summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCamil Staps2018-04-22 21:06:18 +0200
committerCamil Staps2018-04-22 21:06:33 +0200
commit7be7f9774737bab46d5b60688b89b790b1624a0f (patch)
treee9a805d8a4c2b392b6b2c37cc90d5ddd9b85defb
parentOCD (if this causes conflict, feel free to rollback) (diff)
Typesetting
-rw-r--r--Assignment1/assignment1.tex2
-rw-r--r--Assignment1/equivalence.tex2
-rw-r--r--Assignment1/semantics.tex4
3 files changed, 5 insertions, 3 deletions
diff --git a/Assignment1/assignment1.tex b/Assignment1/assignment1.tex
index c75367b..a725397 100644
--- a/Assignment1/assignment1.tex
+++ b/Assignment1/assignment1.tex
@@ -95,6 +95,8 @@
\DeclareMathOperator{\Gop}{\square}
\DeclareMathOperator{\Sop}{\mathbf{S}}
\DeclareMathOperator{\Pop}{\raisebox{1pt}{$\bigcirc$}^{--1}}
+\let\vDash\models
+\def\nvDash{\not\models}
\newcommand{\wff}{\emph{wff}} % Well-formed formula
\newcommand{\wffn}{\ifmmode\expandafter\text\fi{\wff\textsuperscript{0}}} % Pure present wff
diff --git a/Assignment1/equivalence.tex b/Assignment1/equivalence.tex
index 6373088..660f052 100644
--- a/Assignment1/equivalence.tex
+++ b/Assignment1/equivalence.tex
@@ -10,7 +10,7 @@ we can define equivalence on PLTL formulas.
Additionally, we can define another form of equivalence, initial equivalence.
When two formulas are initially equivalent, they are equivalent for all paths at position 0.
-This is mainly useful to compare PLTL and LTL formulas.
+This is among other things useful to compare PLTL and LTL formulas.
\begin{definition}[Initial Equivalence of PLTL Formulae]
PLTL formulae $\phi_1,\phi_2$ are initially equivalent, denoted $\phi_1 \equiv_0 \phi_2$ iff they verify the following property:
\[\text{for any path } \pi, \pi \vDash_0 \phi \Leftrightarrow \pi \vDash_0 \psi \qedhere\]
diff --git a/Assignment1/semantics.tex b/Assignment1/semantics.tex
index d99e636..05e96fb 100644
--- a/Assignment1/semantics.tex
+++ b/Assignment1/semantics.tex
@@ -41,8 +41,8 @@ The information about $A_0$ is not lost, so whether $\Xop\phi$ holds for $\sigma
\sigma &\vDash_i & \phi_1\land\phi_2 &\text{iff} & \text{$\sigma\vDash_i\phi_1$ and $\sigma\vDash_i\phi_2$}\\
\sigma &\vDash_i & \lnot\phi &\text{iff} & \sigma \nvDash_i \phi\\
\sigma &\vDash_i & \Xop\phi &\text{iff} & \sigma \vDash_{i+1} \phi\\
- \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \ge i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $i \le k < j$}\\
- \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{0 \le j \le i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\\
+ \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \ge i}\big[\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $i \le k < j$}\big]\\
+ \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{0 \le j \le i}\big[\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\big]\\
\sigma &\vDash_i & \Pop\phi &\text{iff} & \text{$i \geq 1$ and $\sigma \vDash_{i-1} \phi$}
\end{matrix*}
\]