summaryrefslogtreecommitdiff
path: root/Assignment3
diff options
context:
space:
mode:
Diffstat (limited to 'Assignment3')
-rwxr-xr-xAssignment3/2des-demo.py74
-rw-r--r--Assignment3/CamilStaps-assignment3.tex219
-rw-r--r--Assignment3/LICENSE1
-rw-r--r--Assignment3/Readme.md103
-rwxr-xr-xAssignment3/break.py141
-rwxr-xr-xAssignment3/des-demo.py62
-rwxr-xr-xAssignment3/des-test.sh22
-rwxr-xr-xAssignment3/nthkey.py37
8 files changed, 659 insertions, 0 deletions
diff --git a/Assignment3/2des-demo.py b/Assignment3/2des-demo.py
new file mode 100755
index 0000000..b5b7247
--- /dev/null
+++ b/Assignment3/2des-demo.py
@@ -0,0 +1,74 @@
+#!/usr/bin/python
+import sys, getopt, binascii, random
+from Crypto.Cipher import DES
+
+# From http://stackoverflow.com/a/843846/1544337
+# 1 for odd parity, 0 for even parity
+# Was used only in a previous version of nthByte
+# def parity(b):
+# c = 0
+# while b != 0:
+# c += 1
+# b &= b - 1
+# return c % 2
+
+# Find the nth possibility for a byte with odd parity
+oddBytes = [1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,32,35,37,38,41,42,44,47,49,50,52,55,56,59,61,62,64,67,69,70,73,74,76,79,81,82,84,87,88,91,93,94,97,98,100,103,104,107,109,110,112,115,117,118,121,122,124,127,128,131,133,134,137,138,140,143,145,146,148,151,152,155,157,158,161,162,164,167,168,171,173,174,176,179,181,182,185,186,188,191,193,194,196,199,200,203,205,206,208,211,213,214,217,218,220,223,224,227,229,230,233,234,236,239,241,242,244,247,248,251,253,254]
+def nthByte(n):
+ return oddBytes[n]
+ # c = -1 # This is the old version. The new version uses a faster lookup table.
+ # b = 0
+ # while c != n:
+ # b += 1
+ # if parity(b) == 1:
+ # c += 1
+ # return b
+
+# Find the nth key in which all bytes have odd parity
+def nthKey(n):
+ key = ''
+ for b in range(7,-1,-1):
+ key += chr(nthByte((n >> b*7) & 0x7f))
+ return key
+
+def main(argv):
+ l = 24
+
+ # Parse arguments. Use -h for help.
+ try:
+ opts, args = getopt.getopt(argv, "hl:")
+ except getopt.GetoptError:
+ usage()
+ sys.exit(2)
+
+ for opt, arg in opts:
+ if opt == '-h':
+ usage()
+ sys.exit()
+ elif opt == '-l':
+ l = int(arg)
+
+ # generate two keys
+ r = random.SystemRandom()
+ k1 = nthKey(r.randint(0, pow(2, l) - 1))
+ k2 = nthKey(r.randint(0, pow(2, l) - 1))
+
+ print 'k_1: %s' % binascii.b2a_hex(k1)
+ print 'k_2: %s' % binascii.b2a_hex(k2)
+
+ round1 = DES.new(k1, DES.MODE_ECB)
+ round2 = DES.new(k2, DES.MODE_ECB)
+
+ # Some random plaintext - ciphertext pairs to verify the working of this code
+ print 'plaintext : ciphertext'
+ for n in range(0,10):
+ pt = '{:016x}'.format(r.randint(0, pow(2, 64) -1))
+ ct = round2.encrypt(round1.encrypt(binascii.a2b_hex(pt)))
+ print pt + ' : ' + binascii.b2a_hex(ct)
+
+def usage():
+ print 'Usage: 2des-demo.py [-l <keylength>]'
+ print ' keylength : pick keys from the first 2^l keys (default: 24)'
+
+if __name__ == "__main__":
+ main(sys.argv[1:]) \ No newline at end of file
diff --git a/Assignment3/CamilStaps-assignment3.tex b/Assignment3/CamilStaps-assignment3.tex
new file mode 100644
index 0000000..da7d433
--- /dev/null
+++ b/Assignment3/CamilStaps-assignment3.tex
@@ -0,0 +1,219 @@
+\documentclass[a4paper]{article}
+
+\usepackage{amsmath,amssymb,amsthm,url,graphicx,comment,enumerate,color,array,inconsolata,minted,subcaption,adjustbox}
+\usepackage[margin=2cm]{geometry}
+
+\title{Homework $3$}
+\author{Camil Staps (s4498062)}
+
+\newcommand{\R}{\mathbb R}
+\newcommand{\Q}{\mathbb Q}
+\newcommand{\Z}{\mathbb Z}
+\newcommand{\N}{\mathbb N}
+\newcommand{\F}{\mathbb F}
+\newcommand{\Zstar}{\Z^{^*}}
+
+\DeclareMathOperator{\ord}{ord}
+\DeclareMathOperator{\lcm}{lcm}
+\DeclareMathOperator{\lsb}{lsb}
+\DeclareMathOperator{\Prob}{Pr}
+\DeclareMathOperator{\Adv}{Adv}
+
+\DeclareMathAlphabet{\pazocal}{OMS}{zplm}{m}{n}
+
+\usepackage{tikz}
+\usetikzlibrary{shapes.multipart,shapes.gates.logic.IEC,shapes.arrows,positioning,decorations.markings}
+
+\begin{document}
+\maketitle
+
+\section*{Solution}
+
+\begin{enumerate}
+\item
+ \begin{enumerate}
+ \item
+ \begin{enumerate}
+ \item
+ \begin{minipage}[t]{\linewidth}
+ \centering
+ \adjustbox{valign=t}{%
+ \begin{tikzpicture}[LFSR/.style={rectangle split, rectangle split horizontal=true, rectangle split parts=#1, draw, anchor=center}, ARROW/.style={draw,thick,single arrow,single arrow head extend=3pt,transform shape}]]
+ \node[LFSR=5] (register) {\nodepart{one}$s_4$\nodepart{two}$s_3$\nodepart{three}$s_2$\nodepart{four}$s_1$\nodepart{five}$s_0$};
+ \node[circle, inner sep=0, below=6mm of register.one south] (xor) {\scalebox{1}{$\oplus$}};
+ \draw[->] (register.one south) -- (xor);
+ \draw[->] (register.two south) |- (xor);
+ \draw (register.three south) |- (xor);
+ \draw (register.five south) |- (xor);
+ \draw (xor.west) -- ++(left:4mm) node[anchor=north] (hook1) {};
+ \draw[->] (hook1) |- (register.one west);
+ \draw[->] (register.five east) -- ++(right:4mm) node[anchor=west] {$\dots$};
+ \end{tikzpicture}
+ }
+ \end{minipage}
+
+ \item
+ $$M = \begin{pmatrix}
+ 0 & 1 & 0 & 0 & 0 \\
+ 0 & 0 & 1 & 0 & 0 \\
+ 0 & 0 & 0 & 1 & 0 \\
+ 0 & 0 & 0 & 0 & 1 \\
+ 1 & 0 & 1 & 1 & 1
+ \end{pmatrix}$$
+
+ \item
+ That bit stream contains $0^L$. We know that $0 \oplus \dots \oplus 0 = 0$, so after $0^L$, only zeros can follow. However, this is not the case. Therefore, this bit stream cannot be a part of the output of this LFSR.
+
+ \item
+ % In figure \ref{fig:1ai} we see that $c_L=1$. We then check if $C(X)$ is an irreducible polynomial. Since $C(X)=\dots+1$ and $\deg(C(X))=5$, we only need to consider products of two polynomials $f_1,f_2$ for which $\deg(f_1)+\deg(f_2)=5$ and both polynomials have a term $1$. We then check all possible combinations:
+
+ % \begin{table}[h]
+ % \centering
+ % \begin{tabular}{>{$}l<{$} >{$}l<{$} | >{$}l<{$}}
+ % f_1(x) & f_2(x) & (f_1 \circ f_2)(x) = (f_2 \circ f_1)(x) \\\hline
+ % x^4 + x^3 + x^2 + x + 1 & x + 1 & x^5 + 1 \\
+ % x^4 + x^3 + x^2 + 1 & x + 1 & x^5 + x^2 + x + 1 \\
+ % x^4 + x^3 + x + 1 & x + 1 & x^5 + x^3 + x^2 + 1 \\
+ % x^4 + x^3 + 1 & x + 1 & x^5 + x^3 + x + 1\\
+ % x^4 + x^2 + x + 1 & x + 1 & x^5 + x^4 + x^3 + 1\\
+ % x^4 + x^2 + 1 & x + 1 & x^5 + x^4 + x^3 + x^2 + x + 1\\
+ % x^4 + x + 1 & x + 1 & x^5 + x^4 + x^2 + 1\\
+ % x^4 + 1 & x + 1 & x^5 + x^4 + x + 1\\
+
+ % x^3 + x^2 + x + 1 & x^2 + x + 1 & x^5 + x^3 + x^2 + 1\\
+ % x^3 + x^2 + x + 1 & x^2 + 1 & x^5 + x^4 + x + 1\\
+ % x^3 + x^2 + 1 & x^2 + x + 1 & x^5 + x + 1\\
+ % x^3 + x^2 + 1 & x^2 + 1 & x^5 + x^4 + x^3 + x + 1\\
+ % x^3 + x + 1 & x^2 + x + 1 & x^5 + x^4 + 1\\
+ % x^3 + x + 1 & x^2 + 1 & x^5 + x^2 + x + 1\\
+ % x^3 + 1 & x^2 + x + 1 & x^5 + x^4 + x^3 + x^2 + x + 1\\
+ % x^3 + 1 & x^2 + 1 & x^5 + x^3 + x^2 + 1\\
+ % \end{tabular}
+ % \end{table}
+
+ % Since $C(X)$ does not appear in the rightmost column of this table, it is an irreducible polynomial.
+
+ In the figure above we see that $c_L=1$. Using sage, we find that $C(X)$ is a primitive polynomial:
+
+ \begin{minted}[tabsize=0]{python}
+ sage: Z2P.<x> = GF(2)[]
+ sage: (x^5+x^3+x^2+x+1).is_primitive()
+ True
+ \end{minted}
+
+ The period of this LFSR is then $2^L-1=31$.
+
+ \item
+ We construct the states using matrix multiplication. As an example we show $M\cdot s_1$:
+ $$M\cdot s_1 = \begin{pmatrix}0 & 1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 1 \\1 & 0 & 1 & 1 & 1\end{pmatrix} \cdot \begin{pmatrix}0 \\ 0 \\ 0 \\ 0 \\ 1\end{pmatrix} = \begin{pmatrix}0 \\ 0 \\ 0 \\ 1 \\ 1\end{pmatrix} = s_3$$
+ We can then continue with $M\cdot s_3$. Using that method, we find the state sequence $s_1$, $s_3$, $s_6$, $s_{12}$, $s_{25}$, $s_{18}$, $s_4$, $s_9$, $s_{19}$, $s_7$, $s_{15}$, $s_{31}$, $s_{30}$, $s_{29}$, $s_{27}$, $s_{23}$, $s_{14}$, $s_{28}$, $s_{24}$, $s_{17}$, $s_2$, $s_5$, $s_{10}$, $s_{21}$, $s_{11}$, $s_{22}$, $s_{13}$, $s_{26}$, $s_{20}$, $s_8$, $s_{16}$, $s_1$, which indeed contains $31$ different states (all states except $s_0$).
+ \end{enumerate}
+
+ \item
+ We know with sage that these two polynomials are primitive:
+
+ \begin{minted}[tabsize=0]{python}
+ sage: (x^3+x+1).is_primitive()
+ True
+ sage: (x^5+x^2+1).is_primitive()
+ True
+ \end{minted}
+
+ Therefore, the two LFSRs have period $2^L-1$, that is, $7$ for $\text{LFSR}^f$ and $31$ for $\text{LFSR}^g$. Of course, there is also the obvious period $1$ for both LFSRs if we start with $s_0$.
+
+ Combining this we find the periods illustrated in table \ref{tab:1b}.
+
+ \begin{table}
+ \setlength\extrarowheight{2pt}
+ \centering
+ \begin{tabular}{l | l | l | l | l}
+ Period $\text{LFSR}^f$ & Initial state (e.g.) & Period $\text{LFSR}^g$ & Initial state (e.g.) & Combined period \\\hline
+ $1$ & \texttt{000} & $1$ & \texttt{00000} & $2^{1\cdot1}-1=1$ \\
+ $1$ & \texttt{000} & $31$ & \texttt{00001} & $2^{1\cdot31}-1=2^{31}-1$ \\
+ $7$ & \texttt{001} & $1$ & \texttt{00000} & $2^{7\cdot1}-1=2^7-1$ \\
+ $7$ & \texttt{001} & $31$ & \texttt{00001} & $2^{7\cdot31}-1=2^{217}-1$ \\
+ \end{tabular}
+ \caption{}
+ \label{tab:1b}
+ \end{table}
+ \end{enumerate}
+
+\item
+ \begin{proof}
+ Given a certain ciphertext $c$ we define the set $M_c$ as the set with all plaintexts that could give $c$ using some key and this cipher:
+ $$M_c \stackrel{\text{def}}{=} \{m\in\pazocal{M} \mid \exists_{k\in\pazocal{K}}[E(k,m) = c]\}$$
+ For all $k\in\pazocal{K}, c\in\pazocal{C}$ we have $D(k,c) = c-k\pmod{256} \in \{0,\dots,255\} = \pazocal{M}$. Therefore, for any $c\in\pazocal{C}$, we have $|M_c| = |\pazocal{K}| = |\pazocal{M}|$, meaning that given a certain ciphertext, any plaintext in $\pazocal{M}$ could be the plaintext corresponding to that ciphertext. Hence, seeing the ciphertext does not give us information about the plaintext, or:
+ $$\forall_{m\in\pazocal{M},c\in\pazocal{C}}\left[\Prob(m = m' \mid c) = \Prob(m = m')\right].$$
+ Therefore, this cipher has perfect secrecy.
+ \end{proof}
+
+\item
+ \begin{enumerate}
+ \item
+ $L_2 = R_1 = L_0 \oplus F(k_1,R_0)$ and $R_2 = L_1 \oplus F(k_2,R_1) = R_0 \oplus F(k_2, L_0 \oplus F(k_1, R_0))$.
+ \item
+ We are only interested in the left parts of the encryptions, which we shall denote as $L_{2,0}$ and $L_{2,1}$ for the left parts of the could-be encryptions of $m_0$ and $m_1$, respectively. Following the equations found in the last exercise, we have $L_{2,0} = 1^{32} \oplus F(k_1,1^{32}) = \overline{F(k_1,1^{32})}$ and $L_{2,1} = 0^{32} \oplus F(k_1,1^{32}) = F(k_1,1^{32})$. Therefore, in case $F_2$ was used, we have $L_{2,0} = \overline{L_{2,1}}$. For a random permutation this happening has the very small chance of $\frac1{2^{64}}$.
+
+ If an adversary thus checks whether $L_{2,0} \stackrel?= \overline{L_{2,1}}$ and finds out it's true, he has a non-negligible advantage with which he can assume $F_2$ was used. In case this equation does \emph{not} hold, he has a non-negligible advantage with which he can assume a random permutation was used.
+ \end{enumerate}
+
+\item
+ \begin{enumerate}
+ \item
+ One key has an effective length of $56$ bits. With two keys we have an effective keylength of $2\cdot56=112$ bits. This gives $|\pazocal{K}| = 2^{112}$. The amount of encryptions we have to perform for exhaustive key search is then $2^{112-1}$.
+ \item
+ $D^{2DES}(k_1||k_2, c) = D^{DES}(k_1, D^{DES}(k_2, c))$.
+ \item
+ \begin{proof}
+ \begin{align*}
+ m &= D^{DES}(k_1, D^{DES}(k_2, c)) \\
+ E^{DES}(k_1, m) &= E^{DES}(k_1, D^{DES}(k_1, D^{DES}(k_2, c))) \\
+ &\qquad\text{(Encryption and decryption with $k_1$ cancel out)} \\
+ E^{DES}(k_1, m) &= D^{DES}(k_2, c)
+ \end{align*}
+ \end{proof}
+ \item
+ $A = 2^{56}$ since the keylength of one DES key is $56$. A ciphertext block encrypted with DES is $64$ bits long. Without overhead we have then $B=64\cdot2^{56}$.
+
+ We have a block length of $64$ and a key length of $56$. If we compute the encryptions of some plaintext using all possible keys, and the decryptions of some ciphertext using all possible keys, we have two lists of $2^{56}$ 64-bit candidates for a middle point in 2DES. Following the birthday paradox, the probability two values from the two lists are the same is high enough to reasonably expect false alarms\footnote{See \url{http://en.wikipedia.org/wiki/Birthday_problem#Probability_table}}.
+ \item
+ See the python files for the answers to exercise i through iv. See \texttt{Readme.md} for explanation and usage information.
+
+ I found the keypair $k_1=\mathtt{0101010101164613}, k_2=\mathtt{0101010102a719c2}$ using:
+
+ \begin{verbatim}
+ $ ./break.py -p 0123456789ABCDEF -c e0ac28c346fb8de5 -l 24
+ Making dictionary (p:0123456789abcdef;l:24)... 417.513822s
+ Finding matches... 419.125502s
+ Key generation: 102.954099s
+ Decryption: 269.473773s
+ Matching dictionary: 15.134741s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ \end{verbatim}
+
+ This was done on a Lenovo U410, i7-3517U @ 1.9GHz with 8GB RAM and 16GB /swap. It takes about seven minutes to create the dictionary, and again seven minutes to try all keys for the second key and find matches. On lilo, this takes a bit less than five minutes each.
+
+ With $l=24$ we're likely to find only one possible keypair since the chance on false alarms is much lower. For higher $l$, in particular $l=56$, the chance on false alarms is much higher, meaning that the first keypair is most likely \emph{not} the actual keypair. More plaintext-ciphertext pairs can then help to find the right keypair. We do that in this case only for verification:
+
+ \begin{verbatim}
+ $ ./break.py -p 1122334455667788 -c 49e4857e94f9655d -l 24
+ Making dictionary (p:1122334455667788;l:24)... 386.554364s
+ Finding matches... 424.907323s
+ Key generation: 106.151418s
+ Decryption: 271.449573s
+ Matching dictionary: 15.2167599999s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ $ ./break.py -p 99aabbccddeeff00 -c b5a2eefb51b04401 -l 24
+ Making dictionary (p:99aabbccddeeff00;l:24)... 394.505993s
+ Finding matches... 431.637707s
+ Key generation: 109.764972s
+ Decryption: 274.681545s
+ Matching dictionary: 14.4759990001s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ \end{verbatim}
+
+ An adversary uses a method like \texttt{nthKey} instead of trying all $2^{64}$ possible 64-bit strings since some of the bits are parity bits. If he would try all $2^{64}$ possible 64-bit strings, he would waste time and storage on trying keys that aren't valid anyway.
+ \end{enumerate}
+\end{enumerate}
+
+\end{document}
diff --git a/Assignment3/LICENSE b/Assignment3/LICENSE
new file mode 100644
index 0000000..7de325f
--- /dev/null
+++ b/Assignment3/LICENSE
@@ -0,0 +1 @@
+Copyright (c) 2015 Camil Staps <info@camilstaps.nl> \ No newline at end of file
diff --git a/Assignment3/Readme.md b/Assignment3/Readme.md
new file mode 100644
index 0000000..c7ac538
--- /dev/null
+++ b/Assignment3/Readme.md
@@ -0,0 +1,103 @@
+# Breaking DES with Python
+Solutions to the third homework assignment for the NWI-IBC023 Cryptography course, spring 2015, Radboud University Nijmegen.
+
+See the LICENSE file for the license & copyright information.
+
+## Dependencies
+Python 2.7.6 (other versions may work) with libraries: Crypto, sys, getopt, os.path, binascii, random, time
+
+## Files
+
+### des-demo.py (exercise i)
+Encrypt or decrypt a specified message using a specified key with DES. See `des-demo.py -h` for usage.
+
+### des-test.sh
+Test des-demo.py using the test vectors from the assignment.
+
+### nthkey.py (exercise ii)
+Demonstration of the working of the `nthKey(n)` method. No command line parameters, edit the number on the last line for another `n`.
+
+### 2des-demo.py (exercise iii)
+2DES using two random keys: chooses two random keys with the right parity using `nthKey(n)`, then performs 2DES on ten random plaintexts using those keys. See `2des-demo.py -h` for usage.
+
+### break.py (exercise iv)
+Breaking 2DES using a known-plaintext attack. Supply at least a plaintext (`-p`) and a ciphertext (`-c`), possibly also a keylength (`-l`). There is an option to save the dictionary to a file (`-s`) if you're planning to reuse it.
+
+There is detailed timing information for the second stage of the attack: the time used by `nthKey()`, `DES.decrypt()` and finding values in the dictionary.
+
+Example:
+
+ $ ./break.py -p 6be6065663da8d2c -c 4d0ed7812caeee83 -l 16
+ Making dictionary (p:6be6065663da8d2c;l:16)... 1.429026s
+ Finding matches... 1.618808s
+ Key generation: 0.403714s
+ Decryption: 1.048049s
+ Matching dictionary: 0.046321s
+ k1: 0101010101011afb; k2: 0101010101012073
+
+## Concrete break
+I was given the following plaintext-ciphertext pairs:
+
+ 0123456789ABCDEF e0ac28c346fb8de5
+ 1122334455667788 49e4857e94f9655d
+ 99aabbccddeeff00 b5a2eefb51b04401
+
+Breaking these (on the Lenovo described under Benchmarks):
+
+ $ ./break.py -p 0123456789ABCDEF -c e0ac28c346fb8de5 -l 24
+ Making dictionary (p:0123456789abcdef;l:24)... 417.513822s
+ Finding matches... 419.125502s
+ Key generation: 102.954099s
+ Decryption: 269.473773s
+ Matching dictionary: 15.134741s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ $ ./break.py -p 1122334455667788 -c 49e4857e94f9655d -l 24
+ Making dictionary (p:1122334455667788;l:24)... 386.554364s
+ Finding matches... 424.907323s
+ Key generation: 106.151418s
+ Decryption: 271.449573s
+ Matching dictionary: 15.2167599999s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ $ ./break.py -p 99aabbccddeeff00 -c b5a2eefb51b04401 -l 24
+ Making dictionary (p:99aabbccddeeff00;l:24)... 394.505993s
+ Finding matches... 431.637707s
+ Key generation: 109.764972s
+ Decryption: 274.681545s
+ Matching dictionary: 14.4759990001s
+ k1: 0101010101164613; k2: 0101010102a719c2
+
+We find k1 = `0101010101164613`; k2 = `0101010102a719c2`.
+
+## Benchmarks
+
+### Lenovo U410, i7-3517U @ 1.9GHz, 8GB RAM, 16GB /swap, Ubuntu 14.04
+Creating dictionary: 417.5s, 386.5s, 394.5s (**avg: 399.5s**)
+Finding matches: 419.1s, 424.9s, 431.6s (**avg: 425.2s**)
+
+The exact log is in the Concrete Break section above.
+
+### Lilo
+Creating dictionary: 286.8s, 283.6s, 273.0s (**avg: 281.1s**)
+Finding matches: 301.6s, 285.6s, 292.2s (**avg: 293.1s**)
+
+ $ ./break.py -p 0123456789ABCDEF -c e0ac28c346fb8de5 -l 24
+ Making dictionary (p:0123456789abcdef;l:24)... 286.83s
+ Finding matches... 301.56s
+ Key generation: 64.47s
+ Decryption: 200.23s
+ Matching dictionary: 9.27s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ $ ./break.py -p 1122334455667788 -c 49e4857e94f9655d -l 24
+ Making dictionary (p:1122334455667788;l:24)... 283.55s
+ Finding matches... 285.63s
+ Key generation: 60.66s
+ Decryption: 189.44s
+ Matching dictionary: 9.27s
+ k1: 0101010101164613; k2: 0101010102a719c2
+ $ ./break.py -p 99aabbccddeeff00 -c b5a2eefb51b04401 -l 24
+ Making dictionary (p:99aabbccddeeff00;l:24)... 272.96s
+ Finding matches... 292.21s
+ Key generation: 63.89s
+ Decryption: 191.04s
+ Matching dictionary: 9.41s
+ k1: 0101010101164613; k2: 0101010102a719c2 \ No newline at end of file
diff --git a/Assignment3/break.py b/Assignment3/break.py
new file mode 100755
index 0000000..7666d33
--- /dev/null
+++ b/Assignment3/break.py
@@ -0,0 +1,141 @@
+#!/usr/bin/python
+import sys, getopt, binascii, random, time, os.path, time
+from Crypto.Cipher import DES
+
+dictionary = {}
+
+# From http://stackoverflow.com/a/843846/1544337
+# 1 for odd parity, 0 for even parity
+# Was used only in a previous version of nthByte
+# def parity(b):
+# c = 0
+# while b != 0:
+# c += 1
+# b &= b - 1
+# return c % 2
+
+# Find the nth possibility for a byte with odd parity
+oddBytes = [1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,32,35,37,38,41,42,44,47,49,50,52,55,56,59,61,62,64,67,69,70,73,74,76,79,81,82,84,87,88,91,93,94,97,98,100,103,104,107,109,110,112,115,117,118,121,122,124,127,128,131,133,134,137,138,140,143,145,146,148,151,152,155,157,158,161,162,164,167,168,171,173,174,176,179,181,182,185,186,188,191,193,194,196,199,200,203,205,206,208,211,213,214,217,218,220,223,224,227,229,230,233,234,236,239,241,242,244,247,248,251,253,254]
+def nthByte(n):
+ return oddBytes[n]
+ # c = -1 # This is the old version. The new version uses a faster lookup table.
+ # b = 0
+ # while c != n:
+ # b += 1
+ # if parity(b) == 1:
+ # c += 1
+ # return b
+
+# Find the nth key in which all bytes have odd parity
+def nthKey(n):
+ key = ''
+ for b in range(7,-1,-1):
+ key += chr(nthByte((n >> b*7) & 0x7f))
+ return key
+
+# Create a dictionary for the first 2^l keys and a given plaintext
+def createDictionary(plaintext, l):
+ for n in range(0, pow(2, l)):
+ encryption = DES.new(nthKey(n), DES.MODE_ECB).encrypt(plaintext)
+ if encryption in dictionary:
+ dictionary[encryption].append(n)
+ else:
+ dictionary[encryption] = [n]
+
+# Read the dictionary from a file if it exists, or generate it
+def readOrMakeDictionary(plaintext, l):
+ if os.path.isfile('dict-' + binascii.b2a_hex(plaintext) + '-' + str(l) + '.txt'):
+ with open('dict-' + binascii.b2a_hex(plaintext) + '-' + str(l) + '.txt') as f:
+ for line in f:
+ dictionary[binascii.a2b_hex(line[:16])] = [int(x) for x in line[17:-1].split(',')]
+ return False
+ else:
+ createDictionary(plaintext, l)
+ return True
+
+# Save the dictionary to a file
+def saveDictionary(plaintext, l):
+ dictionary_file = open('dict-' + binascii.b2a_hex(plaintext) + '-' + str(l) + '.txt', 'w')
+ for encryption in dictionary:
+ dictionary_file.write(binascii.b2a_hex(encryption) + ':' + ','.join(str(x) for x in dictionary[encryption]) + '\n')
+ print 'Saved dictionary as dict-' + binascii.b2a_hex(plaintext) + '-' + str(l) + '.txt'
+
+def main(argv):
+ l = 24
+ plaintext = ''
+ ciphertext = ''
+ save_dictionary = False
+
+ # Parse arguments. Use -h for help.
+ try:
+ opts, args = getopt.getopt(argv, "hl:p:c:s")
+ except getopt.GetoptError:
+ usage()
+ sys.exit(2)
+
+ for opt, arg in opts:
+ if opt == '-h':
+ usage()
+ sys.exit()
+ elif opt == '-l':
+ l = int(arg)
+ elif opt == '-p':
+ plaintext = binascii.a2b_hex(arg)
+ elif opt == '-c':
+ ciphertext = binascii.a2b_hex(arg)
+ elif opt == '-s':
+ save_dictionary = True
+
+ assert plaintext != ''
+ assert ciphertext != ''
+
+ # Make the dictionary if it doesn't exist yet
+ print 'Making dictionary (p:' + binascii.b2a_hex(plaintext) + ';l:' + str(l) + ')...',
+ timer = time.clock()
+ if not readOrMakeDictionary(plaintext, l):
+ save_dictionary = False
+ print str(time.clock() - timer) + 's'
+
+ if save_dictionary:
+ saveDictionary(plaintext, l)
+
+ # Find matches
+ print 'Finding matches...',
+ timer = time.clock()
+ time_key = time_decryption = time_matching = 0
+ matches = []
+ for k in range(0, pow(2,l)):
+ # Generate key
+ time_t = time.clock()
+ key = nthKey(k)
+ time_key += time.clock() - time_t
+
+ # Decrypt
+ time_t = time.clock()
+ des = DES.new(key, DES.MODE_ECB)
+ decryption = des.decrypt(ciphertext)
+ time_decryption += time.clock() - time_t
+
+ # Find matches
+ time_t = time.clock()
+ if decryption in dictionary:
+ [matches.append({'k1': nthKey(i), 'k2': key}) for i in dictionary[decryption]]
+ time_matching += time.clock() - time_t
+ print str(time.clock() - timer) + 's'
+
+ print 'Key generation: ' + str(time_key) + 's'
+ print 'Decryption: ' + str(time_decryption) + 's'
+ print 'Matching dictionary: ' + str(time_matching) + 's'
+
+ for match in matches:
+ print 'k1: ' + binascii.b2a_hex(match['k1']) + '; k2: ' + binascii.b2a_hex(match['k2'])
+
+def usage():
+ print 'Usage: break.py -p <plaintext> -c <ciphertext> [-l <keylength>] [-s]'
+ print ' plaintext : plaintext of the known-plaintext attack'
+ print ' ciphertext : ciphertext of the known-plaintext attack'
+ print ' keylength : pick keys from the first 2^l keys (default: 24)'
+ print ' -s : save the dictionary for this plaintext and keylength to a file'
+
+if __name__ == "__main__":
+ main(sys.argv[1:]) \ No newline at end of file
diff --git a/Assignment3/des-demo.py b/Assignment3/des-demo.py
new file mode 100755
index 0000000..0a4954f
--- /dev/null
+++ b/Assignment3/des-demo.py
@@ -0,0 +1,62 @@
+#!/usr/bin/python
+
+# Copyright (c) 2015 Camil Staps <info@camilstaps.nl>
+
+import sys, getopt, binascii
+from Crypto.Cipher import DES
+
+def main(argv):
+ key = ''
+ plaintext = ''
+ ciphertext = ''
+
+ # Parse arguments. Use -h for help.
+ try:
+ opts, args = getopt.getopt(argv, "hk:p:c:", ["key=","plaintext=","ciphertext="])
+ except getopt.GetoptError:
+ usage()
+ sys.exit(2)
+
+ for opt, arg in opts:
+ if opt == '-h':
+ usage()
+ sys.exit()
+ elif opt in ("-k", "--key"):
+ key = binascii.a2b_hex(arg)
+ elif opt in ("-p", "--plaintext"):
+ plaintext = binascii.a2b_hex(arg)
+ elif opt in ("-c", "--ciphertext"):
+ ciphertext = binascii.a2b_hex(arg)
+
+ if key == '' or plaintext == '' and ciphertext == '':
+ usage()
+ sys.exit(2)
+
+ # PyCrypto does the hard work
+ cipher = DES.new(key, DES.MODE_ECB)
+
+ encryption = ''
+ decryption = ''
+
+ if plaintext != '':
+ encryption = cipher.encrypt(plaintext)
+ if ciphertext != '':
+ decryption = cipher.decrypt(ciphertext)
+
+ # When plaintext and ciphertext are provided, output if DES[k](p) = c. Otherwise, output the encryption / decryption.
+ if encryption != '' and decryption != '':
+ print encryption == ciphertext
+ elif encryption != '':
+ print binascii.b2a_hex(encryption)
+ elif decryption != '':
+ print binascii.b2a_hex(decryption)
+
+def usage():
+ print 'Usage: des-demo.py -k <key> [-p <plaintext>] [-c <ciphertext>]'
+ print ' key : an 8-byte value entered as hexadecimal numbers'
+ print ' plaintext : an 8-byte value entered as hexadecimal numbers'
+ print ' ciphertext : an 8-byte value entered as hexadecimal numbers'
+ print 'At least one of plaintext and ciphertext should be provided. When both are provided, we check if DES[k](p) = c.'
+
+if __name__ == "__main__":
+ main(sys.argv[1:])
diff --git a/Assignment3/des-test.sh b/Assignment3/des-test.sh
new file mode 100755
index 0000000..15a5402
--- /dev/null
+++ b/Assignment3/des-test.sh
@@ -0,0 +1,22 @@
+#!/bin/sh
+
+echo "Testing encryption:"
+./des-demo.py -k 133457799BBCDFF1 -p 0123456789abcdef
+./des-demo.py -k 752878397493CB70 -p 1122334455667788
+./des-demo.py -k 752878397493CB70 -p 99AABBCCDDEEFF00
+./des-demo.py -k 5B5A57676A56676E -p 675A69675E5A6B5A
+./des-demo.py -k 0101010101010102 -p 0102030405060708
+
+echo "Testing decryption:"
+./des-demo.py -k 133457799BBCDFF1 -c 85E813540F0AB405
+./des-demo.py -k 752878397493CB70 -c B5219EE81AA7499D
+./des-demo.py -k 752878397493CB70 -c 2196687E13973856
+./des-demo.py -k 5B5A57676A56676E -c 974AFFBF86022D1F
+./des-demo.py -k 0101010101010102 -c 6613fc98d6d2f56b
+
+echo "Testing comparison:"
+./des-demo.py -k 133457799BBCDFF1 -p 0123456789abcdef -c 85E813540F0AB405
+./des-demo.py -k 752878397493CB70 -p 1122334455667788 -c B5219EE81AA7499D
+./des-demo.py -k 752878397493CB70 -p 99AABBCCDDEEFF00 -c 2196687E13973856
+./des-demo.py -k 5B5A57676A56676E -p 675A69675E5A6B5A -c 974AFFBF86022D1F
+./des-demo.py -k 0101010101010102 -p 0102030405060708 -c 6613fc98d6d2f56b \ No newline at end of file
diff --git a/Assignment3/nthkey.py b/Assignment3/nthkey.py
new file mode 100755
index 0000000..40cf0cf
--- /dev/null
+++ b/Assignment3/nthkey.py
@@ -0,0 +1,37 @@
+#!/usr/bin/python
+
+# Copyright (c) 2015 Camil Staps <info@camilstaps.nl>
+
+import binascii
+
+# From http://stackoverflow.com/a/843846/1544337
+# 1 for odd parity, 0 for even parity
+# Was used only in a previous version of nthByte
+# def parity(b):
+# c = 0
+# while b != 0:
+# c += 1
+# b &= b - 1
+# return c % 2
+
+# Find the nth possibility for a byte with odd parity
+oddBytes = [1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,32,35,37,38,41,42,44,47,49,50,52,55,56,59,61,62,64,67,69,70,73,74,76,79,81,82,84,87,88,91,93,94,97,98,100,103,104,107,109,110,112,115,117,118,121,122,124,127,128,131,133,134,137,138,140,143,145,146,148,151,152,155,157,158,161,162,164,167,168,171,173,174,176,179,181,182,185,186,188,191,193,194,196,199,200,203,205,206,208,211,213,214,217,218,220,223,224,227,229,230,233,234,236,239,241,242,244,247,248,251,253,254]
+def nthByte(n):
+ return oddBytes[n]
+ # c = -1 # This is the old version. The new version uses a faster lookup table.
+ # b = 0
+ # while c != n:
+ # b += 1
+ # if parity(b) == 1:
+ # c += 1
+ # return b
+
+# Find the nth key in which all bytes have odd parity
+def nthKey(n):
+ key = ''
+ for b in range(7,-1,-1):
+ key += chr(nthByte((n >> b*7) & 0x7f))
+ return key
+
+# Example
+print binascii.b2a_hex(nthKey(765637)) \ No newline at end of file