summaryrefslogtreecommitdiff
path: root/week6/camil/9.4.1
diff options
context:
space:
mode:
authorCamil Staps2015-03-18 10:27:23 +0100
committerCamil Staps2015-03-18 10:27:23 +0100
commit34b4a8162a94d30974432f5a4f40369c82c08b59 (patch)
treeddf875253d0239e5cedc228badbf1723cec8dfb5 /week6/camil/9.4.1
parentw6 camil (diff)
Added comments
Diffstat (limited to 'week6/camil/9.4.1')
-rw-r--r--week6/camil/9.4.118
1 files changed, 15 insertions, 3 deletions
diff --git a/week6/camil/9.4.1 b/week6/camil/9.4.1
index 0f279ca..d9b2608 100644
--- a/week6/camil/9.4.1
+++ b/week6/camil/9.4.1
@@ -2,10 +2,22 @@
Induction base:
Suppose as = []. Then we have:
- map f (as ++ bs) = map f ([] ++ bs) = map f bs = [] ++ (map f bs) = (map f []) ++ (map f bs) = (map f as) ++ (map f bs).
+
+ map f (as ++ bs) // assumption as = []
+ = map f ([] ++ bs) // definition of ++, rule 1
+ = map f bs // definition of ++, rule 1
+ = [] ++ (map f bs) // definition of map, rule 3
+ = (map f []) ++ (map f bs) // assumption as = []
+ = (map f as) ++ (map f bs).
Induction step:
- Suppose map f (as ++ bs) = (map f as) ++ (map f bs) for certain as and any bs. Then we have:
- map f ([a:as] ++ bs) = map f [a:as ++ bs] = [f a : map f (as ++ bs)] = [f a : (map f as) ++ (map f bs)] = [f a : map f as] ++ (map f bs) = (map f [a:as]) ++ (map f bs).
+ Suppose map f (as ++ bs) = (map f as) ++ (map f bs) for certain as and any bs (induction hypothesis). Then we have:
+
+ map f ([a:as] ++ bs) // definition of ++, rule 2
+ = map f [a:as ++ bs] // definition of map, rule 4
+ = [f a : map f (as ++ bs)] // induction hypothesis: assumption map f (as ++ bs) = (map f as) ++ (map f bs)
+ = [f a : (map f as) ++ (map f bs)] // rewriting list
+ = [f a : map f as] ++ (map f bs) // definition of map, rule 4
+ = (map f [a:as]) ++ (map f bs).
By the principle of induction we have now proven that map f (as ++ bs) = (map f as) ++ (map f bs) for any finite lists as, bs. \ No newline at end of file