diff options
author | Camil Staps | 2018-04-19 20:11:57 +0200 |
---|---|---|
committer | Camil Staps | 2018-04-19 20:11:57 +0200 |
commit | affdaaba8b1f98cce8b297b6ecdee145b604e88c (patch) | |
tree | 7d8cb5dcc6f2c89cbb151a545827744a7e8ff0e1 /Assignment1 | |
parent | Minor textual enhancements; remove outdated todos (diff) |
Fix vertical placing of Xop
Diffstat (limited to 'Assignment1')
-rw-r--r-- | Assignment1/assignment1.tex | 4 | ||||
-rw-r--r-- | Assignment1/semantics.tex | 14 | ||||
-rw-r--r-- | Assignment1/syntax.tex | 4 |
3 files changed, 11 insertions, 11 deletions
diff --git a/Assignment1/assignment1.tex b/Assignment1/assignment1.tex index c1e6a0d..d96839e 100644 --- a/Assignment1/assignment1.tex +++ b/Assignment1/assignment1.tex @@ -90,11 +90,11 @@ \DeclareMathOperator{\defeq}{\overset{\text{def}}{=}} \DeclareMathOperator{\Uop}{\mathbf{U}} \DeclareMathOperator{\Wop}{\mathbf{W}} -\DeclareMathOperator{\Xop}{\bigcirc} +\DeclareMathOperator{\Xop}{\raisebox{1pt}{$\bigcirc$}} \DeclareMathOperator{\Fop}{\lozenge} \DeclareMathOperator{\Gop}{\square} \DeclareMathOperator{\Sop}{\mathbf{S}} -\DeclareMathOperator{\Pop}{\bigcirc^{--1}} +\DeclareMathOperator{\Pop}{\raisebox{1pt}{$\bigcirc$}^{--1}} \newcommand{\wff}{\emph{wff}} % Well-formed formula \newcommand{\wffn}{\ifmmode\expandafter\text\fi{\wff\textsuperscript{0}}} % Pure present wff diff --git a/Assignment1/semantics.tex b/Assignment1/semantics.tex index dcc8e6b..1bca0b2 100644 --- a/Assignment1/semantics.tex +++ b/Assignment1/semantics.tex @@ -24,12 +24,12 @@ We use $\sigma \vDash \phi$ as a shorthand for $\sigma \vDash_0 \phi$. \end{definition} \camil Note that we must redefine the satisfaction relation for the LTL operators, because $\vDash$ is now a ternary relation. -The difference with LTL formulae is well illustrated by the $\bigcirc$ operator. -In the LTL case, $\sigma=A_0A_1A_2\dots\vDash\bigcirc\phi$ iff $\sigma[1\dots]=A_1A_2\dots\vDash\phi$. -Thus, whether $\bigcirc\phi$ holds for $\sigma$ cannot depend on $A_0$. -In the PLTL case, $\sigma\vDash_i\bigcirc\phi$ iff $\sigma\vDash_{i+1}\phi$. -The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\sigma$ may depend on $A_0$, - as is trivially the case with $\bigcirc\bigcirc^{-1}a$. +The difference with LTL formulae is well illustrated by the $\Xop$ operator. +In the LTL case, $\sigma=A_0A_1A_2\dots\vDash\Xop\phi$ iff $\sigma[1\dots]=A_1A_2\dots\vDash\phi$. +Thus, whether $\Xop\phi$ holds for $\sigma$ cannot depend on $A_0$. +In the PLTL case, $\sigma\vDash_i\Xop\phi$ iff $\sigma\vDash_{i+1}\phi$. +The information about $A_0$ is not lost, so whether $\Xop\phi$ holds for $\sigma$ may depend on $A_0$, + as is trivially the case with $\Xop\Xop^{-1}a$. \begin{figure} \centering @@ -40,7 +40,7 @@ The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\s \sigma &\vDash_i & a &\text{iff} & a\in A_i\\ \sigma &\vDash_i & \phi_1\land\phi_2 &\text{iff} & \text{$\sigma\vDash_i\phi_1$ and $\sigma\vDash_i\phi_2$}\\ \sigma &\vDash_i & \lnot\phi &\text{iff} & \sigma \nvDash_i \phi\\ - \sigma &\vDash_i & \bigcirc\phi &\text{iff} & \sigma \vDash_{i+1} \phi\\ + \sigma &\vDash_i & \Xop\phi &\text{iff} & \sigma \vDash_{i+1} \phi\\ \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \ge i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $i \le k < j$}\\ \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{0 \le j \le i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\\ \sigma &\vDash_i & \Pop\phi &\text{iff} & \text{$i \geq 1$ and $\sigma \vDash_{i-1} \phi$} diff --git a/Assignment1/syntax.tex b/Assignment1/syntax.tex index 5d2830a..6d86281 100644 --- a/Assignment1/syntax.tex +++ b/Assignment1/syntax.tex @@ -22,7 +22,7 @@ The $\Sop$-modality is comparable to $\Uop$: $\phi_1\Sop\phi_2$ holds if $\phi_2 \enspace\middle|\enspace a \enspace\middle|\enspace \phi_1 \land \phi_2 \enspace\middle|\enspace \lnot \phi - \enspace\middle|\enspace \bigcirc \phi + \enspace\middle|\enspace \Xop \phi \enspace\middle|\enspace \phi_1 \Uop \phi_2 \enspace\middle|\enspace \Pop \phi \enspace\middle|\enspace \phi_1 \Sop \phi_2 @@ -208,6 +208,6 @@ Before turning to the formal semantics in the next subsection, we provide some e These include $\mathbf X^{-1}, \mathbf G^{-1}, \mathbf F^{-1}$~\citep{Markey2003}, but also \raisebox{-1pt}{\tikz\draw[black,fill=black](0,0)circle(.4em);}$,\blacksquare,\blacklozenge$~\citep{Gabbay1989} - and $\stackinset{c}{}{c}{}{$\cdot$}{$\bigcirc$},\boxdot,\stackinset{c}{}{c}{}{$\cdot$}{$\lozenge$}$~\citep{Havelund2002}. + and $\stackinset{c}{}{c}{}{$\cdot$}{$\Xop$},\boxdot,\stackinset{c}{}{c}{}{$\cdot$}{$\lozenge$}$~\citep{Havelund2002}. \end{remark} \cbend |