diff options
Diffstat (limited to 'assignment2.tex')
-rw-r--r-- | assignment2.tex | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/assignment2.tex b/assignment2.tex new file mode 100644 index 0000000..f8c76cb --- /dev/null +++ b/assignment2.tex @@ -0,0 +1,93 @@ +\documentclass[10pt,a4paper]{article} + +\usepackage[margin=2cm]{geometry} + +\usepackage{enumitem} +\setenumerate[1]{label=2.\arabic*.} +\setenumerate[2]{label=\textit{\alph*})} + +% textcomp package is not available everywhere, and we only need the Copyright symbol +% taken from http://tex.stackexchange.com/a/1677/23992 +\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}} + +\usepackage{fancyhdr} +\renewcommand{\headrulewidth}{0pt} +\renewcommand{\footrulewidth}{0pt} +\fancyhead{} +\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps} +\pagestyle{fancy} + +\usepackage{amsmath} +\usepackage{amsthm} +\usepackage{amsfonts} +\DeclareMathAlphabet{\pazocal}{OMS}{zplm}{m}{n} +\usepackage{mathtools} +\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} +\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} + +\usepackage{minted} + +\parindent0pt + +\title{Algoritmen en Datastructuren - assignment 2} +\author{Camil Staps\\\small{s4498062}} + +\begin{document} + +\maketitle +\thispagestyle{fancy} + +\begin{enumerate} + \item %todo + + \item \begin{enumerate} + \item The algorithm is performs equally well on sorted and unsorted lists. However, it performs better on lists with size (close to) $2^n$ for some $n\in\mathbb N$, since it needs a minimum amount of \texttt{merge} calls in that case. The best case would be a list of size $2^n$ for some $n\in\mathbb N$, the worst case a list of size in between $2^n$ and $2^{n+1}$, that is, $1\frac12\cdot2^n$ for some $n\in\mathbb N$. + \item Dividing takes constant time, i.e. $\Theta(1)$. Conquering takes $T(\ceil{\frac n2})+T(\floor{\frac n2})$. Composing takes linear time, $\Theta(n)$ in the \texttt{merge} function and once again linear time in the final \texttt{for} loop in \texttt{mergesort}. That gives: + + $$T(n) \leq T\left(\ceil*{\tfrac n2}\right) + T\left(\floor*{\tfrac n2}\right) + c, \qquad c\in\mathbb N$$ + \item %todo + \item %todo + \end{enumerate} + + \item \begin{enumerate} + \item \begin{proof} + Since $f\in\pazocal O(h)$, there exists a $c_f\in\mathbb N$ and $n_{0,f}\in\mathbb N$ s.t. for all $n>n_0$ we have $c_f\cdot h(n)\geq f(n)$. Similarly we have $c_g$ and $n_{0,g}$ with respect to $g$. + + Then let $c=c_f + c_g, n_0 = \text{max}(n_{0,f},n_{0,g})$. By the above we know $(c_f + c_g)\cdot h(n) \geq f(n) + g(n)$ for all $n>n_0$. It follows from substitution that $c\cdot h(n)\geq f(n) + g(n)$, and therefore $f + g \in\pazocal O(h)$. + \end{proof} + + \item \begin{proof} + For $n\in\mathbb N$ we know $n^m\geq n^k$ (since $k\leq m$). We can thus choose $c=1,n_0=0$ to find that for all $n>n_0$ it holds that $n^k \leq c\cdot n^m$. Therefore, $n^k\in\pazocal O\left(n^m\right)$. + \end{proof} + + \item \begin{proof} + From (b) we know that all terms ($c_kn^k$, $c_{k-1}n^{k-1}$, etc.) are in $\pazocal O\left(n^k\right)$. From (a) it then follows that their sum is also in $\pazocal O\left(n^k\right)$. + \end{proof} + \end{enumerate} + + \item \begin{enumerate} + \item \begin{minted}[tabsize=0,linenos,xleftmargin=20pt,fontsize=\footnotesize]{c} + int (float* a, float* b, unsigned int n, float* out) { + unsigned int ai, bi; // counters + bi = n - 1; // start b at the max. element + for (ai = 0; ai < n; ai++) { // start a at the min. element + while (a[ai] + b[bi] > 0) bi--; // as long as b > -a, choose lower b + if (a[ai] + b[bi] == 0) { // if a = -b, return a, b and success + out[0] = a[ai]; + out[1] = b[bi]; + return 0; + } // otherwise, choose higher a + } + return -1; // if all as checked but nothing found, return error + } + \end{minted} + + The worst case is that we need the highest element from $a$ and the lowest element from $b$, meaning we need to iterate both lists fully. In that case we need $2n+c$ operations for some $n,c\in\mathbb N$: $2n$ for iterating and checking the elements, and $c$ for returning the correct elements. + + This shows we have a worst-case complexity of $\pazocal O(n)$. The best case is to find the right elements directly; in this case we need constant time. + \item %todo + \end{enumerate} +\end{enumerate} + +\end{document} + |