copy_symb_type act_arity ts
-> (curried_st, cons_variables, ts)
_
# (st_args, ps) = addPropagationAttributesToATypes common_defs st_args
{ prop_type_heaps = ts.ts_type_heaps, prop_td_infos = ts.ts_td_infos,
prop_attr_vars = st_attr_vars, prop_attr_env = st_attr_env, prop_error = Yes ts.ts_error}
(st_result, _, {prop_type_heaps,prop_td_infos,prop_attr_vars,prop_error = Yes ts_error,prop_attr_env})
= addPropagationAttributesToAType common_defs st_result ps
st = { st & st_args = st_args, st_result = st_result, st_attr_vars = prop_attr_vars, st_attr_env = prop_attr_env }
# (copy_symb_type, cons_variables, ts) = freshSymbolType cWithFreshContextVars st common_defs { ts &
ts_type_heaps = prop_type_heaps, ts_td_infos = prop_td_infos, ts_error = ts_error,
ts_var_heap = ts.ts_var_heap <:= (type_ptr, VI_PropagationType st) }
(curried_st, ts) = currySymbolType copy_symb_type act_arity ts
-> (curried_st, cons_variables, ts)
standardFieldSelectorType {glob_object={ds_ident,ds_index},glob_module} {ti_common_defs} ts=:{ts_var_store,ts_type_heaps}
#! {sd_type,sd_exi_vars} = ti_common_defs.[glob_module].com_selector_defs.[ds_index]
# (th_vars, ts_var_store) = freshExistentialVariables sd_exi_vars (ts_type_heaps.th_vars, ts_var_store)
(inst, cons_variables, ts) = freshSymbolType cWithFreshContextVars sd_type ti_common_defs { ts & ts_type_heaps = { ts_type_heaps & th_vars = th_vars }, ts_var_store = ts_var_store }
= (inst, ts)
// ---> ("standardFieldSelectorType", ds_ident, inst)
standardTupleSelectorType {ds_index} arg_nr {ti_common_defs} ts
#! {cons_type} = ti_common_defs.[cPredefinedModuleIndex].com_cons_defs.[ds_index]
(fresh_type, cons_variables, ts) = freshSymbolType cWithFreshContextVars { cons_type & st_args = [cons_type.st_result], st_result = cons_type.st_args !! arg_nr } ti_common_defs ts
= (fresh_type, ts)
standardRhsConstructorType index mod arity {ti_common_defs} ts
#! {cons_symb, cons_type, cons_exi_vars } = ti_common_defs.[mod].com_cons_defs.[index]
# cons_type = { cons_type & st_vars = mapAppend (\{atv_variable} -> atv_variable) cons_exi_vars cons_type.st_vars }
(fresh_type, _, ts) = freshSymbolType cWithFreshContextVars cons_type ti_common_defs ts
= currySymbolType fresh_type arity ts
// ---> ("standardRhsConstructorType", cons_symb, fresh_type)
standardLhsConstructorType index mod arity {ti_common_defs} ts=:{ts_var_store,ts_type_heaps}
#! {cons_symb, cons_type, cons_exi_vars } = ti_common_defs.[mod].com_cons_defs.[index]
# (th_vars, ts_var_store) = freshExistentialVariables cons_exi_vars (ts_type_heaps.th_vars, ts_var_store)
(fresh_type, _, ts) = freshSymbolType cWithFreshContextVars cons_type ti_common_defs { ts & ts_type_heaps = { ts_type_heaps & th_vars = th_vars }, ts_var_store = ts_var_store }
= (fresh_type, ts)
// ---> ("standardLhsConstructorType", cons_symb, fresh_type)
:: ReferenceMarking :== Bool
cIsRecursive :== True
cIsNotRecursive :== False
storeAttribute (Yes expt_ptr) type_attribute symbol_heap
= symbol_heap <:= (expt_ptr, EI_Attribute (toInt type_attribute))
storeAttribute No type_attribute symbol_heap
= symbol_heap
getSymbolType ti=:{ti_functions,ti_common_defs,ti_main_dcl_module_n} {symb_kind = SK_Function {glob_module,glob_object}, symb_arity, symb_name} ts
| glob_module == ti_main_dcl_module_n
| glob_object>=size ts.ts_fun_env
= abort symb_name.id_name;
# (fun_type, ts) = ts!ts_fun_env.[glob_object]
= case fun_type of
UncheckedType fun_type
# (fun_type_copy, ts) = currySymbolType fun_type symb_arity ts
-> (fun_type_copy, [], [], ts)
SpecifiedType fun_type lifted_arg_types _
# (fun_type_copy=:{tst_args,tst_arity}, cons_variables, ts) = freshSymbolType cWithoutFreshContextVars fun_type ti_common_defs ts
(fun_type_copy, ts) = currySymbolType { fun_type_copy & tst_args = lifted_arg_types ++ fun_type_copy.tst_args,
tst_arity = tst_arity + length lifted_arg_types } symb_arity ts
-> (fun_type_copy, cons_variables, [], ts)
CheckedType fun_type
# (fun_type_copy, cons_variables, ts) = freshSymbolType cWithFreshContextVars fun_type ti_common_defs ts
(fun_type_copy,ts) = currySymbolType fun_type_copy symb_arity ts
-> (fun_type_copy, cons_variables, [], ts)
_
-> abort ("getSymbolType: SK_Function "+++toString symb_name+++" "+++toString glob_object)
// -> abort "getSymbolType (type.icl)" ---> (symb_name, glob_object, fun_type)
# {ft_type,ft_type_ptr,ft_specials} = ti_functions.[glob_module].[glob_object]
| glob_module>=size ti_functions || glob_object>=size ti_functions.[glob_module]
= abort (toString glob_module+++" "+++toString glob_object+++" "+++toString ti_main_dcl_module_n+++" "+++symb_name.id_name);
# (fun_type_copy, cons_variables, ts) = determineSymbolTypeOfFunction symb_name symb_arity ft_type ft_type_ptr ti_common_defs ts
= (fun_type_copy, cons_variables, get_specials ft_specials, ts)
where
get_specials (SP_ContextTypes specials) = specials
get_specials SP_None = []
getSymbolType ti {symb_kind = SK_Constructor {glob_module,glob_object}, symb_arity} ts
# (fresh_cons_type, ts) = standardRhsConstructorType glob_object glob_module symb_arity ti ts
= (fresh_cons_type, [], [], ts)
getSymbolType ti=:{ti_functions,ti_common_defs,ti_main_dcl_module_n} {symb_kind = SK_LocalMacroFunction glob_object, symb_arity, symb_name} ts
| glob_object>=size ts.ts_fun_env
= abort symb_name.id_name;
# (fun_type, ts) = ts!ts_fun_env.[glob_object]
= case fun_type of
UncheckedType fun_type
# (fun_type_copy, ts) = currySymbolType fun_type symb_arity ts
-> (fun_type_copy, [], [], ts)
SpecifiedType fun_type lifted_arg_types _
# (fun_type_copy=:{tst_args,tst_arity}, cons_variables, ts) = freshSymbolType cWithoutFreshContextVars fun_type ti_common_defs ts
(fun_type_copy, ts) = currySymbolType { fun_type_copy & tst_args = lifted_arg_types ++ fun_type_copy.tst_args,
tst_arity = tst_arity + length lifted_arg_types } symb_arity ts
-> (fun_type_copy, cons_variables, [], ts)
CheckedType fun_type
# (fun_type_copy, cons_variables, ts) = freshSymbolType cWithFreshContextVars fun_type ti_common_defs ts
(fun_type_copy,ts) = currySymbolType fun_type_copy symb_arity ts
-> (fun_type_copy, cons_variables, [], ts)
_
-> abort ("getSymbolType SK_LocalMacroFunction: "+++toString symb_name+++" " +++toString glob_object)
// -> abort "getSymbolType (type.icl)" ---> (symb_name, glob_object, fun_type)
getSymbolType ti=:{ti_common_defs} {symb_kind = SK_OverloadedFunction {glob_module,glob_object}, symb_arity} ts
# {me_symb, me_type,me_type_ptr} = ti_common_defs.[glob_module].com_member_defs.[glob_object]
(fun_type_copy, cons_variables, ts) = determineSymbolTypeOfFunction me_symb symb_arity me_type me_type_ptr ti_common_defs ts
= (fun_type_copy, cons_variables, [], ts)
// AA..
getSymbolType ti=:{ti_common_defs} symbol=:{symb_kind = SK_Generic gen_glob kind} ts
# (found, member_glob) = getGenericMember gen_glob kind ti_common_defs
| not found
= abort "getSymbolType: no class for kind"
= getSymbolType ti {symbol & symb_kind = SK_OverloadedFunction member_glob} ts
// ..AA
class requirements a :: !TypeInput !a !(!u:Requirements, !*TypeState) -> (!AType, !Optional ExprInfoPtr, !(!u:Requirements, !*TypeState))
instance requirements BoundVar
where
requirements ti {var_name,var_info_ptr,var_expr_ptr} (reqs, ts)
# (var_info, ts_var_heap) = readPtr var_info_ptr ts.ts_var_heap
ts = { ts & ts_var_heap = ts_var_heap }
= case var_info of
VI_Type type _
-> (type, Yes var_expr_ptr, (reqs, ts))
VI_FAType vars type
# ts = foldSt bind_var_and_attr vars ts
(type, ts_type_heaps) = freshCopy type ts.ts_type_heaps
-> (type, Yes var_expr_ptr, (reqs, { ts & ts_type_heaps = ts_type_heaps }))
_
-> abort "requirements BoundVar " // ---> (var_name <<- var_info))
where
bind_var_and_attr {atv_attribute, atv_variable = {tv_info_ptr}} ts=:{ts_var_store, ts_type_heaps}
= { ts & ts_var_store = inc ts_var_store, ts_type_heaps =
{ ts_type_heaps & th_vars = ts_type_heaps.th_vars <:= (tv_info_ptr, TVI_Type (TempV ts_var_store)),
th_attrs = bind_attr atv_attribute ts_type_heaps.th_attrs }}
where
bind_attr (TA_Var {av_info_ptr}) attr_heap
= attr_heap <:= (av_info_ptr, AVI_Attr TA_TempExVar)
bind_attr attr attr_heap
= attr_heap
instance requirements App
where
requirements ti {app_symb,app_args,app_info_ptr} (reqs=:{req_cons_variables, req_attr_coercions}, ts)
# (tst=:{tst_attr_env,tst_args,tst_result,tst_context}, cons_variables, specials, ts) = getSymbolType ti app_symb ts
reqs = { reqs & req_attr_coercions = tst_attr_env ++ req_attr_coercions, req_cons_variables = [cons_variables : req_cons_variables] }
(reqs, ts) = requirements_of_args ti app_symb.symb_name 1 app_args tst_args (reqs, ts)
| isEmpty tst_context
= (tst_result, No, (reqs, ts))
= (tst_result, No, ({ reqs & req_overloaded_calls = [app_info_ptr : reqs.req_overloaded_calls ]},
{ ts & ts_expr_heap = ts.ts_expr_heap <:= (app_info_ptr,
EI_Overloaded { oc_symbol = app_symb, oc_context = tst_context, oc_specials = specials })}))
where
requirements_of_args :: !TypeInput !Ident !Int ![Expression] ![AType] !(!u:Requirements, !*TypeState) -> (!u:Requirements, !*TypeState)
requirements_of_args ti _ _ [] [] reqs_ts
= reqs_ts
requirements_of_args ti fun_ident arg_nr [expr:exprs] [lt:lts] reqs_ts
# (e_type, opt_expr_ptr, (reqs, ts)) = requirements ti expr reqs_ts
req_type_coercions = [{ tc_demanded = lt, tc_offered = e_type, tc_position = CP_FunArg fun_ident arg_nr, tc_coercible = True } : reqs.req_type_coercions ]
ts_expr_heap = storeAttribute opt_expr_ptr lt.at_attribute ts.ts_expr_heap
= requirements_of_args ti fun_ident (arg_nr+1) exprs lts ({ reqs & req_type_coercions = req_type_coercions}, { ts & ts_expr_heap = ts_expr_heap })
instance requirements Case
where
requirements ti {case_expr,case_guards,case_default,case_info_ptr, case_default_pos} reqs_ts
# (expr_type, opt_expr_ptr, (reqs, ts)) = requirements ti case_expr reqs_ts
(fresh_v, ts) = freshAttributedVariable ts
(cons_types, reqs_ts) = requirements_of_guarded_expressions ti case_guards case_expr expr_type opt_expr_ptr fresh_v (reqs, ts)
(reqs, ts) = requirements_of_default ti case_default case_default_pos fresh_v reqs_ts
ts_expr_heap = ts.ts_expr_heap <:= (case_info_ptr, EI_CaseType { ct_pattern_type = expr_type, ct_result_type = fresh_v, ct_cons_types = cons_types })
= (fresh_v, No, ({ reqs & req_case_and_let_exprs = [case_info_ptr : reqs.req_case_and_let_exprs]},
{ ts & ts_expr_heap = ts_expr_heap }))
where
requirements_of_guarded_expressions ti=:{ti_common_defs} (AlgebraicPatterns alg_type patterns) match_expr pattern_type opt_pattern_ptr
goal_type (reqs, ts)
# (cons_types, result_type, new_attr_env, ts) = freshAlgebraicType alg_type patterns ti_common_defs ts
(used_cons_types, (reqs, ts)) = requirements_of_algebraic_patterns ti patterns cons_types goal_type [] (reqs, ts)
ts_expr_heap = storeAttribute opt_pattern_ptr result_type.at_attribute ts.ts_expr_heap
(position, ts_var_heap) = getPositionOfExpr match_expr ts.ts_var_heap
= (reverse used_cons_types, ({ reqs & req_type_coercions = [{tc_demanded = result_type,tc_offered = pattern_type, tc_position = position,
tc_coercible = True} : reqs.req_type_coercions],
req_attr_coercions = new_attr_env ++ reqs.req_attr_coercions }, { ts & ts_expr_heap = ts_expr_heap, ts_var_heap = ts_var_heap }))
requirements_of_guarded_expressions ti (BasicPatterns bas_type patterns) match_expr pattern_type opt_pattern_ptr goal_type (reqs, ts)
# (attr_bas_type, ts) = attributedBasicType bas_type ts
(reqs, ts) = requirements_of_basic_patterns ti patterns goal_type (reqs, ts)
ts_expr_heap = storeAttribute opt_pattern_ptr attr_bas_type.at_attribute ts.ts_expr_heap
= ([], ({ reqs & req_type_coercions = [{tc_demanded = attr_bas_type,tc_offered = pattern_type, tc_position = CP_Expression match_expr, tc_coercible = True} :
reqs.req_type_coercions]}, { ts & ts_expr_heap = ts_expr_heap }))
requirements_of_guarded_expressions ti (DynamicPatterns dynamic_patterns) match_expr pattern_type opt_pattern_ptr goal_type reqs_ts
# dyn_type = { at_type = TB BT_Dynamic, at_attribute = TA_Multi, at_annotation = AN_None }
(used_dyn_types, (reqs, ts)) = requirements_of_dynamic_patterns ti goal_type dynamic_patterns [] reqs_ts
ts_expr_heap = storeAttribute opt_pattern_ptr TA_Multi ts.ts_expr_heap
= (reverse used_dyn_types, ({ reqs & req_type_coercions = [{tc_demanded = dyn_type, tc_offered = pattern_type, tc_position = CP_Expression match_expr, tc_coercible = True} :
reqs.req_type_coercions] }, { ts & ts_expr_heap = ts_expr_heap }))
requirements_of_algebraic_patterns ti [] cons_types goal_type used_cons_types reqs_ts
= (used_cons_types, reqs_ts)
requirements_of_algebraic_patterns ti [alg_pattern=:{ap_position}:alg_patterns] [ cons_arg_types : cons_types]
goal_type used_cons_types reqs_ts
= requirements_of_algebraic_patterns ti alg_patterns cons_types goal_type [ cons_arg_types : used_cons_types ]
(possibly_accumulate_reqs_in_new_group
ap_position
(requirements_of_algebraic_pattern ti alg_pattern cons_arg_types goal_type)
reqs_ts
)
requirements_of_algebraic_pattern ti {ap_symbol, ap_vars, ap_expr} cons_arg_types goal_type (reqs, ts)
# (res_type, opt_expr_ptr, (reqs, ts))
= requirements ti ap_expr (reqs, { ts & ts_var_heap = makeBase ap_symbol.glob_object.ds_ident 1 ap_vars cons_arg_types ts.ts_var_heap})
ts_expr_heap = storeAttribute opt_expr_ptr res_type.at_attribute ts.ts_expr_heap
= ({ reqs & req_type_coercions = [ { tc_demanded = goal_type, tc_offered = res_type, tc_position = CP_Expression ap_expr, tc_coercible = True } : reqs.req_type_coercions] },
{ ts & ts_expr_heap = ts_expr_heap })
requirements_of_basic_patterns _ [] goal_type reqs_ts
= reqs_ts
requirements_of_basic_patterns ti [{bp_expr, bp_position}:gs] goal_type reqs_ts
= requirements_of_basic_patterns ti gs goal_type
(possibly_accumulate_reqs_in_new_group
bp_position
(requirements_of_basic_pattern ti bp_expr goal_type)
reqs_ts
)
requirements_of_basic_pattern ti bp_expr goal_type reqs_ts
# (res_type, opt_expr_ptr, (reqs, ts)) = requirements ti bp_expr reqs_ts
ts_expr_heap = storeAttribute opt_expr_ptr res_type.at_attribute ts.ts_expr_heap
= ({ reqs & req_type_coercions = [ { tc_demanded = goal_type, tc_offered = res_type, tc_position = CP_Expression bp_expr, tc_coercible = True } : reqs.req_type_coercions] },
{ ts & ts_expr_heap = ts_expr_heap })
requirements_of_dynamic_patterns ti goal_type [] used_dyn_types reqs_ts
= (used_dyn_types, reqs_ts)
requirements_of_dynamic_patterns ti goal_type [dp=:{dp_position, dp_type} : dps] used_dyn_types (reqs, ts=:{ts_expr_heap})
# (EI_TempDynamicPattern _ _ _ _ dyn_type dyn_context dyn_expr_ptr type_code_symbol, ts_expr_heap)
= readPtr dp_type ts_expr_heap
(reqs_ts)
= possibly_accumulate_reqs_in_new_group
dp_position
(requirements_of_dynamic_pattern dyn_type dyn_context dyn_expr_ptr type_code_symbol ti goal_type dp)
(reqs, { ts & ts_expr_heap = ts_expr_heap})
= requirements_of_dynamic_patterns ti goal_type dps [ [dyn_type] : used_dyn_types ] reqs_ts
requirements_of_dynamic_pattern dyn_type dyn_context dyn_expr_ptr type_code_symbol
ti goal_type {dp_var={fv_info_ptr},dp_rhs} (reqs, ts=:{ts_expr_heap, ts_var_heap})
# ts_var_heap = addToBase fv_info_ptr dyn_type No ts_var_heap
(dp_rhs_type, opt_expr_ptr, (reqs, ts)) = requirements ti dp_rhs (reqs, { ts & ts_expr_heap = ts_expr_heap, ts_var_heap = ts_var_heap })
ts_expr_heap = storeAttribute opt_expr_ptr dp_rhs_type.at_attribute ts.ts_expr_heap
type_coercion = { tc_demanded = goal_type, tc_offered = dp_rhs_type, tc_position = CP_Expression dp_rhs, tc_coercible = True }
| isEmpty dyn_context
# reqs = {reqs & req_type_coercions = [ type_coercion : reqs.req_type_coercions]}
= (reqs, { ts & ts_expr_heap = ts_expr_heap })
# reqs = { reqs & req_type_coercions = [ type_coercion : reqs.req_type_coercions], req_overloaded_calls = [dyn_expr_ptr : reqs.req_overloaded_calls ]}
= (reqs, { ts & ts_expr_heap = ts_expr_heap <:=
(dyn_expr_ptr, EI_Overloaded { oc_symbol = type_code_symbol, oc_context = dyn_context, oc_specials = [] }) })
requirements_of_default ti (Yes expr) case_default_pos goal_type reqs_ts
= possibly_accumulate_reqs_in_new_group
case_default_pos
(reqs_of_default ti expr goal_type)
reqs_ts
requirements_of_default ti No _ goal_type reqs_ts
= reqs_ts
reqs_of_default ti expr goal_type reqs_ts
# (res_type, opt_expr_ptr, (reqs, ts)) = requirements ti expr reqs_ts
ts_expr_heap = storeAttribute opt_expr_ptr res_type.at_attribute ts.ts_expr_heap
= ({ reqs & req_type_coercions = [ { tc_demanded = goal_type, tc_offered = res_type, tc_position = CP_Expression expr, tc_coercible = True } : reqs.req_type_coercions] },
{ ts & ts_expr_heap = ts_expr_heap })
instance requirements Let
where
requirements ti {let_lazy_binds, let_strict_binds, let_expr, let_info_ptr, let_expr_position } (reqs, ts)
# let_binds = let_strict_binds ++ let_lazy_binds
(rev_var_types, ts) = make_base let_binds [] ts
var_types = reverse rev_var_types
(reqs, ts) = requirements_of_binds let_binds var_types NoPos [] reqs ts
(res_type, opt_expr_ptr, (reqs, ts)) = requirements_of_let_expr let_expr_position ti let_expr (reqs, ts)
ts_expr_heap = writePtr let_info_ptr (EI_LetType var_types) ts.ts_expr_heap
= ( res_type, opt_expr_ptr, ({ reqs & req_case_and_let_exprs = [let_info_ptr : reqs.req_case_and_let_exprs]},{ ts & ts_expr_heap = ts_expr_heap }))
where
make_base [{lb_src, lb_dst={fv_name, fv_info_ptr}}:bs] var_types ts=:{ts_var_heap}
# (v, ts) = freshAttributedVariable ts
optional_position = if (is_rare_name fv_name) (Yes (CP_Expression lb_src)) No
= make_base bs [v:var_types] { ts & ts_var_heap = writePtr fv_info_ptr (VI_Type v optional_position) ts.ts_var_heap }
make_base [] var_types ts
= (var_types, ts)
requirements_of_binds [] bts last_position new_type_coercions reqs ts
# reqs=add_new_group last_position new_type_coercions reqs
= (reqs,ts)
requirements_of_binds [{lb_src, lb_position}:bs] [b_type:bts] last_position new_type_coercions reqs ts
| is_same_position lb_position last_position
# (new_type_coercions,reqs,ts) = add_requirements_of_bind_to_group lb_src b_type new_type_coercions reqs ts
= requirements_of_binds bs bts last_position new_type_coercions reqs ts
# reqs=add_new_group last_position new_type_coercions reqs
# new_type_coercions=[]
# (new_type_coercions,reqs,ts) = add_requirements_of_bind_to_group_or_list lb_position lb_src b_type new_type_coercions reqs ts
= requirements_of_binds bs bts lb_position new_type_coercions reqs ts
where
is_same_position (LinePos _ line_nr1) (LinePos _ line_nr2)
= line_nr1==line_nr2
is_same_position (FunPos _ line_nr1 _) (FunPos _ line_nr2 _)
= line_nr1==line_nr2
is_same_position _ _
= False
add_requirements_of_bind_to_group_or_list NoPos lb_src b_type new_type_coercions reqs ts
# (reqs,ts) = requirements_of_bind b_type ti lb_src (reqs,ts)
= (new_type_coercions,reqs,ts)
add_requirements_of_bind_to_group_or_list _ lb_src b_type new_type_coercions reqs ts
= add_requirements_of_bind_to_group lb_src b_type new_type_coercions reqs ts
add_requirements_of_bind_to_group lb_src b_type new_type_coercions reqs ts
# old_req_type_coercions=reqs.req_type_coercions
# reqs = {reqs & req_type_coercions=new_type_coercions}
# (reqs,ts) = requirements_of_bind b_type ti lb_src (reqs,ts)
# new_type_coercions=reqs.req_type_coercions
# reqs = {reqs & req_type_coercions=old_req_type_coercions}
= (new_type_coercions,reqs,ts)
requirements_of_bind b_type ti lb_src reqs_ts
# (exp_type, opt_expr_ptr, (reqs, ts))
= requirements ti lb_src reqs_ts
ts_expr_heap = storeAttribute opt_expr_ptr b_type.at_attribute ts.ts_expr_heap
req_type_coercions = [ { tc_demanded = b_type, tc_offered = exp_type, tc_position = CP_Expression lb_src, tc_coercible = True }
: reqs.req_type_coercions ]
= ({ reqs & req_type_coercions = req_type_coercions }, { ts & ts_expr_heap = ts_expr_heap })
add_new_group position [] reqs
= reqs
add_new_group position new_type_coercions reqs
= { reqs & req_type_coercion_groups = [{ tcg_type_coercions = new_type_coercions, tcg_position = position } : reqs.req_type_coercion_groups]}
requirements_of_let_expr NoPos ti let_expr reqs_ts
= requirements ti let_expr reqs_ts
requirements_of_let_expr let_expr_position ti let_expr (reqs=:{req_type_coercions=old_req_type_coercions}, ts)
# reqs_with_empty_accu
= { reqs & req_type_coercions = [] }
(res_type, opt_expr_ptr, (reqs_with_new_group_in_accu, ts))
= requirements ti let_expr (reqs_with_empty_accu, ts)
new_group
= { tcg_type_coercions = reqs_with_new_group_in_accu.req_type_coercions,
tcg_position = let_expr_position }
reqs_with_new_group
= { reqs_with_new_group_in_accu &
req_type_coercion_groups = [new_group:reqs_with_new_group_in_accu.req_type_coercion_groups],
req_type_coercions = old_req_type_coercions }
= (res_type, opt_expr_ptr, (reqs_with_new_group, ts))
instance requirements DynamicExpr
where
requirements ti {dyn_expr,dyn_info_ptr} (reqs, ts=:{ts_expr_heap})
# (EI_TempDynamicType _ dyn_type dyn_context dyn_expr_ptr type_code_symbol, ts_expr_heap) = readPtr dyn_info_ptr ts_expr_heap
(dyn_expr_type, opt_expr_ptr, (reqs, ts)) = requirements ti dyn_expr (reqs, { ts & ts_expr_heap = ts_expr_heap })
ts_expr_heap = storeAttribute opt_expr_ptr dyn_expr_type.at_attribute ts.ts_expr_heap
type_coercion = { tc_demanded = dyn_type, tc_offered = dyn_expr_type, tc_position = CP_Expression dyn_expr, tc_coercible = True }
| isEmpty dyn_context
= ({ at_type = TB BT_Dynamic, at_attribute = TA_Multi, at_annotation = AN_None }, No,
({reqs & req_type_coercions = [ type_coercion : reqs.req_type_coercions]},
{ ts & ts_expr_heap = ts_expr_heap }))
= ({ at_type = TB BT_Dynamic, at_attribute = TA_Multi, at_annotation = AN_None }, No,
({ reqs & req_type_coercions = [ type_coercion : reqs.req_type_coercions], req_overloaded_calls = [dyn_expr_ptr : reqs.req_overloaded_calls ]},
{ ts & ts_expr_heap = ts_expr_heap <:= (dyn_expr_ptr, EI_Overloaded {
oc_symbol = type_code_symbol, oc_context = dyn_context, oc_specials = []}) }))
instance requirements Expression
where
requirements ti (Var var) reqs_ts
= requirements ti var reqs_ts
requirements ti (App app) reqs_ts
= requirements ti app reqs_ts
requirements ti (function @ args) reqs_ts
# (off_fun_type, opt_fun_expr_ptr, reqs_ts) = requirements ti function reqs_ts
(rev_off_arg_types, (reqs, ts)) = requirements_of_list ti args [] reqs_ts
(alpha, ts) = freshAttributedVariable ts
(fun_type, req_type_coercions, ts) = apply_type rev_off_arg_types alpha reqs.req_type_coercions function ts
ts_expr_heap = storeAttribute opt_fun_expr_ptr fun_type.at_attribute ts.ts_expr_heap
= (alpha, No, ({ reqs & req_type_coercions = [{ tc_demanded = fun_type, tc_offered = off_fun_type, tc_position = CP_Expression function, tc_coercible = True } : req_type_coercions ]}, { ts & ts_expr_heap = ts_expr_heap }))
where
requirements_of_list _ [] rev_list_types reqs_ts
= (rev_list_types, reqs_ts)
requirements_of_list ti [expr:exprs] rev_list_types reqs_ts
# (e_type, opt_expr_ptr, reqs_ts) = requirements ti expr reqs_ts
= requirements_of_list ti exprs [(opt_expr_ptr,e_type) : rev_list_types] reqs_ts
apply_type [] res_type type_coercions function ts
= (res_type, type_coercions, ts)
apply_type [(opt_expr_ptr,type) : types] res_type type_coercions function ts
# (type, type_coercions, ts) = determine_demanded_type type opt_expr_ptr type_coercions function ts
(u, ts) = freshAttribute ts
= apply_type types { at_annotation = AN_None, at_attribute = u, at_type = type --> res_type } type_coercions function ts
determine_demanded_type :: !AType !(Optional ExprInfoPtr) ![TypeCoercion] !Expression !*TypeState
-> (!AType, ![TypeCoercion], !*TypeState)
determine_demanded_type type (Yes expr_ptr) type_coercions expr ts
# (dem_type, ts) = freshAttributedVariable ts
ts_expr_heap = writePtr expr_ptr (EI_Attribute (toInt dem_type.at_attribute)) ts.ts_expr_heap
= (dem_type, [ { tc_demanded = dem_type, tc_offered = type, tc_position = CP_Expression expr, tc_coercible = True } : type_coercions ],
{ ts & ts_expr_heap = ts_expr_heap })
determine_demanded_type type No type_coercions expr ts
= (type, type_coercions, ts)
requirements ti (Case kees) reqs_ts
= requirements ti kees reqs_ts
requirements ti (Let lad) reqs_ts
= requirements ti lad reqs_ts
requirements ti (DynamicExpr dienamic) reqs_ts
= requirements ti dienamic reqs_ts
requirements ti (Selection result_type_symb expr selectors) reqs_ts
# (expr_type, opt_expr_ptr, (reqs, ts)) = requirements ti expr reqs_ts
= case result_type_symb of
Yes {glob_object={ds_ident,ds_index,ds_arity}, glob_module}
# (var, ts) = freshAttributedVariable ts
(_, result_type, (reqs, ts)) = requirementsOfSelectors ti No expr selectors False var expr (reqs, ts)
tuple_type = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity
non_unique_type_var = { at_attribute = TA_Multi, at_annotation = AN_None, at_type = TempV ts.ts_var_store }
req_type_coercions
= [ { tc_demanded = non_unique_type_var, tc_offered = result_type, tc_position = CP_Expression expr, tc_coercible = False },
{ tc_demanded = var, tc_offered = expr_type, tc_position = CP_Expression expr, tc_coercible = True } :
reqs.req_type_coercions]
result_type = { at_type = TA tuple_type [non_unique_type_var,var], at_attribute = TA_Unique, at_annotation = AN_None }
-> (result_type, No, ({ reqs & req_type_coercions = req_type_coercions },
{ts & ts_var_store = inc ts.ts_var_store, ts_expr_heap = storeAttribute opt_expr_ptr TA_Multi ts.ts_expr_heap}))
_
# (_, result_type, reqs_ts) = requirementsOfSelectors ti No expr selectors True expr_type expr (reqs, ts)
-> (result_type, opt_expr_ptr, reqs_ts)
requirements ti (Update composite_expr selectors elem_expr) reqs_ts
# (composite_expr_type, opt_composite_expr_ptr, reqs_ts) = requirements ti composite_expr reqs_ts
(has_array_selection, result_type, (reqs, ts))
= requirementsOfSelectors ti (Yes elem_expr) composite_expr selectors True composite_expr_type composite_expr reqs_ts
| has_array_selection
# ts = { ts & ts_expr_heap = storeAttribute opt_composite_expr_ptr TA_Unique ts.ts_expr_heap }
= (composite_expr_type, No, (reqs, ts))
= (composite_expr_type, opt_composite_expr_ptr, (reqs, ts))
requirements ti (RecordUpdate {glob_module,glob_object={ds_index,ds_arity}} expression expressions) (reqs, ts)
# (lhs, ts) = standardLhsConstructorType ds_index glob_module ds_arity ti ts
(rhs, ts) = standardRhsConstructorType ds_index glob_module ds_arity ti ts
(expression_type, opt_expr_ptr, reqs_ts) = requirements ti expression (reqs, ts)
(reqs, ts) = requirements_of_fields ti expression expressions rhs.tst_args lhs.tst_args reqs_ts
ts = { ts & ts_expr_heap = storeAttribute opt_expr_ptr lhs.tst_result.at_attribute ts.ts_expr_heap }
coercion = { tc_demanded = lhs.tst_result, tc_offered = expression_type, tc_position = CP_Expression expression, tc_coercible = True }
= (rhs.tst_result, No, ({ reqs & req_attr_coercions = rhs.tst_attr_env ++ lhs.tst_attr_env ++ reqs.req_attr_coercions,
req_type_coercions = [ coercion : reqs.req_type_coercions ]}, ts))
where
requirements_of_fields ti expression [] _ _ reqs_ts
= reqs_ts
requirements_of_fields ti expression [field : fields] [dem_type : dem_types] [off_type : off_types] reqs_ts
# reqs_ts = requirements_of_field ti expression field dem_type off_type reqs_ts
= requirements_of_fields ti expression fields dem_types off_types reqs_ts
requirements_of_field ti expression {bind_src=NoBind expr_ptr} dem_field_type off_field_type (reqs=:{req_type_coercions}, ts)
# ts = { ts & ts_expr_heap = ts.ts_expr_heap <:= (expr_ptr, EI_Attribute (toInt dem_field_type.at_attribute)) }
coercion = { tc_demanded = dem_field_type, tc_offered = off_field_type, tc_position = CP_Expression expression, tc_coercible = True }
= ({ reqs & req_type_coercions = [ coercion : req_type_coercions ]}, ts)
requirements_of_field ti _ {bind_src} dem_field_type _ reqs_ts
# (expr_type, opt_expr_ptr, (reqs, ts)) = requirements ti bind_src reqs_ts
ts = { ts & ts_expr_heap = storeAttribute opt_expr_ptr dem_field_type.at_attribute ts.ts_expr_heap }
coercion = { tc_demanded = dem_field_type, tc_offered = expr_type, tc_position = CP_Expression bind_src, tc_coercible = True }
= ({ reqs & req_type_coercions = [ coercion : reqs.req_type_coercions ]}, ts)
requirements ti (TupleSelect tuple_symbol arg_nr expr) (reqs=:{req_attr_coercions}, ts)
# ({tst_args = [argtype:_], tst_result, tst_attr_env}, ts) = standardTupleSelectorType tuple_symbol arg_nr ti ts
(e_type, opt_expr_ptr, (reqs, ts)) = requirements ti expr ({ reqs & req_attr_coercions = tst_attr_env ++ req_attr_coercions }, ts)
(position, ts_var_heap) = getPositionOfExpr expr ts.ts_var_heap
req_type_coercions = [{ tc_demanded = argtype, tc_offered = e_type, tc_position = position, tc_coercible = True } : reqs.req_type_coercions ]
ts_expr_heap = storeAttribute opt_expr_ptr argtype.at_attribute ts.ts_expr_heap
= (tst_result, No, ({ reqs & req_type_coercions = req_type_coercions }, { ts & ts_expr_heap = ts_expr_heap, ts_var_heap = ts_var_heap }))
requirements _ (BasicExpr basic_val basic_type) (reqs, ts)
# (type, ts) = attributedBasicType basic_type ts
= (type, No, (reqs, ts))
requirements ti (MatchExpr opt_tuple_type {glob_object={ds_arity, ds_index},glob_module} expr) (reqs, ts)
# ({tst_result,tst_args,tst_attr_env}, ts) = standardLhsConstructorType ds_index glob_module ds_arity ti ts
(e_type, opt_expr_ptr, (reqs, ts)) = requirements ti expr (reqs, ts)
reqs = { reqs & req_attr_coercions = tst_attr_env ++ reqs.req_attr_coercions,
req_type_coercions = [{ tc_demanded = tst_result, tc_offered = e_type, tc_position = CP_Expression expr, tc_coercible = True } : reqs.req_type_coercions ] }
ts = { ts & ts_expr_heap = storeAttribute opt_expr_ptr tst_result.at_attribute ts.ts_expr_heap }
= case opt_tuple_type of
Yes {glob_object={ds_ident,ds_index,ds_arity}, glob_module}
# tuple_type = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity
-> ({ at_type = TA tuple_type tst_args, at_attribute = TA_Unique, at_annotation = AN_None }, No, (reqs, ts))
No
-> ( hd tst_args, No, (reqs, ts))
requirements _ (AnyCodeExpr _ _ _) (reqs, ts)
# (fresh_v, ts) = freshAttributedVariable ts
= (fresh_v, No, (reqs, ts))
requirements _ (ABCCodeExpr _ _) (reqs, ts)
# (fresh_v, ts) = freshAttributedVariable ts
= (fresh_v, No, (reqs, ts))
requirements _ expr reqs_ts
= (abort ("Error in requirements\n" ---> expr), No, reqs_ts)
requirementsOfSelectors ti opt_expr expr [selector] tc_coercible sel_expr_type sel_expr reqs_ts
= requirementsOfSelector ti opt_expr expr selector tc_coercible sel_expr_type sel_expr reqs_ts
requirementsOfSelectors ti opt_expr expr [selector : selectors] tc_coercible sel_expr_type sel_expr reqs_ts
# (has_array_selection, result_type, reqs_ts) = requirementsOfSelector ti No expr selector tc_coercible sel_expr_type sel_expr reqs_ts
# (have_array_selection, result_type, reqs_ts) = requirementsOfSelectors ti opt_expr expr selectors tc_coercible result_type sel_expr reqs_ts
= (has_array_selection || have_array_selection, result_type, reqs_ts)
requirementsOfSelector ti _ expr (RecordSelection field _) tc_coercible sel_expr_type sel_expr (reqs, ts )
# ({tst_args, tst_result, tst_attr_env}, ts) = standardFieldSelectorType field ti ts
req_type_coercions = [{ tc_demanded = hd tst_args, tc_offered = sel_expr_type, tc_position = CP_Expression sel_expr, tc_coercible = tc_coercible } :
reqs.req_type_coercions ]
= (False, tst_result, ({ reqs & req_type_coercions = req_type_coercions }, ts))
requirementsOfSelector ti opt_expr expr (ArraySelection {glob_object = {ds_ident,ds_index,ds_arity},glob_module} expr_ptr index_expr) tc_coercible sel_expr_type sel_expr (reqs, ts)
# {me_type} = ti.ti_common_defs.[glob_module].com_member_defs.[ds_index]
({tst_attr_env,tst_args,tst_result,tst_context}, cons_variables, ts) = freshSymbolType cWithFreshContextVars me_type ti.ti_common_defs ts
(dem_array_type, dem_index_type, rest_type) = array_and_index_type tst_args
reqs ={ reqs & req_attr_coercions = tst_attr_env ++ reqs.req_attr_coercions, req_cons_variables = [ cons_variables : reqs.req_cons_variables ]}
(index_type, opt_expr_ptr, (reqs, ts)) = requirements ti index_expr (reqs, ts)
ts_expr_heap = storeAttribute opt_expr_ptr dem_index_type.at_attribute ts.ts_expr_heap
reqs = { reqs & req_type_coercions = [{ tc_demanded = dem_index_type, tc_offered = index_type, tc_position = CP_Expression expr, tc_coercible = True },
{ tc_demanded = dem_array_type, tc_offered = sel_expr_type, tc_position = CP_Expression sel_expr, tc_coercible = tc_coercible } : reqs.req_type_coercions ]}
(reqs, ts) = requirements_of_update ti opt_expr rest_type (reqs, { ts & ts_expr_heap = ts_expr_heap })
| isEmpty tst_context
= (True, tst_result, (reqs, ts))
= (True, tst_result, ({ reqs & req_overloaded_calls = [expr_ptr : reqs.req_overloaded_calls ]}, { ts & ts_expr_heap =
ts.ts_expr_heap <:= (expr_ptr, EI_Overloaded { oc_symbol =
{ symb_name = ds_ident, symb_kind = SK_OverloadedFunction {glob_module = glob_module, glob_object = ds_index}, symb_arity = ds_arity },
oc_context = tst_context, oc_specials = [] })}))
where
array_and_index_type [array_type, index_type : rest_type ]
= (array_type, index_type, rest_type)
requirements_of_update ti No _ reqs_ts
= reqs_ts
requirements_of_update ti (Yes elem_expr) [ elem_type : _ ] reqs_ts
# (elem_expr_type, opt_elem_expr_ptr, (reqs, ts)) = requirements ti elem_expr reqs_ts
ts = { ts & ts_expr_heap = storeAttribute opt_elem_expr_ptr elem_type.at_attribute ts.ts_expr_heap }
reqs = { reqs & req_type_coercions = [{ tc_demanded = elem_type, tc_offered = elem_expr_type,
tc_position = CP_Expression elem_expr, tc_coercible = True } : reqs.req_type_coercions ]}
= (reqs, ts)
possibly_accumulate_reqs_in_new_group position state_transition reqs_ts
:== possibly_accumulate_reqs position reqs_ts
where
possibly_accumulate_reqs NoPos reqs_ts
= state_transition reqs_ts
possibly_accumulate_reqs position (reqs=:{req_type_coercions=old_req_type_coercions}, ts)
# reqs_with_empty_accu
= { reqs & req_type_coercions = [] }
(reqs_with_new_group_in_accu, ts)
= state_transition (reqs_with_empty_accu, ts)
new_group
= { tcg_type_coercions = reqs_with_new_group_in_accu.req_type_coercions,
tcg_position = position }
reqs_with_new_group
= { reqs_with_new_group_in_accu &
req_type_coercion_groups = [new_group:reqs_with_new_group_in_accu.req_type_coercion_groups],
req_type_coercions = old_req_type_coercions }
= (reqs_with_new_group, ts)
makeBase _ _ [] [] ts_var_heap
= ts_var_heap
makeBase fun_or_cons_ident arg_nr [{fv_name, fv_info_ptr} : vars] [type : types] ts_var_heap
| is_rare_name fv_name
= makeBase fun_or_cons_ident (arg_nr+1) vars types (addToBase fv_info_ptr type (Yes (CP_FunArg fun_or_cons_ident arg_nr)) ts_var_heap)
= makeBase fun_or_cons_ident (arg_nr+1) vars types (addToBase fv_info_ptr type No ts_var_heap)
addToBase info_ptr atype=:{at_type = TFA atvs type} _ ts_var_heap
= ts_var_heap <:= (info_ptr, VI_FAType atvs { atype & at_type = type})
addToBase info_ptr type optional_position ts_var_heap
= ts_var_heap <:= (info_ptr, VI_Type type optional_position)
attributedBasicType (BT_String string_type) ts=:{ts_attr_store}
= ({ at_annotation = AN_None, at_attribute = TA_TempVar ts_attr_store, at_type = string_type}, {ts & ts_attr_store = inc ts_attr_store})
attributedBasicType bas_type ts=:{ts_attr_store}
= ({ at_annotation = AN_None, at_attribute = TA_TempVar ts_attr_store, at_type = TB bas_type}, {ts & ts_attr_store = inc ts_attr_store})
unify_coercions [{tc_demanded,tc_offered,tc_position}:coercions] modules subst heaps err
# (succ, subst, heaps) = unify tc_demanded tc_offered modules subst heaps
| succ
= unify_coercions coercions modules subst heaps err
# (_, subst_demanded, subst) = arraySubst tc_demanded subst
(_, subst_offered, subst) = arraySubst tc_offered subst
= (subst, heaps, cannotUnify subst_demanded subst_offered tc_position err)
unify_coercions [] modules subst heaps err
= (subst, heaps, err)
InitFunEnv :: !Int -> *{! FunctionType}
InitFunEnv nr_of_fun_defs
= createArray nr_of_fun_defs EmptyFunctionType
CreateInitialSymbolTypes start_index common_defs [] defs_and_state
= defs_and_state
CreateInitialSymbolTypes start_index common_defs [fun : funs] (fun_defs, pre_def_symbols, req_cons_variables, ts)
# (fd, fun_defs) = fun_defs![fun]
(pre_def_symbols, req_cons_variables, ts) = initial_symbol_type (start_index == fun) common_defs fd (pre_def_symbols, req_cons_variables, ts)
= CreateInitialSymbolTypes start_index common_defs funs (fun_defs, pre_def_symbols, req_cons_variables, ts)
where
initial_symbol_type is_start_rule common_defs
{fun_symb, fun_type = Yes ft=:{st_arity,st_args,st_result,st_attr_vars,st_attr_env},fun_lifted,
fun_info = {fi_dynamics}, fun_pos }
(pre_def_symbols, req_cons_variables, ts=:{ts_type_heaps,ts_expr_heap,ts_td_infos,ts_error})
# fe_location = newPosition fun_symb fun_pos
ts_error = setErrorAdmin fe_location ts_error
(st_args, ps) = addPropagationAttributesToATypes common_defs st_args
{ prop_type_heaps = ts_type_heaps, prop_td_infos = ts_td_infos,
prop_attr_vars = st_attr_vars, prop_attr_env = st_attr_env, prop_error = Yes ts_error}
(st_result, _, {prop_type_heaps,prop_td_infos,prop_attr_vars,prop_error = Yes ts_error,prop_attr_env})
= addPropagationAttributesToAType common_defs st_result ps
ft_with_prop = { ft & st_args = st_args, st_result = st_result, st_attr_vars = prop_attr_vars, st_attr_env = prop_attr_env }
(th_vars, ts_expr_heap) = clear_dynamics fi_dynamics (prop_type_heaps.th_vars, ts.ts_expr_heap)
(fresh_fun_type, cons_variables, ts) = freshSymbolType cWithoutFreshContextVars ft_with_prop common_defs { ts & ts_type_heaps = { prop_type_heaps & th_vars = th_vars }, ts_expr_heap = ts_expr_heap,
ts_td_infos = prop_td_infos, ts_error = ts_error }
(lifted_args, ts) = fresh_non_unique_type_variables fun_lifted [] ts
(ts_var_store, ts_type_heaps, ts_var_heap, ts_expr_heap, pre_def_symbols)
= fresh_dynamics fi_dynamics (ts.ts_var_store, ts.ts_type_heaps, ts.ts_var_heap, ts.ts_expr_heap, pre_def_symbols)
= (pre_def_symbols, [ cons_variables : req_cons_variables],
{ ts & ts_fun_env = { ts.ts_fun_env & [fun] = SpecifiedType ft_with_prop lifted_args
{ fresh_fun_type & tst_arity = st_arity + fun_lifted, tst_args = lifted_args ++ fresh_fun_type.tst_args, tst_lifted = fun_lifted }},
ts_var_heap = ts_var_heap, ts_var_store = ts_var_store, ts_expr_heap = ts_expr_heap, ts_type_heaps = ts_type_heaps })
initial_symbol_type is_start_rule common_defs {fun_arity, fun_lifted, fun_info = {fi_dynamics}} (pre_def_symbols, req_cons_variables, ts)
# (st_gen, ts) = create_general_symboltype is_start_rule fun_arity fun_lifted ts
ts_type_heaps = ts.ts_type_heaps
(th_vars, ts_expr_heap) = clear_dynamics fi_dynamics (ts_type_heaps.th_vars, ts.ts_expr_heap)
(ts_var_store, ts_type_heaps, ts_var_heap, ts_expr_heap, pre_def_symbols)
= fresh_dynamics fi_dynamics (ts.ts_var_store, { ts_type_heaps & th_vars = th_vars },
ts.ts_var_heap, ts_expr_heap, pre_def_symbols)
= (pre_def_symbols, req_cons_variables, { ts & ts_fun_env = { ts.ts_fun_env & [fun] = UncheckedType st_gen }, ts_var_store = ts_var_store,
ts_expr_heap = ts_expr_heap, ts_type_heaps = ts_type_heaps, ts_var_heap = ts_var_heap})
create_general_symboltype :: !Bool !Int !Int !*TypeState -> (!TempSymbolType, !*TypeState)
create_general_symboltype is_start_rule nr_of_args nr_of_lifted_args ts
| is_start_rule && nr_of_args > 0
# (tst_args, ts) = fresh_attributed_type_variables (nr_of_args - 1) [{at_attribute = TA_Unique, at_annotation = AN_Strict, at_type = TB BT_World }] ts
(tst_result, ts) = freshAttributedVariable ts
= ({ tst_args = tst_args, tst_arity = 1, tst_result = tst_result, tst_context = [], tst_attr_env = [], tst_lifted = 0 }, ts)
# (tst_args, ts) = fresh_attributed_type_variables nr_of_args [] ts
(tst_args, ts) = fresh_attributed_type_variables nr_of_lifted_args tst_args ts
(tst_result, ts) = freshAttributedVariable ts
= ({ tst_args = tst_args, tst_arity = nr_of_args + nr_of_lifted_args, tst_result = tst_result, tst_context = [], tst_attr_env = [], tst_lifted = 0 }, ts)
fresh_attributed_type_variables :: !Int ![AType] !*TypeState -> (![AType], !*TypeState)
fresh_attributed_type_variables n vars ts
| n == 0
= (vars, ts)
# (var, ts) = freshAttributedVariable ts
= fresh_attributed_type_variables (dec n) [var : vars] ts
fresh_non_unique_type_variables :: !Int ![AType] !*TypeState -> (![AType], !*TypeState)
fresh_non_unique_type_variables n vars ts
| n == 0
= (vars, ts)
# (var, ts) = freshNonUniqueVariable ts
= fresh_non_unique_type_variables (dec n) [var : vars] ts
fresh_dynamics dyn_ptrs state
= foldSt fresh_dynamic dyn_ptrs state
fresh_dynamic dyn_ptr (var_store, type_heaps, var_heap, expr_heap, predef_symbols)
# (dyn_info, expr_heap) = readPtr dyn_ptr expr_heap
= case dyn_info of
EI_Dynamic opt_dyn_type=:(Yes {dt_uni_vars,dt_type,dt_global_vars}) _
# (th_vars, var_store) = fresh_existential_attributed_variables dt_uni_vars (type_heaps.th_vars, var_store)
(th_vars, var_store) = fresh_type_variables dt_global_vars (th_vars, var_store)
(tdt_type, type_heaps) = freshCopy dt_type { type_heaps & th_vars = th_vars }
(contexts, expr_ptr, type_code_symbol, (var_heap, expr_heap, type_var_heap, predef_symbols))
= determine_context_and_expr_ptr dt_global_vars (var_heap, expr_heap, type_heaps.th_vars, predef_symbols)
-> (var_store, { type_heaps & th_vars = type_var_heap }, var_heap,
expr_heap <:= (dyn_ptr, EI_TempDynamicType opt_dyn_type tdt_type contexts expr_ptr type_code_symbol), predef_symbols)
EI_Dynamic No _
# fresh_var = TempV var_store
tdt_type = { at_attribute = TA_Multi, at_annotation = AN_None, at_type = fresh_var }
# ({pds_ident,pds_module,pds_def},predef_symbols) = predef_symbols![PD_TypeCodeClass]
tc_class_symb = {glob_module = pds_module, glob_object = {ds_ident = pds_ident, ds_arity = 1, ds_index = pds_def }}
(pds, predef_symbols) = predef_symbols![PD_TypeCodeMember]
({pds_ident,pds_module,pds_def},predef_symbols) = predef_symbols![PD_TypeCodeMember]
tc_member_symb = { symb_name = pds_ident, symb_kind = SK_OverloadedFunction {glob_module = pds_module, glob_object = pds_def }, symb_arity = 0}
(new_var_ptr, var_heap) = newPtr VI_Empty var_heap
context = {tc_class = tc_class_symb, tc_types = [fresh_var], tc_var = new_var_ptr}
(expr_ptr, expr_heap) = newPtr EI_Empty expr_heap //---> ("^EI_Dynamic No=" +++ toString var_store)
-> (inc var_store, type_heaps, var_heap,
expr_heap <:= (dyn_ptr, EI_TempDynamicType No tdt_type [context] expr_ptr tc_member_symb), predef_symbols)
EI_DynamicTypeWithVars loc_type_vars dt=:{dt_uni_vars,dt_type,dt_global_vars} loc_dynamics
# (fresh_vars, (th_vars, var_store)) = fresh_existential_variables loc_type_vars (type_heaps.th_vars, var_store)
// ---> ("fresh_dynamic (EI_DynamicTypeWithVars)", dt_uni_vars)
(th_vars, var_store) = fresh_type_variables dt_global_vars (th_vars, var_store)
(tdt_type, type_heaps) = freshCopy (add_universal_vars_to_type dt_uni_vars dt_type) { type_heaps & th_vars = th_vars }
(contexts, expr_ptr, type_code_symbol, (var_heap, expr_heap, type_var_heap, predef_symbols))
= determine_context_and_expr_ptr dt_global_vars (var_heap, expr_heap, type_heaps.th_vars, predef_symbols)
-> fresh_local_dynamics loc_dynamics (var_store, { type_heaps & th_vars = type_var_heap }, var_heap,
expr_heap <:= (dyn_ptr, EI_TempDynamicPattern loc_type_vars dt loc_dynamics fresh_vars tdt_type contexts expr_ptr type_code_symbol), predef_symbols)
fresh_local_dynamics loc_dynamics state
= foldSt fresh_dynamic loc_dynamics state
clear_dynamics dyn_ptrs heaps
= foldSt clear_dynamic dyn_ptrs heaps
clear_dynamic dyn_ptr (var_heap, expr_heap)
# (dyn_info, expr_heap) = readPtr dyn_ptr expr_heap
= case dyn_info of
EI_Dynamic (Yes {dt_global_vars}) _
-> (clear_type_vars dt_global_vars var_heap, expr_heap)
EI_Dynamic No _
-> (var_heap, expr_heap)
EI_DynamicTypeWithVars loc_type_vars {dt_global_vars} loc_dynamics
-> clear_local_dynamics loc_dynamics (clear_type_vars dt_global_vars var_heap, expr_heap)
clear_local_dynamics loc_dynamics state
= foldSt clear_dynamic loc_dynamics state
clear_type_vars type_vars var_heap
= foldSt (\{tv_info_ptr} -> writePtr tv_info_ptr TVI_Empty) type_vars var_heap
fresh_existential_attributed_variables type_variables state
= foldSt (\{atv_variable={tv_info_ptr}} (var_heap, var_store) -> (var_heap <:= (tv_info_ptr, TVI_Type (TempQV var_store)), inc var_store))
type_variables state
fresh_existential_variables type_variables state
= mapSt (\{tv_info_ptr} (var_heap, var_store) -> (var_store, (var_heap <:= (tv_info_ptr, TVI_Type (TempQV var_store)), inc var_store)))
type_variables state
fresh_type_variables type_variables state
= foldSt fresh_type_variable type_variables state
fresh_type_variable {tv_info_ptr} (var_heap, var_store)
# (var_info, var_heap) = readPtr tv_info_ptr var_heap
= case var_info of
TVI_Empty
-> (var_heap <:= (tv_info_ptr, TVI_Type (TempV var_store)), inc var_store)
_
-> (var_heap, var_store)
determine_context_and_expr_ptr global_vars (var_heap, expr_heap, type_var_heap, predef_symbols)
# ({pds_ident,pds_module,pds_def},predef_symbols) = predef_symbols![PD_TypeCodeClass]
tc_class_symb = {glob_module = pds_module, glob_object = {ds_ident = pds_ident, ds_arity = 1, ds_index = pds_def }}
({pds_ident,pds_module,pds_def},predef_symbols) = predef_symbols![PD_TypeCodeMember]
tc_member_symb = { symb_name = pds_ident, symb_kind = SK_TypeCode, symb_arity = 0}
(contexts, (var_heap, type_var_heap)) = mapSt (build_type_context tc_class_symb) global_vars (var_heap, type_var_heap)
(expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (contexts, expr_ptr, tc_member_symb, (var_heap, expr_heap, type_var_heap, predef_symbols))
build_type_context tc_class_symb {tv_info_ptr} (var_heap, type_var_heap)
# (TVI_Type fresh_var, type_var_heap) = readPtr tv_info_ptr type_var_heap
(new_var_ptr, var_heap) = newPtr VI_Empty var_heap
= ({tc_class = tc_class_symb, tc_types = [fresh_var], tc_var = new_var_ptr}, (var_heap, type_var_heap))
add_universal_vars_to_type [] at
= at
add_universal_vars_to_type uni_vars at=:{at_type}
= { at & at_type = TFA uni_vars at_type }
specification_error type type1 err
# err = errorHeading "Type error" err
format = { form_properties = cAttributed, form_attr_position = No}
= { err & ea_file = err.ea_file <<< " specified type "
<:: (format, type1, Yes initialTypeVarBeautifulizer)
<<< "conflicts with derived type "
<:: (format, type, Yes initialTypeVarBeautifulizer)
<<< '\n' }
cleanUpAndCheckFunctionTypes [] _ _ start_index _ defs type_contexts coercion_env attr_partition type_var_env attr_var_env (fun_defs, ts)
= (fun_defs, ts)
cleanUpAndCheckFunctionTypes [fun : funs] [ {fe_requirements = {req_case_and_let_exprs}} : reqs] dict_types start_index list_inferred_types defs type_contexts coercion_env
attr_partition type_var_env attr_var_env (fun_defs, ts)
# (fd, fun_defs) = fun_defs![fun]
dict_ptrs = get_dict_ptrs fun dict_types
(type_var_env, attr_var_env, ts) = clean_up_and_check_function_type fd fun (start_index == fun) list_inferred_types defs type_contexts
(dict_ptrs ++ req_case_and_let_exprs) coercion_env attr_partition type_var_env attr_var_env ts
= cleanUpAndCheckFunctionTypes funs reqs dict_types start_index list_inferred_types defs type_contexts coercion_env attr_partition type_var_env attr_var_env (fun_defs, ts)
where
get_dict_ptrs fun_index []
= []
get_dict_ptrs fun_index [(index, ptrs) : dict_types]
| fun_index == index
= ptrs
= get_dict_ptrs fun_index dict_types
clean_up_and_check_function_type {fun_symb,fun_pos,fun_type = opt_fun_type} fun is_start_rule list_inferred_types defs type_contexts type_ptrs
coercion_env attr_partition type_var_env attr_var_env ts
# (env_type, ts) = ts!ts_fun_env.[fun]
# ts = { ts & ts_error = setErrorAdmin (newPosition fun_symb fun_pos) ts.ts_error}
= case env_type of
ExpandedType fun_type tmp_fun_type exp_fun_type
# (clean_fun_type, type_var_env, attr_var_env, ts_type_heaps, ts_var_heap, ts_expr_heap, ts_error)
= cleanUpSymbolType is_start_rule cSpecifiedType exp_fun_type type_contexts type_ptrs coercion_env
attr_partition type_var_env attr_var_env ts.ts_type_heaps ts.ts_var_heap ts.ts_expr_heap ts.ts_error
| ts_error.ea_ok
# (ts_fun_env, attr_var_env, ts_type_heaps, ts_expr_heap, ts_error)
= check_function_type fun_type tmp_fun_type clean_fun_type type_ptrs defs ts.ts_fun_env attr_var_env ts_type_heaps ts_expr_heap ts_error
-> (type_var_env, attr_var_env, { ts & ts_type_heaps = ts_type_heaps, ts_var_heap = ts_var_heap, ts_expr_heap = ts_expr_heap, ts_fun_env = ts_fun_env, ts_error = ts_error })
-> (type_var_env, attr_var_env, { ts & ts_type_heaps = ts_type_heaps, ts_var_heap = ts_var_heap, ts_expr_heap = ts_expr_heap, ts_error = ts_error })
UncheckedType exp_fun_type
# (clean_fun_type, type_var_env, attr_var_env, ts_type_heaps, ts_var_heap, ts_expr_heap, ts_error)
= cleanUpSymbolType is_start_rule cDerivedType exp_fun_type type_contexts type_ptrs coercion_env
attr_partition type_var_env attr_var_env ts.ts_type_heaps ts.ts_var_heap ts.ts_expr_heap ts.ts_error
ts_out = ts.ts_out
th_attrs = ts_type_heaps.th_attrs
(ts_out, th_attrs)
= case list_inferred_types of
No
-> (ts_out, th_attrs)
Yes show_attributes
# form = { form_properties = if show_attributes cAttributed cNoProperties, form_attr_position = No }
// ts_out = ts_out <<< show_attributes <<< "\n"
(printable_type, th_attrs)
= case show_attributes of
True
-> beautifulizeAttributes clean_fun_type th_attrs
_
-> (clean_fun_type, th_attrs)
-> (ts_out <<< fun_symb <<< " :: "
<:: (form, printable_type, Yes initialTypeVarBeautifulizer) <<< '\n', th_attrs)
ts_fun_env = { ts.ts_fun_env & [fun] = CheckedType clean_fun_type }
-> (type_var_env, attr_var_env, { ts & ts_type_heaps = { ts_type_heaps & th_attrs = th_attrs }, ts_var_heap = ts_var_heap, ts_expr_heap = ts_expr_heap, ts_fun_env = ts_fun_env, ts_error = ts_error, ts_out = ts_out })
check_function_type fun_type tmp_fun_type=:{tst_lifted} clean_fun_type=:{st_arity, st_args, st_vars, st_attr_vars, st_context} type_ptrs
defs fun_env attr_var_env type_heaps expr_heap error
# (equi, attr_var_env, type_heaps) = equivalent clean_fun_type tmp_fun_type (length fun_type.st_context) defs attr_var_env type_heaps
| equi
# type_with_lifted_arg_types = addLiftedArgumentsToSymbolType fun_type tst_lifted st_args st_vars st_attr_vars st_context
(type_heaps, expr_heap) = updateExpressionTypes clean_fun_type type_with_lifted_arg_types type_ptrs type_heaps expr_heap
= ({ fun_env & [fun] = CheckedType type_with_lifted_arg_types}, attr_var_env, type_heaps, expr_heap, error)
// ---> ("check_function_type", clean_fun_type, fun_type, type_with_lifted_arg_types)
# (printable_type, th_attrs) = beautifulizeAttributes clean_fun_type type_heaps.th_attrs
# (printable_type1, th_attrs) = beautifulizeAttributes fun_type th_attrs
= (fun_env, attr_var_env, { type_heaps & th_attrs = th_attrs }, expr_heap, specification_error printable_type printable_type1 error)
where
add_lifted_arg_types arity_diff args1 args2
| arity_diff > 0
= take arity_diff args2 ++ args1
= args1
addLiftedArgumentsToSymbolType st=:{st_arity,st_args,st_vars,st_attr_vars,st_context} nr_of_lifted_arguments new_args new_vars new_attrs new_context
= { st & st_args = take nr_of_lifted_arguments new_args ++ st_args, st_vars = st_vars ++ drop (length st_vars) new_vars,
st_attr_vars = (take (length new_attrs - length st_attr_vars) new_attrs) ++ st_attr_vars, st_arity = st_arity + nr_of_lifted_arguments,
st_context = take (length new_context - length st_context) new_context ++ st_context }
:: FunctionRequirements =
{ fe_requirements :: !Requirements
, fe_context :: !Optional [TypeContext]
, fe_index :: !Index
, fe_location :: !IdentPos
}
/*
ste_kind_to_string s
= case s of
(STE_FunctionOrMacro _)
-> "STE_FunctionOrMacro"
STE_Type
-> "STE_Type"
STE_Constructor
-> "STE_Constructor"
(STE_Selector _)
-> "STE_Selector"
STE_Class
-> "STE_Class"
(STE_Field _)
-> "STE_Field"
STE_Member
-> "STE_Member"
(STE_Instance _)
-> "STE_Instance"
(STE_Variable _)
-> "STE_Variable"
(STE_TypeVariable _)
-> "STE_TypeVariable"
(STE_TypeAttribute _)
-> "STE_TypeAttribute"
(STE_BoundTypeVariable _)
-> "STE_BoundTypeVariable"
(STE_Imported a b)
-> "STE_Imported "+++ ste_kind_to_string a
STE_DclFunction
-> "STE_DclFunction"
(STE_Module _)
-> "STE_Module"
STE_ClosedModule
-> "STE_ClosedModule"
STE_Empty
-> "STE_Empty"
_
-> "STE_???"
*/
typeProgram ::!{! Group} !Int !*{# FunDef} !IndexRange !(Optional Bool) !CommonDefs ![Declaration] !{# DclModule} !NumberSet !*TypeDefInfos !*Heaps !*PredefinedSymbols !*File !*File !{# DclModule}
-> (!Bool, !*{# FunDef}, !IndexRange, {! GlobalTCType}, !{# CommonDefs}, !{# {# FunType} }, !*TypeDefInfos, !*Heaps, !*PredefinedSymbols, !*File, !*File)
typeProgram comps main_dcl_module_n fun_defs specials list_inferred_types icl_defs imports modules used_module_numbers td_infos heaps=:{hp_var_heap, hp_expression_heap, hp_type_heaps} predef_symbols file out dcl_modules
#! fun_env_size = size fun_defs
# ts_error = {ea_file = file, ea_loc = [], ea_ok = True }
ti_common_defs = {{dcl_common \\ {dcl_common} <-: modules } & [main_dcl_module_n] = icl_defs }
ti_functions = {dcl_functions \\ {dcl_functions} <-: modules }
type_def_sizes = [ size com_type_defs \\ {com_type_defs} <-: ti_common_defs ]
class_def_sizes = [ size com_class_defs \\ {com_class_defs} <-: ti_common_defs ]
class_instances = { { IT_Empty \\ i <- [0 .. dec size] } \\ size <- class_def_sizes }
state = collect_imported_instances imports ti_common_defs {} ts_error class_instances hp_type_heaps.th_vars td_infos
(_, ts_error, class_instances, th_vars, td_infos) = collect_and_check_instances (size icl_defs.com_instance_defs) ti_common_defs state
ts = { ts_fun_env = InitFunEnv fun_env_size, ts_var_heap = hp_var_heap, ts_expr_heap = hp_expression_heap, ts_var_store = 0, ts_attr_store = FirstAttrVar,
ts_type_heaps = { hp_type_heaps & th_vars = th_vars }, ts_td_infos = td_infos, ts_error = ts_error, ts_out = out }
ti = { ti_common_defs = ti_common_defs, ti_functions = ti_functions,ti_main_dcl_module_n=main_dcl_module_n }
special_instances = { si_next_array_member_index = fun_env_size, si_array_instances = [], si_next_TC_member_index = 0, si_TC_instances = [] }
# (type_error, fun_defs, predef_symbols, special_instances, ts) = type_components list_inferred_types 0 comps class_instances ti (False, fun_defs, predef_symbols, special_instances, ts)
(fun_defs,ts_fun_env) = update_function_types 0 comps ts.ts_fun_env fun_defs
(type_error, fun_defs, predef_symbols, special_instances, {ts_td_infos,ts_fun_env,ts_error,ts_var_heap, ts_expr_heap, ts_type_heaps, ts_out})
= type_instances list_inferred_types specials.ir_from specials.ir_to class_instances ti (type_error, fun_defs, predef_symbols, special_instances,
{ ts & ts_fun_env = ts_fun_env })
{si_array_instances, si_next_array_member_index, si_next_TC_member_index, si_TC_instances}= special_instances
(fun_defs, predef_symbols, ts_type_heaps) = convert_array_instances si_array_instances ti_common_defs fun_defs predef_symbols ts_type_heaps
type_code_instances = {createArray si_next_TC_member_index GTT_Function & [gtci_index] = gtci_type \\ {gtci_index, gtci_type} <- si_TC_instances}
= (not type_error, fun_defs, { ir_from = fun_env_size, ir_to = si_next_array_member_index }, type_code_instances, ti_common_defs, ti_functions,
ts_td_infos, {hp_var_heap = ts_var_heap, hp_expression_heap = ts_expr_heap, hp_type_heaps = ts_type_heaps },
predef_symbols, ts_error.ea_file, ts_out)
// ---> ("typeProgram", array_inst_types)
where
collect_imported_instances imports common_defs dummy error class_instances type_var_heap td_infos
= foldSt (collect_imported_instance common_defs) imports (dummy, error, class_instances, type_var_heap, td_infos)
collect_imported_instance common_defs (Declaration {decl_kind = STE_Imported (STE_Instance _) mod_index, decl_index }) state
= update_instances_of_class common_defs mod_index decl_index state
collect_imported_instance common_defs _ state
= state
collect_and_check_instances nr_of_instances common_defs state
= iFoldSt (update_instances_of_class common_defs main_dcl_module_n) 0 nr_of_instances state
update_instances_of_class common_defs mod_index ins_index (dummy, error, class_instances, type_var_heap, td_infos)
#!{ins_class={glob_object={ds_ident={id_name}, ds_index},glob_module},ins_type={it_types},ins_pos} = common_defs.[mod_index].com_instance_defs.[ins_index]
(mod_instances, class_instances) = replace class_instances glob_module dummy
(instances, mod_instances) = replace mod_instances ds_index IT_Empty
(error, instances) = insert it_types ins_index mod_index common_defs error instances
(_, mod_instances) = replace mod_instances ds_index instances
(dummy, class_instances) = replace class_instances glob_module mod_instances
(error, type_var_heap, td_infos)
= check_types_of_instances ins_pos common_defs glob_module ds_index it_types (error, type_var_heap, td_infos)
= (dummy, error, class_instances, type_var_heap, td_infos)
check_types_of_instances ins_pos common_defs class_module class_index types state
# {class_arity,class_cons_vars} = common_defs.[class_module].com_class_defs.[class_index]
= check_instances_of_constructor_variables ins_pos common_defs class_cons_vars (dec class_arity) types state
where
check_instances_of_constructor_variables ins_pos common_defs cons_vars arg_nr [type : types] state
| cons_vars bitand (1 << arg_nr) <> 0
# state = check_type_of_constructor_variable ins_pos common_defs type state
= check_instances_of_constructor_variables ins_pos common_defs cons_vars (dec arg_nr) types state
= check_instances_of_constructor_variables ins_pos common_defs cons_vars (dec arg_nr) types state
check_instances_of_constructor_variables ins_pos common_defs cons_vars arg_nr [] state
= state
check_type_of_constructor_variable ins_pos common_defs type=:(TA {type_index={glob_module,glob_object},type_arity} types) (error, type_var_heap, td_infos)
# {td_arity,td_name} = common_defs.[glob_module].com_type_defs.[glob_object]
({tdi_properties,tdi_cons_vars}, td_infos) = td_infos![glob_module].[glob_object]
| tdi_properties bitand cIsNonCoercible == 0
# ({sc_neg_vect}, type_var_heap, td_infos)
= signClassification glob_object glob_module [TopSignClass \\ cv <- tdi_cons_vars ] common_defs type_var_heap td_infos
= (check_sign type (sc_neg_vect >> type_arity) (td_arity - type_arity) error, type_var_heap, td_infos)
= (checkErrorWithIdentPos (newPosition empty_id ins_pos)
" instance type should be coercible" error, type_var_heap, td_infos)
where
check_sign type neg_signs arg_nr error
| arg_nr == 0
= error
| neg_signs bitand 1 == 0
= check_sign type (neg_signs >> 1) (dec arg_nr) error
= checkError type " all arguments of an instance type should have a non-negative sign" error
check_type_of_constructor_variable ins_pos common_defs type=:(arg_type --> result_type) (error, type_var_heap, td_infos)
= (checkErrorWithIdentPos (newPosition empty_id ins_pos) " instance type should be coercible" error,
type_var_heap, td_infos)
//AA..
/*
// ??? not sure if it is correct
check_type_of_constructor_variable ins_pos common_defs TArrow (error, type_var_heap, td_infos)
= (checkErrorWithIdentPos (newPosition empty_id ins_pos) " instance type should be coercible" error,
type_var_heap, td_infos)
check_type_of_constructor_variable ins_pos common_defs type=:(TArrow1 arg_type) (error, type_var_heap, td_infos)
= (checkErrorWithIdentPos (newPosition empty_id ins_pos) " instance type should be coercible" error,
type_var_heap, td_infos)
*/
//..AA
check_type_of_constructor_variable ins_pos common_defs type=:(cv :@: types) (error, type_var_heap, td_infos)
= (checkError (newPosition empty_id ins_pos) " instance type should be coercible" error,
type_var_heap, td_infos)
check_type_of_constructor_variable ins_pos common_defs type state
= state
insert :: ![Type] !Index !Index !{# CommonDefs } !*ErrorAdmin !*InstanceTree -> (!*ErrorAdmin, !*InstanceTree)
insert ins_types new_ins_index new_ins_module modules error IT_Empty
= (error, IT_Node {glob_object = new_ins_index,glob_module = new_ins_module} IT_Empty IT_Empty)
insert ins_types new_ins_index new_ins_module modules error (IT_Node ins=:{glob_object,glob_module} it_less it_greater)
#! {ins_type={it_types}} = modules.[glob_module].com_instance_defs.[glob_object]
# cmp = ins_types =< it_types
| cmp == Smaller
# (error, it_less) = insert ins_types new_ins_index new_ins_module modules error it_less
= (error, IT_Node ins it_less it_greater)
| cmp == Greater
# (error, it_greater) = insert ins_types new_ins_index new_ins_module modules error it_greater
= (error, IT_Node ins it_less it_greater)
= (checkError ins_types " instance is overlapping" error, IT_Node ins it_less it_greater)
type_instances list_inferred_types ir_from ir_to class_instances ti funs_and_state
| ir_from == ir_to
= funs_and_state
# funs_and_state = type_component list_inferred_types [ir_from] class_instances ti funs_and_state
= type_instances list_inferred_types (inc ir_from) ir_to class_instances ti funs_and_state
type_components list_inferred_types group_index comps class_instances ti funs_and_state
| group_index == size comps
= funs_and_state
#! comp = comps.[group_index]
# funs_and_state = type_component list_inferred_types comp.group_members class_instances ti funs_and_state
= type_components list_inferred_types (inc group_index) comps class_instances ti funs_and_state
show_component comp fun_defs
= foldSt show_fun comp ([], fun_defs)
where
show_fun fun_index (names, fun_defs)
# ({fun_symb}, fun_defs) = fun_defs![fun_index]
= ([fun_symb : names], fun_defs)
get_index_of_start_rule predef_symbols
# ({pds_def, pds_module}, predef_symbols) = predef_symbols![PD_Start]
| pds_def <> NoIndex && pds_module == main_dcl_module_n
= (pds_def, predef_symbols)
= (NoIndex, predef_symbols)
type_component list_inferred_types comp class_instances ti=:{ti_common_defs} (type_error, fun_defs, predef_symbols, special_instances, ts)
# (start_index, predef_symbols) = get_index_of_start_rule predef_symbols
// # (functions, fun_defs) = show_component comp fun_defs
# (fun_defs, predef_symbols, cons_variables, ts) = CreateInitialSymbolTypes start_index ti_common_defs comp (fun_defs, predef_symbols, [], ts)
| not ts.ts_error.ea_ok // ---> ("typing", functions)
= (True, fun_defs, predef_symbols, special_instances, create_erroneous_function_types comp
{ ts & ts_var_store = 0, ts_attr_store = FirstAttrVar, ts_error = { ts.ts_error & ea_ok = True } })
# (fun_reqs, (cons_variables, fun_defs, ts)) = type_functions comp ti cons_variables fun_defs ts
#! nr_of_type_variables = ts.ts_var_store
# (subst, ts_type_heaps, ts_error)
= unify_requirements_of_functions fun_reqs ti (createArray nr_of_type_variables TE) ts.ts_type_heaps ts.ts_error
| not ts_error.ea_ok
= (True, fun_defs, predef_symbols, special_instances, create_erroneous_function_types comp
{ ts & ts_type_heaps = ts_type_heaps, ts_error = { ts_error & ea_ok = True }, ts_var_store = 0, ts_attr_store = FirstAttrVar})
# {ts_attr_store,ts_var_heap,ts_var_store,ts_expr_heap,ts_td_infos} = ts
(cons_var_vects, subst) = determine_cons_variables cons_variables (createArray (inc (BITINDEX nr_of_type_variables)) 0, subst)
(subst, nr_of_attr_vars, ts_type_heaps, ts_td_infos) = liftSubstitution subst ti_common_defs cons_var_vects ts_attr_store ts_type_heaps ts_td_infos
coer_demanded ={{ CT_Empty \\ i <- [0 .. nr_of_attr_vars - 1] } & [AttrUni] = CT_Unique }
coer_offered = {{ CT_Empty \\ i <- [0 .. nr_of_attr_vars - 1] } & [AttrMulti] = CT_NonUnique }
coercion_env = build_initial_coercion_env fun_reqs {coer_demanded = coer_demanded, coer_offered = coer_offered }
(over_info, (subst, ts_expr_heap)) = collect_and_expand_overloaded_calls fun_reqs [] (subst, ts_expr_heap)
(contexts, coercion_env, local_pattern_variables, dict_types,
{ os_type_heaps, os_var_heap, os_symbol_heap, os_predef_symbols, os_special_instances, os_error })
= tryToSolveOverloading over_info main_dcl_module_n ti_common_defs class_instances coercion_env
{ os_type_heaps = ts_type_heaps, os_var_heap = ts_var_heap, os_symbol_heap = ts_expr_heap,
os_predef_symbols = predef_symbols, os_error = ts_error, os_special_instances = special_instances } modules
| not os_error.ea_ok
= (True, fun_defs, os_predef_symbols, os_special_instances, create_erroneous_function_types comp { ts & ts_type_heaps = os_type_heaps,
ts_error = { os_error & ea_ok = True }, ts_var_store = 0, ts_attr_store = FirstAttrVar,
ts_td_infos = ts_td_infos, ts_expr_heap = os_symbol_heap, ts_var_heap = os_var_heap })
# (fun_defs, coercion_env, subst, ts_td_infos, os_var_heap, os_symbol_heap, os_error)
= makeSharedReferencesNonUnique comp fun_defs coercion_env subst ts_td_infos os_var_heap os_symbol_heap os_error
(subst, coercions, ts_td_infos, ts_type_heaps, ts_error)
= build_coercion_env fun_reqs subst coercion_env ti_common_defs cons_var_vects ts_td_infos os_type_heaps os_error
(subst, ts_fun_env) = expand_function_types comp subst ts.ts_fun_env
(ts_fun_env, {coer_offered,coer_demanded})
= foldSt (add_unicity_of_essentially_unique_types_for_function ti_common_defs)
comp (ts_fun_env, coercions)
(attr_partition, coer_demanded) = partitionateAttributes coer_offered coer_demanded
attr_var_env = createArray nr_of_attr_vars TA_None
var_env = { subst & [i] = TE \\ i <- [0..dec ts_var_store]}
(fun_defs, ts) = cleanUpAndCheckFunctionTypes comp fun_reqs dict_types start_index list_inferred_types ti_common_defs contexts coer_demanded attr_partition var_env attr_var_env
(fun_defs, { ts & ts_error = ts_error, ts_fun_env = ts_fun_env, ts_type_heaps = ts_type_heaps,
ts_td_infos = ts_td_infos, ts_var_heap = os_var_heap, ts_expr_heap = os_symbol_heap })
| not ts.ts_error.ea_ok
= (True, fun_defs, os_predef_symbols, os_special_instances, create_erroneous_function_types comp
{ ts & ts_var_store = 0, ts_attr_store = FirstAttrVar, ts_error = { ts.ts_error & ea_ok = True } })
| isEmpty over_info
# ts_type_heaps = ts.ts_type_heaps
type_code_info = { tci_next_index = os_special_instances.si_next_TC_member_index, tci_instances = os_special_instances.si_TC_instances,
tci_type_var_heap = ts_type_heaps.th_vars, tci_dcl_modules = dcl_modules }
(fun_defs, ts_fun_env, ts_expr_heap, {tci_next_index,tci_instances,tci_type_var_heap}, ts_var_heap, ts_error, os_predef_symbols)
= updateDynamics comp local_pattern_variables main_dcl_module_n fun_defs ts.ts_fun_env ts.ts_expr_heap type_code_info ts.ts_var_heap ts.ts_error os_predef_symbols
= ( type_error || not ts_error.ea_ok,
fun_defs, os_predef_symbols, { os_special_instances & si_next_TC_member_index = tci_next_index, si_TC_instances = tci_instances },
{ ts & ts_var_store = 0, ts_attr_store = FirstAttrVar, ts_expr_heap = ts_expr_heap, ts_error = { ts_error & ea_ok = True },
ts_var_heap = ts_var_heap, ts_type_heaps = { ts_type_heaps & th_vars = tci_type_var_heap }, ts_fun_env = ts_fun_env})
# ts_type_heaps = ts.ts_type_heaps
type_code_info = { tci_next_index = os_special_instances.si_next_TC_member_index, tci_instances = os_special_instances.si_TC_instances,
tci_type_var_heap = ts_type_heaps.th_vars, tci_dcl_modules = dcl_modules }
(fun_defs, ts_fun_env, ts_expr_heap, {tci_next_index,tci_instances,tci_type_var_heap}, ts_var_heap, ts_error, os_predef_symbols)
= removeOverloadedFunctions comp local_pattern_variables main_dcl_module_n fun_defs ts.ts_fun_env
ts.ts_expr_heap type_code_info ts.ts_var_heap ts.ts_error os_predef_symbols
= ( type_error || not ts_error.ea_ok,
fun_defs, os_predef_symbols, { os_special_instances & si_next_TC_member_index = tci_next_index, si_TC_instances = tci_instances },
{ ts & ts_var_store = 0, ts_attr_store = FirstAttrVar, ts_expr_heap = ts_expr_heap, ts_error = { ts_error & ea_ok = True },
ts_var_heap = ts_var_heap, ts_type_heaps = { ts_type_heaps & th_vars = tci_type_var_heap }, ts_fun_env = ts_fun_env})
add_unicity_of_essentially_unique_types_for_function ti_common_defs fun (ts_fun_env, coercions)
# (env_type, ts_fun_env) = ts_fun_env![fun]
= case env_type of
ExpandedType _ _ _
-> (ts_fun_env, coercions)
UncheckedType {tst_args, tst_result}
-> ( ts_fun_env
, foldSt (foldATypeSt (add_unicity_of_essentially_unique_type ti_common_defs) (\x st -> st))
[tst_result:tst_args] coercions
)
where
add_unicity_of_essentially_unique_type common_defs
{at_attribute=TA_TempVar av_number, at_type=TA {type_index} _} coercions
# {td_attribute} = common_defs.[type_index.glob_module].com_type_defs.[type_index.glob_object]
= case td_attribute of
TA_Unique
// the type is essentially unique
-> snd (tryToMakeUnique av_number coercions)
_
-> coercions
add_unicity_of_essentially_unique_type _ _ coercions
= coercions
unify_requirements_of_functions :: ![FunctionRequirements] !TypeInput !*{!Type} !*TypeHeaps !*ErrorAdmin -> (!*{!Type},!*TypeHeaps,!*ErrorAdmin)
unify_requirements_of_functions [{fe_requirements={req_type_coercion_groups},fe_location={ip_ident}} : reqs_list] ti subst heaps ts_error
# (subst, heaps, ts_error) = foldSt (unify_requirements_within_one_position ip_ident ti) req_type_coercion_groups (subst, heaps, ts_error)
= unify_requirements_of_functions reqs_list ti subst heaps ts_error
unify_requirements_of_functions [] ti subst heaps ts_error
= (subst, heaps, ts_error)
unify_requirements_within_one_position :: !Ident !TypeInput !TypeCoercionGroup !(*{!Type}, !*TypeHeaps, !*ErrorAdmin)
-> (*{!Type}, !*TypeHeaps, !*ErrorAdmin)
unify_requirements_within_one_position _ ti {tcg_type_coercions, tcg_position=NoPos} (subst, heaps, ts_error)
= unify_coercions tcg_type_coercions ti subst heaps ts_error
unify_requirements_within_one_position fun_symb ti {tcg_type_coercions, tcg_position} (subst, heaps, ts_error)
# ts_error = setErrorAdmin (newPosition fun_symb tcg_position) ts_error
= unify_coercions tcg_type_coercions ti subst heaps ts_error
build_initial_coercion_env [{fe_requirements={req_attr_coercions},fe_location} : reqs_list] coercion_env
= build_initial_coercion_env reqs_list (add_to_initial_coercion_env req_attr_coercions coercion_env)
build_initial_coercion_env [] coercion_env
= coercion_env
add_to_initial_coercion_env [{ac_offered,ac_demanded} : attr_coercions] coercion_env
= add_to_initial_coercion_env attr_coercions (newInequality ac_offered ac_demanded coercion_env)
add_to_initial_coercion_env [] coercion_env
= coercion_env
determine_cons_variables variables vect_and_subst
= foldSt (foldSt determine_cons_variable) variables vect_and_subst
determine_cons_variable tv_number (bitvects, subst)
# (type, subst) = subst![tv_number]
= case type of
TE
-> (set_bit tv_number bitvects, subst) // ---> ("determine_cons_variable1", tv_number)
TempV var_number
-> (set_bit var_number bitvects, subst) // ---> ("determine_cons_variable2", var_number)
_
-> (bitvects, subst)
build_coercion_env :: [.FunctionRequirements] v:{!Type} *Coercions {#CommonDefs} {#Int} *{#*{#TypeDefInfo}} *TypeHeaps !*ErrorAdmin -> (!w:{!Type},!.Coercions,!u:{#u:{#TypeDefInfo}},!.TypeHeaps,!.ErrorAdmin), [v <= w];
build_coercion_env [{fe_requirements={req_type_coercion_groups},fe_location={ip_ident}} : reqs_list] subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
# (subst, coercion_env, type_signs, type_var_heap, error)
= foldSt (build_coercion_env_for_alternative ip_ident common_defs cons_var_vects)
req_type_coercion_groups
(subst, coercion_env, type_signs, type_var_heap, error)
= build_coercion_env reqs_list subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
build_coercion_env [] subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
= (subst, coercion_env, type_signs, type_var_heap, error)
build_coercion_env_for_alternative fun_symb common_defs cons_var_vects {tcg_position, tcg_type_coercions}
(subst, coercion_env, type_signs, type_var_heap, error)
# error = setErrorAdmin (newPosition fun_symb tcg_position) error
= add_to_coercion_env tcg_type_coercions subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
add_to_coercion_env [{tc_offered,tc_demanded,tc_coercible,tc_position} : attr_coercions] subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
# (opt_error_info, subst, coercion_env, type_signs, type_var_heap)
= determineAttributeCoercions tc_offered tc_demanded tc_coercible
subst coercion_env common_defs cons_var_vects type_signs
type_var_heap
(coercion_env, error)
= case opt_error_info of
No
-> (coercion_env, error)
Yes (positions, exp_off_type)
# (error=:{ea_file})
= errorHeading "Uniqueness error" error
(coercion_env, copy_coercion_env)
= uniqueCopy coercion_env
format
= { form_properties = cMarkAttribute,
form_attr_position = Yes (reverse positions, copy_coercion_env) }
ea_file =
case tc_position of
CP_FunArg _ _
-> ea_file <<< "\"" <<< tc_position <<< "\" "
_
-> ea_file
ea_file = ea_file <<< "attribute at indicated position could not be coerced "
<:: (format, exp_off_type, Yes initialTypeVarBeautifulizer) <<< '\n'
-> (coercion_env, { error & ea_file = ea_file })
= add_to_coercion_env attr_coercions subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
add_to_coercion_env [] subst coercion_env common_defs cons_var_vects type_signs type_var_heap error
= (subst, coercion_env, type_signs, type_var_heap, error)
collect_and_expand_overloaded_calls [] calls subst_and_heap
= (calls, subst_and_heap)
collect_and_expand_overloaded_calls [{ fe_context=Yes context, fe_requirements={req_overloaded_calls,req_case_and_let_exprs}, fe_location, fe_index}:reqs] calls (subst, expr_heap)
# (_, context, subst) = arraySubst context subst
subst_expr_heap = expand_case_or_let_types req_case_and_let_exprs (subst, expr_heap)
= collect_and_expand_overloaded_calls reqs [(Yes context, req_overloaded_calls, fe_location, fe_index) : calls]
(foldSt expand_type_contexts req_overloaded_calls subst_expr_heap)
collect_and_expand_overloaded_calls [{fe_context, fe_requirements={req_overloaded_calls,req_case_and_let_exprs}, fe_location, fe_index}:reqs] calls subst_expr_heap
# subst_expr_heap = expand_case_or_let_types req_case_and_let_exprs subst_expr_heap
= collect_and_expand_overloaded_calls reqs [(fe_context, req_overloaded_calls, fe_location, fe_index) : calls]
(foldSt expand_type_contexts req_overloaded_calls subst_expr_heap)
expand_type_contexts over_info_ptr (subst, expr_heap)
# (EI_Overloaded info, expr_heap) = readPtr over_info_ptr expr_heap
(changed, oc_context, subst) = arraySubst info.oc_context subst
| changed
= (subst, expr_heap <:= (over_info_ptr, EI_Overloaded { info & oc_context = oc_context }))
= (subst, expr_heap)
expand_case_or_let_types info_ptrs subst_expr_heap
= foldSt expand_case_or_let_type info_ptrs subst_expr_heap
expand_case_or_let_type info_ptr (subst, expr_heap)
= case (readPtr info_ptr expr_heap) of
(EI_CaseType case_type, expr_heap)
# (changed, case_type, subst) = arraySubst case_type subst
| changed
-> (subst, expr_heap <:= (info_ptr, EI_CaseType case_type))
-> (subst, expr_heap)
(EI_LetType let_type, expr_heap)
# (changed, let_type, subst) = arraySubst let_type subst
| changed
-> (subst, expr_heap <:= (info_ptr, EI_LetType let_type))
-> (subst, expr_heap)
expand_function_types :: ![Int] !*{!Type} *{! FunctionType} -> (!*{!Type}, *{! FunctionType})
expand_function_types [fun : funs] subst ts_fun_env
# (fun_type, ts_fun_env) = ts_fun_env![fun]
= case fun_type of
UncheckedType tst
# (_, exp_tst, subst) = arraySubst tst subst
-> expand_function_types funs subst { ts_fun_env & [fun] = UncheckedType exp_tst}
SpecifiedType ft _ tst
# (_, exp_tst, subst) = arraySubst tst subst
-> expand_function_types funs subst { ts_fun_env & [fun] = ExpandedType ft tst exp_tst}
expand_function_types [] subst ts_fun_env
= (subst, ts_fun_env)
update_function_types :: !Index !{!Group} !*{!FunctionType} !*{#FunDef} -> (!*{#FunDef}, !*{!FunctionType})
update_function_types group_index comps fun_env fun_defs
| group_index == size comps
= (fun_defs, fun_env)
#! comp = comps.[group_index]
# (fun_defs, fun_env) = update_function_types_in_component comp.group_members fun_env fun_defs
= update_function_types (inc group_index) comps fun_env fun_defs
where
update_function_types_in_component :: ![Index] !*{!FunctionType} !*{#FunDef} -> (!*{#FunDef}, !*{!FunctionType})
update_function_types_in_component [ fun_index : funs ] fun_env fun_defs
# (CheckedType checked_fun_type, fun_env) = fun_env![fun_index]
# (fd, fun_defs) = fun_defs![fun_index]
= case fd.fun_type of
No
-> update_function_types_in_component funs fun_env { fun_defs & [fun_index] = { fd & fun_type = Yes checked_fun_type }}
Yes fun_type
# nr_of_lifted_arguments = checked_fun_type.st_arity - fun_type.st_arity
| nr_of_lifted_arguments > 0
# fun_type = addLiftedArgumentsToSymbolType fun_type nr_of_lifted_arguments
checked_fun_type.st_args checked_fun_type.st_vars checked_fun_type.st_attr_vars checked_fun_type.st_context
-> update_function_types_in_component funs fun_env { fun_defs & [fun_index] = { fd & fun_type = Yes fun_type }}
-> update_function_types_in_component funs fun_env fun_defs
update_function_types_in_component [] fun_env fun_defs
= (fun_defs, fun_env)
type_functions group ti cons_variables fun_defs ts
= mapSt (type_function ti) group (cons_variables, fun_defs, ts) // ((cons_variables, fun_defs, ts) ---> "[(") ---> ")]"
type_function ti fun_index (cons_variables, fun_defs, ts=:{ts_fun_env, ts_var_heap, ts_expr_heap, ts_error})
# (fd, fun_defs) = fun_defs![fun_index]
(type, ts_fun_env) = ts_fun_env![fun_index]
{fun_symb,fun_arity,fun_body=TransformedBody {tb_args,tb_rhs},fun_pos, fun_info, fun_type} = fd
temp_fun_type = type_of type
ts_var_heap = makeBase fun_symb 1 tb_args temp_fun_type.tst_args ts_var_heap
fe_location = newPosition fun_symb fun_pos
ts_error = setErrorAdmin fe_location ts_error
reqs = { req_overloaded_calls = [], req_type_coercion_groups = [], req_type_coercions = [],
req_attr_coercions = [], req_case_and_let_exprs = [], req_cons_variables = cons_variables }
( rhs_type, rhs_expr_ptr, (rhs_reqs, ts)) = requirements ti tb_rhs (reqs,
{ ts & ts_var_heap = ts_var_heap, ts_expr_heap = ts_expr_heap, ts_error = ts_error, ts_fun_env = ts_fun_env })
req_type_coercions = [{tc_demanded = temp_fun_type.tst_result,tc_offered = rhs_type, tc_position = CP_Expression tb_rhs, tc_coercible = True} :
rhs_reqs.req_type_coercions ]
ts_expr_heap = storeAttribute rhs_expr_ptr temp_fun_type.tst_result.at_attribute ts.ts_expr_heap
type_coercion_group_from_accu = { tcg_type_coercions = req_type_coercions, tcg_position = fun_pos }
req_type_coercion_groups = [type_coercion_group_from_accu:rhs_reqs.req_type_coercion_groups]
= ( { fe_location = fe_location, fe_context = if (has_option fun_type) (Yes temp_fun_type.tst_context) No, fe_index = fun_index,
fe_requirements = { rhs_reqs & req_type_coercions = [], req_type_coercion_groups = req_type_coercion_groups, req_cons_variables = [] }
},
(rhs_reqs.req_cons_variables, fun_defs, { ts & ts_expr_heap = ts_expr_heap }))
// ---> ("type_function", fun_symb, tb_args, tb_rhs, fun_info.fi_local_vars)
where
has_option (Yes _) = True
has_option No = False
type_of (UncheckedType tst) = tst
type_of (SpecifiedType _ _ tst) = tst
convert_array_instances si_array_instances common_defs fun_defs predef_symbols type_heaps
| isEmpty si_array_instances
= (fun_defs, predef_symbols, type_heaps)
# ({pds_ident,pds_module,pds_def},predef_symbols) = predef_symbols![PD_UnboxedArrayType]
unboxed_array_type = TA (MakeTypeSymbIdent { glob_object = pds_def, glob_module = pds_module } pds_ident 0) []
({pds_module,pds_def},predef_symbols) = predef_symbols![PD_ArrayClass]
{class_members} = common_defs.[pds_module].com_class_defs.[pds_def]
array_members = common_defs.[pds_module].com_member_defs
(offset_table, _, predef_symbols) = arrayFunOffsetToPD_IndexTable array_members predef_symbols
(instances, type_heaps) = foldSt (convert_array_instance class_members array_members unboxed_array_type offset_table) si_array_instances
([], type_heaps)
= (arrayPlusList fun_defs instances, predef_symbols, type_heaps)
where
convert_array_instance class_members array_members unboxed_array_type offset_table {ai_record} funs_and_heaps
= create_instance_types class_members array_members unboxed_array_type offset_table (TA ai_record []) (size class_members) funs_and_heaps
where
create_instance_types members array_members unboxed_array_type offset_table record_type member_index funs_and_heaps
| member_index == 0
= funs_and_heaps
# member_index = dec member_index
funs_and_heaps = create_instance_type members array_members unboxed_array_type offset_table record_type member_index funs_and_heaps
= create_instance_types members array_members unboxed_array_type offset_table record_type member_index funs_and_heaps
create_instance_type members array_members unboxed_array_type offset_table record_type member_index (array_defs, type_heaps)
# {me_type,me_symb,me_class_vars,me_pos} = array_members.[members.[member_index].ds_index]
(instance_type, _, type_heaps, _, _) = determineTypeOfMemberInstance me_type me_class_vars {it_vars = [], it_attr_vars = [], it_context = [],
it_types = [unboxed_array_type, record_type]} SP_None type_heaps No No
instance_type = makeElemTypeOfArrayFunctionStrict instance_type member_index offset_table
fun =
{ fun_symb = me_symb
, fun_arity = me_type.st_arity
, fun_priority = NoPrio
, fun_body = NoBody
, fun_type = Yes instance_type
, fun_pos = me_pos
, fun_index = member_index
, fun_kind = FK_DefOrImpUnknown
, fun_lifted = 0
, fun_info = EmptyFunInfo
}
= ([fun : array_defs], type_heaps)
create_erroneous_function_types group ts
= foldSt create_erroneous_function_type group ts
create_erroneous_function_type fun ts
# (env_type, ts) = ts!ts_fun_env.[fun]
= case env_type of
ExpandedType fun_type tmp_fun_type exp_fun_type
# (fun_type, ts_type_heaps) = extendSymbolType fun_type tmp_fun_type.tst_lifted ts.ts_type_heaps
-> { ts & ts_type_heaps = ts_type_heaps, ts_fun_env = { ts.ts_fun_env & [fun] = CheckedType fun_type }}
UncheckedType tmp_fun_type
# (clean_fun_type, ts_type_heaps) = cleanSymbolType tmp_fun_type.tst_arity ts.ts_type_heaps
-> { ts & ts_type_heaps = ts_type_heaps, ts_fun_env = { ts.ts_fun_env & [fun] = CheckedType clean_fun_type }}
SpecifiedType fun_type _ tmp_fun_type
# (fun_type, ts_type_heaps) = extendSymbolType fun_type tmp_fun_type.tst_lifted ts.ts_type_heaps
-> { ts & ts_type_heaps = ts_type_heaps, ts_fun_env = { ts.ts_fun_env & [fun] = CheckedType fun_type }}
CheckedType _
-> ts
is_rare_name {id_name}
= id_name.[0]=='_'
getPositionOfExpr expr=:(Var {var_info_ptr}) var_heap
# (VI_Type _ opt_position, var_heap) = readPtr var_info_ptr var_heap
= (case opt_position of
Yes position
-> position
No
-> CP_Expression expr,
var_heap)
getPositionOfExpr expr var_heap
= (CP_Expression expr, var_heap)
empty_id =: { id_name = "", id_info = nilPtr }
instance <<< AttrCoercion
where
(<<<) file {ac_demanded,ac_offered} = file <<< "AttrCoercion: " <<< ac_demanded <<< '~' <<< ac_offered
instance <<< TypeCoercion
where
(<<<) file {tc_demanded,tc_offered} = file <<< "TypeCoercion: " <<< tc_demanded <<< '~' <<< tc_offered
instance <<< TypeContext
where
(<<<) file co = file <<< "TypeContext: (tc_class)=" <<< co.tc_class <<< " (tc_var)=" <<< ptrToInt co.tc_var <<< " (tc_types)=" <<< " " <<< co.tc_types
instance <<< DefinedSymbol
where
(<<<) file {ds_ident}
= file <<< "DefinedSymbol: " <<< ds_ident
instance <<< FunctionType
where
(<<<) file (CheckedType _)
= file <<< "CheckedType"
(<<<) file (SpecifiedType _ _ _)
= file <<< "SpecifiedType"
(<<<) file (UncheckedType _)
= file <<< "UncheckedType"
(<<<) file (ExpandedType _ _ _)
= file <<< "ExpandedType"
(<<<) file EmptyFunctionType
= file <<< "EmptyFunctionType"