diff options
Diffstat (limited to 'task2.tex')
-rw-r--r-- | task2.tex | 88 |
1 files changed, 88 insertions, 0 deletions
diff --git a/task2.tex b/task2.tex new file mode 100644 index 0000000..a85aa89 --- /dev/null +++ b/task2.tex @@ -0,0 +1,88 @@ +\documentclass[a4paper,9pt]{article} + +\usepackage[dutch]{babel} +\usepackage{geometry} + +\author{Camil Staps} +\title{Semantiek \& Correctheid\\\Large{Leertaak 2}} + +\usepackage{senc} +\usepackage{prooftree} +\usepackage{alltt} +\usepackage{stmaryrd} +\usepackage[figuresleft]{rotating} +\usepackage{mathdots} + +%\renewcommand{\trans}[3]{#1} + +\begin{document} + +\maketitle + +\section*{Opdracht 2.3} +Zie Figuur \ref{fig:boom}. +Hier geldt: + +\begin{align*} + s_0 &= [x\mapsto17, y\mapsto5]\\ %todo + s_1 &= s_0[z\mapsto0]\\ + s_2 &= s_1[z\mapsto1]\\ + s_3 &= s_2[x\mapsto12]\\ + s_{13} &= s_3[z\mapsto6,x\mapsto-13]. +\end{align*} + +\begin{sidewaysfigure} + \scriptsize + $$ + \begin{prooftree} + \[ + \axjustifies \trans{\sass{z}{0}}{s_0}{s_1} \using{\rassp} + \]\quad + \[ + \[ + \[\axjustifies \trans{\sass{z}{z+1}}{s_1}{s_2} \using{\rassp}\]\quad + \[\axjustifies \trans{\sass{x}{x-y}}{s_2}{s_3} \using{\rassp}\] + \justifies \trans{\scomp{\sass{z}{z+1}}{\sass{x}{x-y}}}{s_1}{s_3} \using{\rcomp} + \]\quad + \[\vdots\quad + \[ + \[ + \axjustifies \trans{\swhile{y\le x}{(\scomp{\sass{z}{z+1}}{\sass{x}{x-y}})}}{s_{13}}{s_{13}}%todo + \using{\rwhileff} + \] + \justifies \iddots \using{\rwhilett} + \] + \axjustifies + \trans{\swhile{y\le x}{(\scomp{\sass{z}{z+1}}{\sass{x}{x-y}})}}{s_3}{s_{13}} + \] + \justifies \trans{\swhile{y\le x}{(\scomp{\sass{z}{z+1}}{\sass{x}{x-y}})}}{s_1}{s_{13}} + \using{\rwhilett} + \] + \justifies \trans{\scomp{\sass{z}{0}}{\swhile{y\le x}{(\scomp{\sass{z}{z+1}}{\sass{x}{x-y}})}}}{s_0}{s_{13}} + \using{\rcomp} + \end{prooftree} + $$ + \caption{Afleidingsboom voor opgave 2.3} + \label{fig:boom} +\end{sidewaysfigure} + +\section*{Het \texttt{do} statement} +\subsection*{Syntax} +We voegen een regel $S ::= \sdowhile{S}{b}$ toe. + +\subsection*{Semantiek} +$$\trans{\sdowhile{S}{b}}{s}{s} \axif{\B{b}s=\ff}$$ +$$\begin{prooftree} +\trans{S}{s}{s'} \quad \trans{\sdowhile{S}{b}}{s'}{s''} +\justifies \trans{\sdowhile{S}{b}}{s}{s''} \ruleif{\B{b}s=\tt} +\end{prooftree}$$ + +\section*{Opdracht 2.4} +\begin{itemize} + \item Termineert als $x\ge1$, anders niet. + \item Idem. + \item Termineert niet. $\B{\mtrue}=\tt$, dus we gebruiken $\rwhilett$. Aangezien {\sskip} de toestand niet verandert kunnen we dus $\swhile{\mtrue}{\sskip}$ afleiden, waarna we weer hetzelfde kunnen doen (en blijven doen). +\end{itemize} + +\end{document} + |