diff options
author | Camil Staps | 2018-07-04 10:08:07 +0200 |
---|---|---|
committer | Camil Staps | 2018-07-04 10:08:07 +0200 |
commit | 42bc693984173f1cd670eb71f96723cc4458111c (patch) | |
tree | c78697306f39d113434babb367befedba35f933a | |
parent | Add docker image with storm+stormpy (diff) | |
parent | Finish Summary (diff) |
Merge branch 'master' of gitlab.science.ru.nl:eveen/Model-Checking
-rw-r--r-- | Assignment1/conversion.tex | 5 | ||||
-rw-r--r-- | PCTL/pctl.tex | 100 |
2 files changed, 103 insertions, 2 deletions
diff --git a/Assignment1/conversion.tex b/Assignment1/conversion.tex index fe9b136..be5196f 100644 --- a/Assignment1/conversion.tex +++ b/Assignment1/conversion.tex @@ -446,14 +446,15 @@ This theorem, in combination with the work of \citet{Meyer1969}, allows for the \begin{enumerate} \item Each $B_i$ is a permutation-reset automaton\footnote{\label{note:definition-omitted}Definition omitted for brevity.} \item There is a homomorphism\footnote{See \cref{note:definition-omitted}.} $\phi$ from $C$ to $A$ - \item Any permutation in some $B_i$ is homomorphic to a subgroup of the tranformation semigroup of $A$ + \item Any permutation in some $B_i$ is homomorphic to a subgroup of the transformation semigroup of $A$ \end{enumerate} \end{theorem} The cascade product can then be used to create star-free regular sets. These sets can then be transformed into LTL formulae. +We will not discuss this transformation in detail since it lies beyond the scope of this book. \cbend %Provide the syntactic algorithm to convert PLTL to LTL -%TODO: Provide algorithm via automata to convert PLTL to LTL +%Provide algorithm via automata to convert PLTL to LTL %TODO: In both cases make use of examples from SSH Paper diff --git a/PCTL/pctl.tex b/PCTL/pctl.tex new file mode 100644 index 0000000..0aac80d --- /dev/null +++ b/PCTL/pctl.tex @@ -0,0 +1,100 @@ +\documentclass[a4paper]{scrartcl} + +\usepackage{amsmath} +\usepackage{amsthm} +\usepackage{amssymb} +\usepackage{mathtools} + +\newtheorem{theorem}{Theorem} +\newtheorem{definition}{Definition} + +\DeclareMathOperator{\defeq}{\overset{\text{def}}{=}} +\DeclareMathOperator{\Uop}{\mathbf{U}} +\DeclareMathOperator{\Wop}{\mathbf{W}} +\DeclareMathOperator{\Xop}{\raisebox{1pt}{$\bigcirc$}} +\DeclareMathOperator{\Fop}{\lozenge} +\DeclareMathOperator{\Gop}{\square} +\DeclareMathOperator{\Sop}{\mathbf{S}} +\DeclareMathOperator{\Pop}{\raisebox{1pt}{$\bigcirc$}^{--1}} + +\title{PCTL} +\subtitle{A Summary of 10.2 and 10.6.2} +\author{Erin van der Veen} + +\begin{document} + +\maketitle + +\section{Syntax} +\begin{definition}[Syntax of PCTL State Formulas] + PCTL state formulas over the set $AP$ of atomic propositions are formed according to the following grammar: + \[ + \Phi + ::= + \left.\raisebox{0pt}[5pt][5pt]{} \text{true} + \enspace\middle|\enspace a + \enspace\middle|\enspace \Phi_1 \land \Phi_2 + \enspace\middle|\enspace \lnot \Phi + \enspace\middle|\enspace \mathbb{P}_J(\Psi) + \right. + \] + where $a \in AP$, $\phi$ is a path formula and $J \subseteq [0,1]$ is an interval with rational bounds. + Where $\mathbb{P}_J(\phi)$ in state $s$ means that the probability for the set of paths satisfying $\phi$ and starting in $s$ meets the bounds given by $J$. +\end{definition} + +\begin{definition}[Syntax of PCTL Path Formulas] + PCTL Path formulas are formed according to the following grammar: + \[ + \Psi + ::= + \left.\raisebox{0pt}[5pt][5pt]{} \Xop\Psi + \enspace\middle|\enspace \Phi_1 \Uop \Phi_2 + \enspace\middle|\enspace \Phi_1 \Uop^{\leq n} \Phi_2 + \right. + \] +\end{definition} + +PCTL does not incorporate the existential and universal quantifiers that are present in CTL. +Reasoning for this difference is that the $P$-operator can be used to closely mimic\footnote{Consider, for example, an infinite path whose probability is 0} the behavior of these operators. + +\section{Semantics} +\begin{definition}[Semantics of PCTL] + \[ + \begin{matrix*}[l] + s \vDash & a &\text{iff} & a \in L(s)\\ + s \vDash & \lnot\phi &\text{iff} & s \nvDash \phi\\ + s \vDash & \phi \land \psi &\text{iff} & \text{$s \vDash \phi$ and $ s \vDash \psi$}\\ + s \vDash & \mathbb{P}_J(\phi) &\text{iff} & Pr(s \vDash \phi) \in J\\ + \end{matrix*} + \] +\end{definition} + +As mentioned above, PCTL can be seen as quantitative analogues of the $\forall$ and $\exists$ operators of CTL. +\begin{itemize} + \item Qualitative PCTL properties are those where $J$ in $\mathbb{P}_J(\phi)$ is 1 or 0. + \item Quantitative PCTL properties are those where $J$ in $\mathbb{P}_J(\phi)$ is in the range $(0,1)$ + \item $\mathbb{P}_{>0}(\Fop\phi) \Leftrightarrow \exists\Fop\phi$ + \item $\mathbb{P}_1(\Fop\phi)$ is weaker than $\forall\Fop\phi$ +\end{itemize} + +\section{Model Checking} +Model Checking is done in the same way as with CTL modelchecking. +The difference lies with the fact that probabilities must now be taken into account. +\[ + Sat(\mathbb{P}_J(\phi)) = \{s \in S \mid P(s \vDash \phi) \in J \} +\] + +\section{PCTL*} +A subsumption of LTL and PCTL that modifies the path formulas to be the following: +\[ + \Psi + ::= + \left.\raisebox{0pt}[5pt][5pt]{} \Phi + \enspace\middle|\enspace \Psi_1 \land \Psi_2 + \enspace\middle|\enspace \neg\Psi + \enspace\middle|\enspace \Xop\Psi + \enspace\middle|\enspace \Psi_1 \Uop \Psi_2 + \right. +\] +The state formulas are not modified. +\end{document} |