summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Assignment1/assignment1.tex1
-rw-r--r--Assignment1/exercises.tex3
-rw-r--r--Assignment1/semantics.tex40
-rw-r--r--Assignment1/syntax.tex10
4 files changed, 39 insertions, 15 deletions
diff --git a/Assignment1/assignment1.tex b/Assignment1/assignment1.tex
index e40b064..63645f1 100644
--- a/Assignment1/assignment1.tex
+++ b/Assignment1/assignment1.tex
@@ -60,6 +60,7 @@
\crefname{xdefinition}{Definition}{Definitions}
\crefname{xexample}{Example}{Examples}
\crefname{xremark}{Remark}{Remarks}
+\crefname{exercise}{Exercise}{Exercises}
\usepackage[color]{changebar}
\newif\ifchangebar\changebarfalse
\let\oldcbend\cbend
diff --git a/Assignment1/exercises.tex b/Assignment1/exercises.tex
index 9126427..5849c84 100644
--- a/Assignment1/exercises.tex
+++ b/Assignment1/exercises.tex
@@ -17,7 +17,7 @@
\item $(\lnot (a \land b)) \land (\lnot (\lnot a \land \lnot b))$.
\item $a \Uop a$.
\item $a \land ((b \Uop a) \lor \lnot(b \Uop a))$.
- \item $\text{false} \rightarrow (a \Uop b)$.
+ \item $\bot \rightarrow (a \Uop b)$.
\end{enumerate}
\end{multicols}
@@ -33,6 +33,7 @@
\end{exercise}
\begin{exercise}
+ \label{ex:dual-modalities}
On page~\pageref{pltl:dual-modalities}, we discussed informally why the dual modalities $\lozenge^{-1}\square^{-1}\phi$ and $\square^{-1}\lozenge^{-1}\phi$ are both equivalent to \enquote{at the first moment in time, $\phi$}.
Prove this formally, i.e.\ that for all infinite words $\sigma$ and $i\in\mathbb N$,
\[
diff --git a/Assignment1/semantics.tex b/Assignment1/semantics.tex
index f851b14..791eb15 100644
--- a/Assignment1/semantics.tex
+++ b/Assignment1/semantics.tex
@@ -35,7 +35,7 @@ The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\s
\begin{mdframed}
\[
\begin{matrix*}[l]
- \sigma &\vDash_i & \text{true}\\
+ \sigma &\vDash_i & \top\\
\sigma &\vDash_i & a &\text{iff} & a\in A_i\\
\sigma &\vDash_i & \phi_1\land\phi_2 &\text{iff} & \text{$\sigma\vDash_i\phi_1$ and $\sigma\vDash_i\phi_2$}\\
\sigma &\vDash_i & \lnot\phi &\text{iff} & \sigma \nvDash_i \phi\\
@@ -51,6 +51,35 @@ The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\s
\end{figure}
\erin
+Given these definitions, it is possible to derive the formal semantics of the $\Fop^{-1}$ and $\Gop^{-1}$ operators as well:
+\[
+ \begin{matrix*}[l]
+ \sigma &\vDash_i &\Fop^{-1}\phi &\text{iff} &\exists_{0 \leq j \leq i}[\sigma \vDash_j \phi]\\
+ \sigma &\vDash_i &\Gop^{-1}\phi &\text{iff} &\forall_{0 \leq j \leq i}[\sigma \vDash_j \phi]
+ \end{matrix*}
+\]
+\camil
+The first follows from the rule for $\Sop$ and the fact that $\sigma \vDash_i \top$ for all $i\in\mathbb N$.
+The second follows from:
+\begin{align*}
+ \sigma \vDash_i \square^{-1}\phi
+ &\quad\Leftrightarrow\quad \sigma \vDash_i \lnot\lozenge^{-1}\lnot\phi\\
+ &\quad\Leftrightarrow\quad \sigma \nvDash_i \lozenge^{-1}\lnot\phi\\
+ &\quad\Leftrightarrow\quad \nexists_{0\le j\le i} [\sigma \vDash_j \lnot\phi]\\
+ &\quad\Leftrightarrow\quad \forall_{0\le j\le i} [\sigma \vDash_j \phi].
+\end{align*}
+
+With this result we can also derive the semantics of the dual modalities $\lozenge^{-1}\square^{-1}$ and $\square^{-1}\lozenge^{-1}$:
+\[
+ \sigma \vDash_i \lozenge^{-1}\square^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_i \square^{-1}\lozenge^{-1}\phi
+ \quad\Leftrightarrow\quad
+ \sigma \vDash_0 \phi
+\]
+This is done in \cref{ex:dual-modalities}.
+
+\erin
\begin{definition}[Semantics of PLTL over Paths and States]
Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let $\phi$ be an PLTL-formula over AP.
\begin{itemize}
@@ -66,11 +95,4 @@ In order to make these definitions suitable for use with our PLTL operators,
we must provide their semantics.
\Cref{fig:PLTL-semantics} shows the formal semantics of the operators defined in the grammar.
Note that we need to add a index $i$, since we must also be able to look in the past.
-
-Given these definitions, it is possible to derive the formal semantics of the $\Fop^{-1}$ and $\Gop^{-1}$ operators as well:
-\[
- \begin{matrix*}[l]
- \sigma &\vDash_i &\Fop^{-1}\phi &\text{iff} &\exists_{0 \leq k \leq i}[\sigma \vDash_k \phi]\\
- \sigma &\vDash_i &\Gop^{-1}\phi &\text{iff} &\forall_{0 \leq k \leq i}[\sigma \vDash_k \phi]
- \end{matrix*}
-\]
+\cbend
diff --git a/Assignment1/syntax.tex b/Assignment1/syntax.tex
index 833144b..81c1844 100644
--- a/Assignment1/syntax.tex
+++ b/Assignment1/syntax.tex
@@ -18,7 +18,7 @@ The $\Sop$-modality is comparable to $\Uop$: $\phi_1\Sop\phi_2$ holds if $\phi_2
\[
\phi
::=
- \left.\raisebox{0pt}[5pt][5pt]{} \text{true}
+ \left.\raisebox{0pt}[5pt][5pt]{} \top
\enspace\middle|\enspace a
\enspace\middle|\enspace \phi_1 \land \phi_2
\enspace\middle|\enspace \lnot \phi
@@ -32,7 +32,7 @@ The $\Sop$-modality is comparable to $\Uop$: $\phi_1\Sop\phi_2$ holds if $\phi_2
\end{definition}
\camil
-We additionally define $\lor, \rightarrow, \leftrightarrow, \text{false}$ using this syntax as usual.
+We additionally define $\lor, \rightarrow, \leftrightarrow, \bot$ using this syntax as usual.
The precedence order of the operators borrowed from LTL remains the same.
$\Pop$ binds equally strong as $\Xop$ and $\lnot$.
@@ -48,7 +48,7 @@ In discourse, it can be helpful to distinguish different kinds of PLTL formulas.
\wffp\ (pure past \wff) inductively as the smallest classes conforming to the following rules:
\begin{itemize}
\item
- Atomic propositions and $\text{true}$ are \wffn.
+ Atomic propositions and $\top$ are \wffn.
\item
If $\phi,\psi \in \wffn \cup \wfff$, then $\phi \Uop \psi, \Xop\phi \in \wfff$.
\item
@@ -71,8 +71,8 @@ They can be seen as counterparts of the derived LTL modalities $\square$ and $\l
\begin{definition}[Derived PLTL operators]
Given $\phi \in PLTL$, then:
\begin{equation*}
- \Fop^{-1} \phi \defeq \top \Sop \phi \qquad
- \Gop^{-1} \phi \defeq \neg \Fop^{-1} \neg \phi
+ \Fop^{-1} \phi \enspace\defeq\enspace \top \Sop \phi \qquad
+ \Gop^{-1} \phi \enspace\defeq\enspace \neg \Fop^{-1} \neg \phi
\qedhere
\end{equation*}
\end{definition}