aboutsummaryrefslogtreecommitdiff
path: root/assignment7.tex
blob: 9981b2a18eada1285db937f7b8d7e79ce41909d3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
\documentclass[10pt,a4paper]{article}

\usepackage[utf8]{inputenc}
\usepackage[margin=2cm]{geometry}

\usepackage{enumitem}
\setenumerate[1]{label=\arabic*.}
\setenumerate[2]{label=(\alph*)}

% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}

\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}

\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcommand*\diff{\mathop{}\!\mathrm{d}}
\newcommand{\Var}{\operatorname{Var}}
\DeclareMathAlphabet{\pazocal}{OMS}{zplm}{m}{n}

\usepackage{array}
\usepackage{caption}

\parindent0pt

\title{Calculus en Kansrekenen - assignment 7}
\author{Camil Staps\\\small{s4498062, group Bram}}

\begin{document}

\maketitle
\thispagestyle{fancy}

\begin{enumerate}
    \item \begin{enumerate}
            \item See Table \ref{tab:1a}.
                
                \begin{table}[h]
                    \centering
                    \setlength\extrarowheight{2pt}
                    \begin{tabular}{>{$}c<{$} *{7}{| >{$}c<{$}}}
                        X   & 0       & 1          & 2              & 3              & 4                & 5                 & 6\;(\uparrow)  \\\hline
                        P(X)& \frac25 & \frac6{25} & \frac{18}{125} & \frac{54}{625} & \frac{162}{3125} & \frac{486}{15625} & \frac{729}{15625}
                    \end{tabular}
                    \caption{}
                    \label{tab:1a}
                \end{table}

                I take $X$ as the number of bullets used \emph{before} hitting the target, i.e., not counting the bullet with which you hit the target.

                To hit the first time has a probability of $\frac25$. Then, for $1\le X\le 5$ we have $P(X) = (\frac35)^{X-1}\cdot\frac25$, because it is the probability that the shooter missed $X-1$ times times the probability that he hit a certain time. For $X=6$ I take that the shooter didn't hit at all. Strictly speaking, $X$ isn't defined in this case, which is why I write $6\;(\uparrow)$. The probability that this is the case is one minus the sum of the other probabilities.

            \item $E(X) = 0\cdot\frac25 + 1\cdot\frac6{25} + 2\cdot\frac{18}{125} + 3\cdot\frac{54}{625} + 4\cdot\frac{162}{3125} + 5\cdot\frac{486}{15625} + 6\cdot\frac{729}{15626} = \frac{22344}{15625} \approx 1.43$.

            \item \begin{align*}
                    \Var(X) =& \sum_i = P(X=x_i)(x_i-E(X))^2 \\
                            =&\; \tfrac25\left(0-\tfrac{22344}{15625}\right)^2 + \tfrac6{25}\left(1-\tfrac{22344}{15625}\right)^2 + \tfrac{18}{125}\left(2-\tfrac{22344}{15625}\right)^2 + \tfrac{54}{625}\left(3-\tfrac{22344}{15625}\right)^2 \\
                            &+ \tfrac{162}{3125}\left(4-\tfrac{22344}{15625}\right)^2 + \tfrac{486}{15625}\left(5-\tfrac{22344}{15625}\right)^2 + \tfrac{729}{15625}\left(6-\tfrac{22344}{15625}\right)^2 \\
                            =&\; \frac{692 214 414}{244 140 625} \approx 2.84
                \end{align*}

            \item $\sigma_X = \sqrt{\Var(X)} = \sqrt{\frac{692 214 414}{244 140 625}} = \frac{\sqrt{692 214 414}}{15625} \approx 1.68$.
        \end{enumerate}

    \item \begin{enumerate}
            \item First, we choose the five A will pass, with ${8\choose5}=56$ possibilities. This way, we count every possibility to reach $X_A=5$ exactly once. This has probability $\frac1{2^8}$ for some choice of the five assignments, because the first five have to be passed and the last three have to be failed. In total, that gives $P(X_A=5) = \frac{56}{2^8} = \frac7{32} \approx 0.219$.

            \item We divide this up and conquer the sub problems using the method from 2(a).
                \begin{align*}
                    P(X_A \ge 5) &= P(X_A=5) + P(X_A=6) + P(X_A=7) + P(X_A=8) \\
                        &= \frac{{8\choose5}}{2^8} + \frac{{8\choose6}}{2^8} + \frac{{8\choose7}}{2^8} + \frac{{8\choose8}}{2^8} \\
                        &= \frac{56 + 28 + 8 + 1}{2^8} = \tfrac{93}{256} \approx 0.363.
                \end{align*}

            \item This is similar, but we have to change the probabilities slightly:
                \begin{align*}
                    P(X_B \ge 5) &= P(X_B=5) + P(X_B=6) + P(X_B=7) + P(X_B=8) \\
                        &= \frac{{8\choose5}}{\tfrac54^5\tfrac51^3} + \frac{{8\choose6}}{\tfrac54^6\tfrac51^2} + \frac{{8\choose7}}{\tfrac54^7\tfrac51} + \frac{{8\choose8}}{\tfrac54^8} \\
                        &= \frac{56}{\tfrac{390625}{1024}} + \frac{28}{\tfrac{390625}{4096}} + \frac{8}{\tfrac{390625}{16384}} + \frac{1}{\tfrac{390625}{65536}} \\
                        &= \frac{73728}{78125} \approx 0.944.
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item This should satisfy $\int_{-\infty}^\infty f(x)\diff x = 1$. Since we know that $f(x)=0$ on $(-\infty,-\frac12] \cup [\frac12,\infty)$, that reduces to $\int_{-\frac12}^{\frac12} a(1-4x^2)\diff x = 1$. Hence we compute:
                \begin{align*}
                    \int_{-\tfrac12}^{\tfrac12} a-4ax^2 \diff x &= 1 \\
                    \left.ax - \tfrac43ax^3\right|_{-\tfrac12}^{\tfrac12} &= 1 \\
                    \left(\tfrac12a - \tfrac43a(\tfrac12)^3\right) - \left(-\tfrac12a - \tfrac43a(-\tfrac12)^3\right) &= 1 \\
                    a - \tfrac83a(\tfrac12)^3 &= 1 \\
                    a - \tfrac13a &= 1 \\
                    a &= 1\tfrac12.
                \end{align*}

            \item \begin{equation*}
                    F(x) = \begin{cases}
                        1\tfrac12x - 2x^3 + c & \mbox{if } -\tfrac12 < x < \tfrac12\mbox{,} \qquad\text{(as in 3(a), with $a=1\tfrac12$)} \\
                        c                     & \mbox{otherwise.}
                    \end{cases}
                \end{equation*}

            \item The probability that a continuous random variable has a certain value is $0$ (namely $\frac1\infty$).

            \item That would be
                \begin{align*}
                    \left.F(x)\right|_0^{\tfrac14} &= F(\tfrac14) - F(0) \\
                                                   &= 1\tfrac12\cdot\tfrac14 - 2\cdot(\tfrac14)^3 \\
                                                   &= \tfrac38 - \tfrac2{64} \\
                                                   &= \tfrac{11}{32}.
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item On $(-\infty,0)$ it is clear that $f(t)=0$. On $[0,\infty)$ we would have $f(t) = \frac\diff{\diff t} 1-e^{-kt} = -e^{-kt}\cdot-k = ke^{-kt}$. Therefore
                    \begin{equation*}
                        f(x) = \begin{cases}
                            0 & \mbox{if } t<0\mbox{,} \\
                            ke^{-kt} & \mbox{otherwise.}
                        \end{cases}
                    \end{equation*}

                \item \begin{align*}
                        E(T) &= \int_{-\infty}^\infty t\cdot f(t) \diff t \\
                             &= \int_0^\infty tke^{-kt} \diff t \\
                             &= \lim_{u\to\infty} \int_0^u tke^{-kt} \diff t \\
                             &= \lim_{u\to\infty} \left.-ke^{-kt}\right|_0^u \\
                             &= \lim_{u\to\infty} -ke^{-ku} + ke^{-k\cdot0} \\
                             &= \lim_{u\to\infty} k\left(1-e^{-ku}\right) \\
                             &\stackrel{(*)}{=} k.
                    \end{align*}

                    The last equation holds because $1-e^{-ku}=F(u)$, and $F$ is a cumulative distribution function, meaning its limit for $u\to\infty$ is $1$.

                    \begin{align*}
                        \Var(T) &= \int_{-\infty}^\infty (t-E(T))^2\cdot f(t) \diff t \\
                                &= 
                        %todo
                    \end{align*}
        \end{enumerate}

    \item %todo

\end{enumerate}

\end{document}