1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
\documentclass[10pt,a4paper]{article}
\usepackage[margin=2cm]{geometry}
\usepackage{pdfpages}
% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}
\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{array}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{enumitem}
\setenumerate[1]{label=\alph*.}
\setenumerate[2]{label=(\roman*)}
\parindent0pt
\title{Operating Systems - assignment 7}
\author{Camil Staps\\\small{s4498062}}
\begin{document}
\maketitle
\thispagestyle{fancy}
\section*{9.1}
\begin{enumerate}
\item See Table \ref{tab:91a}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{| r | *{21}{c|}} \hline
ms & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 \\\hline
SPN & P1 & P1 & P2 & P2 & P2 & P2 & P2 & P2 & P4 & P4 & P4 & P3 & P3 & P3 & P3 & P5 & P5 & P5 & P5 & P5 \\\hline
SRT & P1 & P1 & P2 & P3 & P3 & P3 & P3 & P2 & P4 & P4 & P4 & P2 & P2 & P2 & P2 & P5 & P5 & P5 & P5 & P5 \\\hline
\end{tabular}
\caption{Applying the SPN and SRT algorithms to five processes}
\label{tab:91a}
\end{table}
\item See Table \ref{tab:91b}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{| r | *{4}{>{$}C{10mm}<{$} |}} \hline
& \multicolumn{2}{c|}{SPN} & \multicolumn{2}{c|}{SRT} \\\hline
Process & T_r & T_r/T_s & T_r & T_r/T_s \\\hline
P1 & 4 & 1 & 4 & 1 \\
P2 & 14 & 1.167 & 28 & 2.333 \\
P3 & 24 & 3 & 8 & 1 \\
P4 & 6 & 1 & 6 & 1 \\
P5 & 20 & 2 & 20 & 2 \\\hline
Mean & 13.2 & 1.633 & 13.2 & 1.467 \\\hline
\end{tabular}
\caption{TAT and relative delay for the processes from Table \ref{tab:91a}}
\label{tab:91b}
\end{table}
\end{enumerate}
\section*{9.6}
The diagram shows the situation where processes only move down to a lower priority queue when preempted. The first two time units allocated to A are actually two dispatches, each with time unit $2^0=1$. Then the process is preempted because of B and moves down the priority queues.
However, if we move a process down the priority queues any time it finishes a time unit, A will continue running for three consecutive time units. First, one time unit in RQ0, and then two in RQ1.
\section*{9.7}
A steep line typically corresponds to a low service time, while a more gentle line corresponds to a high service time. The response ratio of a process with a low service time increases faster than that of a process with a high service time. Therefore, we should schedule the processes with a high service time last. If we schedule them earlier, the response times of other jobs increase rapidly and over a long time (that is, the service time of the running job). If we first schedule processes with a short service time however, the other response ratios don't increase that rapidly (because they belong to processes with a higher service time), and not for such a long time.
\end{document}
|