1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
\documentclass[10pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2cm]{geometry}
\usepackage{enumitem}
\setenumerate[1]{label=\arabic*.}
\setenumerate[2]{label=(\alph*)}
% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}
\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcommand*\diff{\mathop{}\!\mathrm{d}}
\parindent0pt
\title{Calculus en Kansrekenen - assignment 5}
\author{Camil Staps\\\small{s4498062, group Bram}}
\begin{document}
\maketitle
\thispagestyle{fancy}
\begin{enumerate}
\item \begin{enumerate}
\item $\int\sin x\cdot\cos x\diff x = -\frac14\cos2x+c$ since $\left(-\frac14\cos2x\right)' = -\frac14\cdot2\cdot-\sin2x = \sin x\cdot\cos x$.
\item $\int\ln(ax)\diff x = \int\ln a+\ln x\diff x = \frac1x + x\cdot\ln a + c$ since $\left(\frac1x + x\cdot\ln a\right)' = \ln x+\ln a = \ln(ax)$.
\item $\int\cos^2x\diff x = \int\cos x\cdot\cos x\diff x = \sin x\cdot\cos x - \int\sin x\cos'x\diff x = \sin x\cdot\cos x + \int\sin^2x \diff x = \sin x\cdot\cos x + \int1-\cos^2x \diff x = \sin x\cdot\cos x+x+c-\int\cos^2x\diff x$.
But then also: $2\cdot\int\cos^2x\diff x = \sin x\cdot\cos x + x + c$, so $\int\cos^2x\diff x = \frac12\left(\sin x\cdot\cos x + x\right) + c'$.
\item $\int\frac1{\sqrt{1-4x^2}}\diff x = \int\frac1{\sqrt{1-u^2}}\cdot\frac{\diff\frac12u}{\diff u}\diff u = \int\frac1{\sqrt{1-u^2}}\cdot\frac12\diff u = \frac12\arcsin(2x) + c$.
\item Using integration by parts twice, we find:
\begin{equation}
\int e^{3x}\sin x\diff x = \tfrac13e^{3x}\sin x - \tfrac13\int e^{3x}\cos x\diff x.
\label{eq:1ea}
\end{equation}
and
\begin{equation*}
\int e^{3x}\sin x\diff x = -e^{3x}\cos x + 3\int e^{3x}\cos x\diff x.
\end{equation*}
This then means:
\begin{align*}
\tfrac13e^{3x}\sin x - \tfrac13\int e^{3x}\cos x\diff x &= -e^{3x}\cos x + 3\int e^{3x}\cos x\diff x \\
e^{3x}\left(\tfrac13\sin x+\cos x\right) &= 3\tfrac13\int e^{3x}\cos x\diff x \\
\int e^{3x}\cos x\diff x &= \tfrac1{10}e^{3x}(\sin x+3\cos x).
\end{align*}
Substituting that into equation \ref{eq:1ea} gives:
\begin{align*}
\int e^{3x}\sin x\diff x &= \tfrac13e^{3x}\sin x - \tfrac1{30}e^{3x}(\sin x+3\cos x) + c \\
&= -\tfrac1{30}e^{3x}(3\cos x-9\sin x) + c \\
&= -\tfrac1{10}e^x(\cos x-3\sin x) + c.
\end{align*}
\end{enumerate}
\item \begin{enumerate}
\item \begin{align*}
\int_{-1}^1\sqrt{1+f'(x)^2}\diff x &= \int_{-1}^1\sqrt{1+\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\diff x \qquad\text{since $f'(x)=\tfrac12\cdot(1-x^2)^{-\frac12}\cdot-2x = -\frac{x}{\sqrt{1-x^2}}$}\\
&= \int_{-1}^1 \sqrt{1+\frac{x^2}{1-x^2}} \diff x \\
&= \int_{-1}^1 \sqrt{\frac1{1-x^2}} \diff x \\
&= \int_{-1}^1 \frac1{\sqrt{1-x^2}} \diff x \\
&= \left.\arcsin x+c\right|_{-1}^1 \\
&= \arcsin1 - \arcsin-1 = \pi.
\end{align*}
\item On the unit circle we have $x^2+y^2=1$, so $y=\sqrt{1-x^2}$. This is then one half of the length of the unit circle, because $0=y=\sqrt{1-x^2} \vDash x=-1 \lor x=1$. The whole unit circle has length $2\pi$, so one half has length $\pi$.
\end{enumerate}
\item \begin{enumerate}
\item \begin{align*}
\int_{-1}^1\sqrt{1-x^2}\diff x &= \int_{\arcsin-1}^{\arcsin1} \sqrt{1-\sin^2u}\cdot\frac{\diff\sin u}{\diff u}\diff u \\
&= \int_{-\frac\pi 2}^{\frac\pi 2} \cos^2u\diff u \\
&= \left.\tfrac12(\sin x\cos x+x)\right|_{-\frac\pi 2}^{\frac\pi 2} \qquad\text{(see 1.c)} \\
&= \tfrac\pi 2.
\end{align*}
\item This is the area of one half of the unit circle, whose area is $\pi\cdot1^2=\pi$. Therefore, this must be $\frac\pi 2$.
\end{enumerate}
\item \begin{enumerate}
\item \begin{align*}
\int_0^\infty re^{-r^2} \diff r &= \lim\limits_{t\to\infty} \int_0^t re^{-r^2}\diff r \\
&= \lim\limits_{t\to\infty} \int_0^{-t^2} \sqrt{-u}\cdot e^u \frac{\diff\sqrt{-u}}{\diff u}\diff u \qquad\text{with $u=-r^2, r=\sqrt{-u}$} \\
&= \lim\limits_{t\to\infty} -\tfrac12\int_0^{t^2} e^u\diff u \\
&= \lim\limits_{t\to\infty} -\tfrac12\left(\left.e^u\right|_0^{-t^2}\right) \\
&= -\tfrac12 \lim\limits_{t\to\infty} \left(e^{-t^2} - e^0\right) \\
&= -\tfrac12 \cdot(0-1) = \tfrac12.
\end{align*}
\item $\int_0^{2\pi} \left(\int_0^\infty re^{-r^2}\diff r\right)\diff t = 2\pi\cdot\int_0^\infty re^{-r^2}\diff r = 2\pi\cdot\frac12 = \pi$ (see 4.a).
\setcounter{enumii}{3}
\item In 4.c we saw that $\int_{-\infty}^\infty e^{-z^2}\diff z = \sqrt\pi$. We know that $f(x)=e^{-x^2}$ is even because of the power of two, therefore $\int_0^\infty e^{-x^2}\diff x = \frac12 \int_{-\infty}^\infty e^{-z^2}\diff z = \frac12\sqrt\pi$.
\end{enumerate}
\item \begin{enumerate}
\item $\int_0^\infty e^{-x}\diff x = \lim_{t\to\infty} \int_0^t e^{-x}\diff x = \lim_{t\to\infty}\left.-e^{-x}\right|_0^t = \lim_{t\to\infty}-e^{-t}+1 = 0 + 1 = 1.$
\item \begin{align*}
\int_0^\infty xe^{-x}\diff x &= \lim_{t\to\infty} \int_0^t xe^{-x}\diff x \\
&= \lim_{t\to\infty} \left(\left.-xe^{-x}\right|_0^t - \int_0^t-e^{-x}\diff x\right) \\
&= \lim_{t\to\infty} \left(\left.-xe^{-x}\right|_0^t - \left.e^{-x}\right|_0^t\right) \\
&= \lim_{t\to\infty} \left((-t-1)e^{-t} + e^0\right) \\
&= 0 + 1 = 1.
\end{align*}
\setcounter{enumii}{3}
\item $\int_0^\infty x^{-\frac12}e^{-x}\diff x = \int_0^\infty\frac1ue^{-u^2}\frac{\diff u^2}{\diff u}\diff u = 2\int_0^\infty e^{-u^2}\diff u = 2\cdot1 = 2$ (see 4.d).
\end{enumerate}
\item \begin{enumerate}
\item These vertices are the intersections of the lines.
$x+2=-x+6$ gives $x=2$ and $y=4$.\\
$x+2=2x-3$ gives $x=5$ and $y=7$.\\
$-x+6=2x-3$ gives $x=3$ and $y=3$.
That gives us $(2,4)$, $(5,7)$ and $(3,3)$.
We then see that on $(2,3)$ we have $x+2>-x+6$ and on $(3,5)$ we have $x+2>2x-3$, so as the area we take:
\begin{align*}
\int_2^3(x+2)-(-x+6)\diff x + \int_3^5(x+2)-(2x-3)\diff x &= \int_2^3 2x-4\diff x + \int_3^5 5-x \diff x\\
&= \left.x^2-4x\right|_2^3 + \left.5x-\tfrac12x^2\right|_3^5 \\
&= 3.
\end{align*}
\item $(x-1)^3=(x-1)^2$ gives $x-1=0,x=1$ or $x-1=1, x=2$. On $(1,2)$ we have $(x-1)^2>(x-1)^3$ (take e.g. $x=\frac12$ and note that there are no intersections).
Therefore we take
\begin{align*}
\int_1^2(x-1)^2-(x-1)^3\diff x &= \int_1^2(2-x)(x^2-2x+1) \diff x \\
&= \int_1^2 -x^3 + 4x^2 - 5x + 2 \diff x \\
&= \left. -\tfrac14x^4 + \tfrac43x^3 - \tfrac52x^2 + 2x\right|_1^2 \\
&= \tfrac1{12}.
\end{align*}
\end{enumerate}
\end{enumerate}
\end{document}
|