summaryrefslogtreecommitdiff
path: root/pw12.v
blob: 17f7501c623141b8d9c09dc2607f753ee4373708 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
(* first part: prop2 and lambda2 and their connection *)
(* via the Curry-Howard-De Bruijn isomorphism         *)

(* the paradigmatic example: the polymorphic identity *)
Lemma example1a : forall a:Prop, a->a.

Proof.
intro a.
intro x.
exact x.
Qed.
Print example1a.
(* \a:Prop. \x:a. x *)

Lemma example1b : forall a:Set, a -> a.

Proof.
intro a.
intro x.
exact x.
Qed.
Print example1b.
(* \a:Set. \x:a. x *)

(* another example from the course *)
Lemma example2: forall a:Prop, a -> (forall b:Prop, ((a -> b) -> b)).

Proof.
intro a.
intro x.
intro b.
intro y.
apply y.
exact x.
Qed.
Print example2.
(* \a:Prop. \x:a. \b:Prop. \y:a->b. (y x) *)

(* the following "lemma" is not valid *)
(*
Lemma example_wrong : forall a:Prop, a -> (forall b:Prop, b).

Proof.
intro a.
intro x.
intro b.
Abort.
*)

(* the polymorphic identity *)
Definition polyid : forall a:Set, forall x:a, a := 
                    fun a:Set =>  fun x:a =>  x.
(* instantiation by application *)
(* Check gives the types *)
Check polyid.
Check polyid nat.
Check polyid nat O.
(* Eval compute computes normal forms *)
Eval compute in (polyid nat).
Eval compute in (polyid nat O).

(* exercise 1 *)
(* give inhabitants of the following types *)

(* forall a : Prop, a -> a *)
(* forall a b : Prop, (a -> b) -> a -> b *)
(* forall a : Prop, a -> forall b : Prop, (a -> b) ->  b*)

(* exercises with negation *)

Lemma exercise2 : forall a:Prop, a -> ~~a.
Proof.
intros a H H0.
apply H0.
exact H.
Qed.

Lemma exercise3: forall a:Prop, ~~~a -> ~a.
Proof.
intros a H H0.
apply H.
apply exercise2.
exact H0.
Qed.

Lemma exercise4: forall a:Prop, ~~(~~a -> a).
Proof.
intros a H.
apply H.
intro.
elimtype False.
apply H0.
intro.
apply H.
intro.
exact H1.
Qed.

(* exercises with full intuitionistic prop2 *)

Lemma exercise5 : forall a:Prop, (exists b:Prop, a) -> a.
Proof.
intros a H.
elim H.
intros b Ha.
exact Ha.
Qed.

Lemma exercise6 : forall a:Prop, exists b:Prop, ((a -> b) \/ (b -> a)).
Proof.
intro.
exists a.
left.
intro.
assumption.
Qed.

(* exercise with classical prop2 *)

Definition em:= forall a:Prop, a \/ ~a.

Lemma exercise7 : em -> forall a b:Prop, ((a -> b) \/ (b -> a)).
Proof.
unfold em.
intros em' a b.
assert (a \/ ~a).
apply em'.
inversion_clear H.
right. intro. assumption.
left. intro. elimtype False. apply H0. assumption.
Qed.

(* expressibility of prop2 *)
(* we will represent logical connectives in prop2 *)

(* definition of false *)
Definition new_false := forall a:Prop, a.

(* False implies new_false *)
Lemma exercise8 : False -> new_false.
Proof.
intro.
elimtype False.
exact H.
Qed.

(* new_false implies False *)
Lemma exercise9 : new_false -> False.
Proof.
unfold new_false.
intro.
apply H.
Qed.

(* from new_false we can prove anything *)
Lemma exercise10 : forall a:Prop, new_false -> a.
Proof.
unfold new_false.
intros a H.
apply H.
Qed.

(*  definition of and *)
(* "a and b" is valid is everything that can be
   derived from {a,b} is valid *)
Definition new_and (a b : Prop) := forall c : Prop, (a -> b -> c) -> c.

(* and implies new_and *)
Lemma exercise11 : forall a b : Prop,a /\ b -> new_and a b.
Proof.
unfold new_and.
intros a b H c H'.
elim H.
intros Ha Hb.
apply H'.
apply Ha.
apply Hb.
Qed.


(* new_and implies and *)
Lemma exercise12 : forall a b : Prop ,
                   new_and a b -> a /\ b.
Proof.
unfold new_and.
intros a b H.
split ; apply H ; intros Ha Hb ; assumption.
Qed.

(* exercise 13 *)
(* assume an inhabitant P of new_and A B with A and B in Prop *)
(* give an inhabitant of A and an inhabitant of B *)
Parameters A B : Prop.
Parameter P : new_and A B.

(* "a or b" is valid if everything that follows form
   {a} and follows from {b} is valid *)
Definition new_or (a b : Prop) := forall c : Prop, (a -> c) -> (b -> c) -> c.

Lemma exercise14 : forall a b , a \/ b -> new_or a b.
Proof.
unfold new_or.
intros a b H c Hac Hbc.
inversion_clear H.
apply Hac. assumption.
apply Hbc. assumption.
Qed.

Lemma exercise15 : forall a b , new_or a b -> a \/ b.
Proof.
unfold new_or.
intros a b H.
apply H.
intro. left.  assumption.
intro. right. assumption.
Qed.

(* exercise 16 *)
(* given an inhabitant Q:A *)
(* give an inhabitant of new_or A B with A and B in Prop *)
Parameter Q:A.

Check (fun (c : Prop) (Ha : A -> c) (Hb : B -> c) => Ha Q) : new_or A B.