1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
(* first part: prop2 and lambda2 and their connection *)
(* via the Curry-Howard-De Bruijn isomorphism *)
(* the paradigmatic example: the polymorphic identity *)
Lemma example1a : forall a:Prop, a->a.
Proof.
intro a.
intro x.
exact x.
Qed.
Print example1a.
(* \a:Prop. \x:a. x *)
Lemma example1b : forall a:Set, a -> a.
Proof.
intro a.
intro x.
exact x.
Qed.
Print example1b.
(* \a:Set. \x:a. x *)
(* another example from the course *)
Lemma example2: forall a:Prop, a -> (forall b:Prop, ((a -> b) -> b)).
Proof.
intro a.
intro x.
intro b.
intro y.
apply y.
exact x.
Qed.
Print example2.
(* \a:Prop. \x:a. \b:Prop. \y:a->b. (y x) *)
(* the following "lemma" is not valid *)
(*
Lemma example_wrong : forall a:Prop, a -> (forall b:Prop, b).
Proof.
intro a.
intro x.
intro b.
Abort.
*)
(* the polymorphic identity *)
Definition polyid : forall a:Set, forall x:a, a :=
fun a:Set => fun x:a => x.
(* instantiation by application *)
(* Check gives the types *)
Check polyid.
Check polyid nat.
Check polyid nat O.
(* Eval compute computes normal forms *)
Eval compute in (polyid nat).
Eval compute in (polyid nat O).
(* exercise 1 *)
(* give inhabitants of the following types *)
(* forall a : Prop, a -> a *)
(* forall a b : Prop, (a -> b) -> a -> b *)
(* forall a : Prop, a -> forall b : Prop, (a -> b) -> b*)
(* exercises with negation *)
Lemma exercise2 : forall a:Prop, a -> ~~a.
Proof.
(*! proof *)
Qed.
Lemma exercise3: forall a:Prop, ~~~a -> ~a.
Proof.
(*! proof *)
Qed.
Lemma exercise4: forall a:Prop, ~~(~~a -> a).
Proof.
(*! proof *)
Qed.
(* exercises with full intuitionistic prop2 *)
Lemma exercise5 : forall a:Prop, (exists b:Prop, a) -> a.
Proof.
(*! proof *)
Qed.
Lemma exercise6 : forall a:Prop, exists b:Prop, ((a -> b) \/ (b -> a)).
Proof.
(*! proof *)
Qed.
(* exercise with classical prop2 *)
Definition em:= forall a:Prop, a \/ ~a.
Lemma exercise7 : em -> forall a b:Prop, ((a -> b) \/ (b -> a)).
Proof.
(*! proof *)
Qed.
(* expressibility of prop2 *)
(* we will represent logical connectives in prop2 *)
(* definition of false *)
Definition new_false := forall a:Prop, a.
(* False implies new_false *)
Lemma exercise8 : False -> new_false.
Proof.
(*! proof *)
Qed.
(* new_false implies False *)
Lemma exercise9 : new_false -> False.
Proof.
(*! proof *)
Qed.
(* from new_false we can prove anything *)
Lemma exercise10 : forall a:Prop, new_false -> a.
Proof.
(*! proof *)
Qed.
(* definition of and *)
(* "a and b" is valid is everything that can be
derived from {a,b} is valid *)
Definition new_and (a b : Prop) := forall c : Prop, (a -> b -> c) -> c.
(* and implies new_and *)
Lemma exercise11 : forall a b : Prop,a /\ b -> new_and a b.
Proof.
(*! proof *)
Qed.
(* new_and implies and *)
Lemma exercise12 : forall a b : Prop ,
new_and a b -> a /\ b.
Proof.
(*! proof *)
Qed.
(* exercise 13 *)
(* assume an inhabitant P of new_and A B with A and B in Prop *)
(* give an inhabitant of A and an inhabitant of B *)
Parameters A B : Prop.
Parameter P : new_and A B.
(* "a or b" is valid if everything that follows form
{a} and follows from {b} is valid *)
Definition new_or (a b : Prop) := forall c : Prop, (a -> c) -> (b -> c) -> c.
Lemma exercise14 : forall a b , a \/ b -> new_or a b.
Proof.
(*! proof *)
Qed.
Lemma exercise15 : forall a b , new_or a b -> a \/ b.
Proof.
(*! proof *)
Qed.
(* exercise 16 *)
(* given an inhabitant Q:A *)
(* give an inhabitant of new_or A B with A and B in Prop *)
Parameter Q:A.
Check (*! term *)
.
|