1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
(* ************************************************* *)
(* prop2 *)
(* ************************************************* *)
(* the paradigmatic example corresponding to *)
(* the polymorphic identity *)
(* we already print the inhabitant although we did not *)
(* yet discuss lambda2 *)
Lemma example1a : forall a:Prop, a->a.
Proof.
intro a.
intro x.
exact x.
Qed.
Print example1a.
(* \a:Prop. \x:a. x *)
Lemma example1b : forall a:Set, a -> a.
Proof.
intro a.
intro x.
exact x.
Qed.
Print example1b.
(* \a:Set. \x:a. x *)
(* another example from the course *)
Lemma example2: forall a:Prop, a -> (forall b:Prop, ((a -> b) -> b)).
Proof.
intro a.
intro x.
intro b.
intro y.
apply y.
exact x.
Qed.
Print example2.
(* \a:Prop. \x:a. \b:Prop. \y:a->b. (y x) *)
(* the following "lemma" is not valid *)
(*
Lemma example_wrong : forall a:Prop, a -> (forall b:Prop, b).
Proof.
intro a.
intro x.
intro b.
Abort.
*)
(* exercise 1 *)
(* give inhabitants of the following types: *)
(* forall a : Prop, a -> a *)
(* forall a b : Prop, (a -> b) -> a -> b *)
(* forall a : Prop, a -> forall b : Prop, (a -> b) -> b*)
(* exercises with negation *)
(* exercise 2 *)
Lemma exercise2 : forall a:Prop, a -> ~~a.
Proof.
(*! proof *)
Qed.
Lemma exercise3: forall a:Prop, ~~~a -> ~a.
Proof.
(*! proof *)
Qed.
Lemma exercise4: forall a:Prop, ~~(~~a -> a).
Proof.
(*! proof *)
Qed.
(* exercises with full intuitionistic prop2 *)
Lemma exercise5 : forall a:Prop, (exists b:Prop, a) -> a.
Proof.
(*! proof *)
Qed.
Lemma exercise6 : forall a:Prop, exists b:Prop, ((a -> b) \/ (b -> a)).
Proof.
(*! proof *)
Qed.
(* exercise with classical prop2 *)
Definition em:= forall a:Prop, a \/ ~a.
Lemma exercise7: em -> forall a b:Prop, ((a -> b) \/ (b -> a)).
Proof.
(*! proof *)
Qed.
(* expressibility of prop2 *)
(* we will represent logical connectives in prop2 *)
(* definition of false *)
Definition new_false := forall a:Prop, a.
(* False implies new_false *)
Lemma exercise8 : False -> new_false.
Proof.
(*! proof *)
Qed.
(* new_false implies False *)
Lemma exercise9 : new_false -> False.
Proof.
(*! proof *)
Qed.
(* from new_false we can prove anything *)
Lemma exercise10 : forall a:Prop, new_false -> a.
Proof.
(*! proof *)
Qed.
|