blob: 73049a645eae1b69800f05baf2fba0e8540411c2 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
\documentclass[10pt,a4paper]{article}
\usepackage[margin=2cm]{geometry}
\usepackage{pdfpages}
% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}
\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{enumitem}
\setenumerate[1]{label=\alph*.}
\setenumerate[2]{label=(\roman*)}
\usepackage{graphicx}
\parindent0pt
\title{Operating Systems - assignment 8}
\author{Camil Staps\\\small{s4498062}}
\begin{document}
\maketitle
\thispagestyle{fancy}
\section*{10.2}
See Figure \ref{fig:10.2}.
\begin{figure}[h]
\centering
\includegraphics[width=.95\linewidth]{10-2}
\caption{Different scheduling algorithms}
\label{fig:10.2}
\end{figure}
\section*{10.7}
Suppose we have two jobs with $C_1=C_2=1$ and $T_1=T_2=2$, whose deadlines match. Clearly, we can successfully schedule these jobs, by always scheduling job 1 directly after its deadline and job 2 directly after job 1. The equation doesn't hold however: $$\frac{C_1}{T_1}+\frac{C_2}{T_2} = 1 \ge 2\sqrt2 - 2 = 2\left(2^{\tfrac12}-1\right).$$ Therefore, this equation is a sufficient condition (as has been proven by Liu \& Layland (1973), but not a necessary condition, since we have found a counterexample.
\end{document}
|