aboutsummaryrefslogtreecommitdiff
path: root/assignment2.tex
blob: 44b8c33995e0a78666651e8064fe58c70e327b88 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
\documentclass[10pt,a4paper]{article}

\usepackage[margin=2cm]{geometry}

\usepackage{enumitem}
\setenumerate[1]{label=\arabic*.}
\setenumerate[2]{label=(\alph*)}

% textcomp package is not available everywhere, and we only need the Copyright symbol
% taken from http://tex.stackexchange.com/a/1677/23992
\DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}

\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhead{}
\fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps}
\pagestyle{fancy}

\usepackage{amsmath}
\usepackage{amsfonts}

\parindent0pt

\title{Calculus en Kansrekenen - assignment 2}
\author{Camil Staps\\\small{s4498062, group Bram}}

\begin{document}

\maketitle
\thispagestyle{fancy}

\begin{enumerate}
    \item \begin{enumerate}
            \item $$\lim\limits_{x\to-\infty}\frac{x^3+2x^2+2}{3x^3+x+4} = \lim\limits_{x\to-\infty}\frac{1+\frac2x+\frac2{x^3}}{3+\frac1x+\frac4{x^3}} = \frac13.$$
            \item $$\lim\limits_{x\to\infty}\frac{3x^2+8}{x+1}=\frac{3x+\frac8x}{1+\frac1x}=\lim\limits_{x\to\infty}3x+\frac8x=\lim\limits_{x\to\infty}3x=\infty.$$
            \item $$\lim\limits_{x\to\infty}\frac{2x+1}{x^2+x}=\lim\limits_{x\to\infty}\frac{\frac2x+\frac1{x^2}}{1+\frac1x}=\frac01=0.$$
            \item \begin{align*}
                        & \lim\limits_{x\to a}\frac{x^n-a^n}{x-a}\\
                    = & \lim\limits_{a+h\to a}\frac{(a+h)^n-a^n}{a+h-a}\qquad\text{with $h=x-a$}\\
                    = & \lim\limits_{h\to0}\frac{(a+h)^n - a^n}{h}\\
                    = & \left(a^n\right)'\\
                    = & n\cdot a^{n-1}.
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item $$f'(2) = \lim\limits_{h\to0}\frac{f(2+h)-f(2)}{h}=\lim\limits_{h\to0}\frac0h=0.$$
            \item $$f'(x) = \lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h} = \lim\limits_{h\to0}\frac{2(x+h)+3-(2x+3)}{h} = \lim\limits_{h\to0}2 = 2.$$
            \item $$f'(3) = \lim\limits_{h\to0}\frac{f(3+h)-f(3)}{h} = \lim\limits_{h\to0}\frac{h^2+6h+9+6+2h+1-(9+6+1)}{h} = \lim\limits_{h\to0}h+8=8.$$
            \item \begin{align*}
                    f'(x) &= \lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h}\\
                          &= \lim\limits_{h\to0}\frac{\frac{5(x+h)-7}{4(x+h)+3} - \frac{5x-7}{4x+3}}{h}\\
                          &= \lim\limits_{h\to0}\frac{\frac{43h}{(4x+4h+3)(4x+3)}}{h}\\
                          &= \lim\limits_{h\to0}\frac{43}{(4x+4h+3)(4x+3)}\\
                          &= \frac{43}{(4x+3)^2}.
                \end{align*}
        \end{enumerate}

    \item \begin{enumerate}
            \item We rewrite this to something of the form $y=ax+b$:
                
                \begin{align*}
                    4y - x + 2(1-\ln2) &= 0\\
                    4y &= x - 2(1-\ln2)\\
                    y &= \frac14x - \frac12(1-\ln2)
                \end{align*}

                For a line $y=ax+b$, $a$ is the slope, so in this case we have the slope $\frac14$.

            \item We equate $f(x)$ and $y$ for $x=2$:

                \begin{align*}
                    \frac14\cdot2 - \frac12(1-\ln2) &= a\ln2 \\
                    \frac12\ln2 &= a\ln2 \\
                    a &= \frac12.
                \end{align*}

            \item For the slope we take the derivative of $f$, i.e. $f'(x) = \frac ax = \frac12a$.

                Then as intercept we take $f(2)-2\cdot f'(2) = a\ln2 - 2\cdot\frac a2 = a\ln2-a$.
                
                The tangent line is then $y=\frac12ax+a\ln2-a$.
        \end{enumerate}

    \item \begin{enumerate}
            \item Using basic rules, $f'(x) = 4x^3-6x^2$.
            \item Using the division rule, $f'(x) = \frac{(x-7)(2x)-(x^2+5)(1)}{(x-7)^2} = \frac{x^2-14x-5}{x-7}$.
            \item Using the product rule, \begin{align*}
                    f'(x) &= \left(\sin{\sqrt x}\cdot\sin{\sqrt x}\right) \\
                          &= 2\cdot\sin\sqrt x\cdot\left(\sin\sqrt x\right)' \\
                          &= 2\cdot\sin\sqrt x\cdot\cos\sqrt x\cdot\frac12\cdot x^{-\frac12} \\
                          &= \frac12\sin\left(2\sqrt x\right)\cdot\frac1{\sqrt x} \\
                          &= \frac{\sin\left(2\sqrt x\right)}{2\sqrt x}.
                \end{align*}
            \item We have $f(x) = 1-\cos^2\left(\sqrt x\right) = \sin^2\left(\sqrt x\right)$, so this is the same as 4c.
            \item Using the chain rule, $f'(x) = \left(e^{\tan x}\right)' = e^{\tan x}\cdot\tan'x = \frac{e^{\tan x}}{\cos^2x}$.
            \item Using the chain rule, $f'(x) = -\frac1{\cos x}\cdot-\sin x=\tan x$.
            \item Using the chain rule, \begin{align*}
                    f'(x) &= \frac1{\sqrt{1-(1-2x)^2}}\cdot-2 \\
                          &= -\frac2{\sqrt{-4x^2+4x}} \\
                          &= -\frac2{2\sqrt{-x^2+x}} \\
                          &= -\left(-x^2+x\right)^{-\frac12}.
                \end{align*}
            \item Using the chain rule, $f'(x) = 10^{x^2}\cdot\ln10\cdot2x$.
        \end{enumerate}

    \item \begin{enumerate}
            \item Using the chain rule, $f'(x) = e^{\sin x}\cdot\cos x$.
            \item Using logarithmic differentiation:

                \begin{align*}
                    f(x)        &= \left(e^x\right)^{e^x} \\
                    \ln(f(x))   &= \ln\left(\left(e^x\right)^{e^x}\right) = e^x\cdot x \\
                    \frac{f'(x)}{f(x)} &= e^x + x\cdot e^x = (x+1)\cdot e^x \qquad\text{(product rule)}\\
                    f'(x)       &= f(x) \cdot (x+1)\cdot e^x \\
                                &= \left(e^x\right)^{e^x+1}\cdot(x+1).
                \end{align*}
            \item First we rewrite in order to get the inverse:

                \begin{align*}
                    y       &= e^{2x} \\
                    \ln y   &= 2x \\
                    x       &= \frac{\ln y}2 \\
                    f^{-1}(x) &= \frac12\ln x.
                \end{align*}

                Next, we find the derivative as $\left(f^{-1}\right)'(x) = \frac12\cdot\frac1x=\frac1{2x}$.

            \item Again, we first find the inverse:

                \begin{align*}
                    y           &= \sqrt{x-2} \\
                    y^2         &= x-2 \\
                    y^2 + 2     &= x \\
                    f^{-1}(x)   &= x^2 + 2.
                \end{align*}

                Then it's easy to see $\left(f^{-1}\right)'(x) = 2x$.
        \end{enumerate}
\end{enumerate}

\end{document}