diff options
author | Size43 | 2015-05-21 16:33:18 +0200 |
---|---|---|
committer | Size43 | 2015-05-21 16:33:18 +0200 |
commit | 0ec23727a995dea4ca2ae595f39cbc177668159a (patch) | |
tree | 78cf4f665630e221848971ff70df51c0b38ae6ac /app/src/main/java/org | |
parent | Merge branch 'app' (diff) |
Fixed Serializable attributes & cleaned up code.
Diffstat (limited to 'app/src/main/java/org')
11 files changed, 129 insertions, 177 deletions
diff --git a/app/src/main/java/org/rssin/neurons/FeedSorter.java b/app/src/main/java/org/rssin/neurons/FeedSorter.java index 28d45c1..8549fcf 100755 --- a/app/src/main/java/org/rssin/neurons/FeedSorter.java +++ b/app/src/main/java/org/rssin/neurons/FeedSorter.java @@ -1,56 +1,41 @@ package org.rssin.neurons;
-import android.gesture.Prediction;
-
import org.rssin.rss.FeedItem;
-import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
-import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
-import java.util.HashMap;
import java.util.Hashtable;
import java.util.List;
import java.util.TimeZone;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
-public class FeedSorter implements Serializable{
+public class FeedSorter implements Serializable {
private static final long serialVersionUID = 0;
- private final int MAX_TRAINING_HISTORY = 250;
- private final int SECONDS_IN_DAY = 24 * 60 * 60;
private final SentenceSplitter splitter = new SentenceSplitter();
+ private final MultiNeuralNetwork nn = new MultiNeuralNetwork(25, 50);
+ private final List<TrainingCase> trainingCases = new ArrayList<>();
- private MultiNeuralNetwork nn = new MultiNeuralNetwork(25, 50);
-
- private List<TrainingCase> trainingCases = new ArrayList<>();
-
- private int[] isNthMonthInput = new int[12];
- private int[] isNthWeekDayInput = new int[7];
- private int isMorning, isAfternoon, isEvening, isNight, biasInput;
- private Hashtable<String, Integer> categoryInputs = new Hashtable<String, Integer>();
- private Hashtable<String, Integer> wordInputs = new Hashtable<String, Integer>();
- private Hashtable<String, Integer> authorInputs = new Hashtable<String, Integer>();
+ private final int[] isNthMonthInput = new int[12];
+ private final int[] isNthWeekDayInput = new int[7];
+ private final int isMorning, isAfternoon, isEvening, isNight, biasInput;
+ private final Hashtable<String, Integer> categoryInputs = new Hashtable<>();
+ private final Hashtable<String, Integer> wordInputs = new Hashtable<>();
+ private final Hashtable<String, Integer> authorInputs = new Hashtable<>();
public FeedSorter() {
- createNewNetwork();
- }
-
- private void createNewNetwork() {
biasInput = nn.addInput();
- for(int i = 0; i < 12; i++)
- {
+ for (int i = 0; i < 12; i++) {
isNthMonthInput[i] = nn.addInput();
}
- for(int i = 0; i < 7; i++)
- {
+ for (int i = 0; i < 7; i++) {
isNthWeekDayInput[i] = nn.addInput();
}
@@ -63,48 +48,40 @@ public class FeedSorter implements Serializable{ private PredictionInterface getPrediction(FeedItem item) {
List<String> words = splitter.splitSentence(item.getTitle());
- addNewCategoryInputs(item);
- addNewTitleWordInputs(words);
- addNewAuthorInputs(item);
+ addNewInputs(item.getCategory(), categoryInputs);
+ addNewInputs(words, wordInputs);
+ addNewInput(item.getAuthor(), authorInputs);
double[] inputs = newArrayInitializedToNegativeOne();
inputs[biasInput] = 1;
Calendar cal = Calendar.getInstance(TimeZone.getTimeZone("UTC"));
- //Set month
+ //Set month & weekday
inputs[isNthMonthInput[cal.get(Calendar.MONTH) - cal.getMinimum(Calendar.MONTH)]] = 1;
-
- //Set weekday
inputs[isNthWeekDayInput[cal.get(Calendar.DAY_OF_WEEK) - cal.getMinimum(Calendar.DAY_OF_WEEK)]] = 1;
//Set time
int hourOfDay = cal.get(Calendar.HOUR_OF_DAY);
- if(hourOfDay > 6 && hourOfDay < 12)
- {
+ if (hourOfDay > 6 && hourOfDay < 12) {
inputs[isMorning] = 1;
- }else if(hourOfDay >= 12 && hourOfDay <= 6)
- {
+ } else if (hourOfDay >= 12 && hourOfDay <= 6) {
inputs[isAfternoon] = 1;
- }else if(hourOfDay >= 6 && hourOfDay < 23)
- {
+ } else if (hourOfDay >= 6 && hourOfDay < 23) {
inputs[isEvening] = 1;
- }else if(hourOfDay >= 23 || hourOfDay <= 6)
- {
+ } else if (hourOfDay >= 23 || hourOfDay <= 6) {
inputs[isNight] = 1;
}
- for(String category : item.getCategory())
- {
+ for (String category : item.getCategory()) {
inputs[categoryInputs.get(category.toLowerCase())] = 1;
}
- for(String word : words)
- {
+ for (String word : words) {
inputs[wordInputs.get(word)] = 1;
}
- if(item.getAuthor() != null) {
+ if (item.getAuthor() != null) {
inputs[authorInputs.get(item.getAuthor().toLowerCase())] = 1;
}
@@ -117,52 +94,35 @@ public class FeedSorter implements Serializable{ return inputs;
}
- private void addNewCategoryInputs(FeedItem item) {
- for(String category : item.getCategory())
- {
- category = category.toLowerCase();
- if(!categoryInputs.containsKey(category))
- {
- categoryInputs.put(category, nn.addInput());
- }
- }
- }
-
- private void addNewAuthorInputs(FeedItem item)
- {
- if(item.getAuthor() != null) {
- String author = item.getAuthor().toLowerCase();
- if (!authorInputs.containsKey(author)) {
- authorInputs.put(author, nn.addInput());
- }
+ private void addNewInputs(Iterable<String> words, Hashtable<String, Integer> map) {
+ for (String word : words) {
+ addNewInput(word, map);
}
}
- private void addNewTitleWordInputs(List<String> words) {
- for(String word : words)
- {
+ private void addNewInput(String word, Hashtable<String, Integer> map) {
+ if (word != null) {
word = word.toLowerCase();
- if(!wordInputs.containsKey(word))
- {
- wordInputs.put(word, nn.addInput());
+ if (!map.containsKey(word)) {
+ map.put(word, nn.addInput());
}
}
}
/**
* Provides feedback to the neural network.
- * @param item The feeditem.
+ *
+ * @param item The feeditem.
* @param feedback The feedback. Like will move these types of items up in the list,
* dislike will move them down.
*/
- public void feedback(FeedItem item, Feedback feedback)
- {
+ public void feedback(FeedItem item, Feedback feedback) {
PredictionInterface prediction = getPrediction(item);
prediction.learn(feedback.toExpectedOutput());
trainingCases.add(new TrainingCase(prediction.getInputs(), feedback));
- while(trainingCases.size() > MAX_TRAINING_HISTORY)
- {
+ final int MAX_TRAINING_HISTORY = 250;
+ while (trainingCases.size() > MAX_TRAINING_HISTORY) {
trainingCases.remove(0);
}
}
@@ -170,13 +130,10 @@ public class FeedSorter implements Serializable{ /**
* Runs an iteration of training, using feedback that was provided previously using FeedSorter.feedback(...).
*/
- public void train()
- {
- for(TrainingCase t : trainingCases)
- {
+ public void train() {
+ for (TrainingCase t : trainingCases) {
double[] inputs = t.getInputs();
- if(inputs.length < nn.getInputCount())
- {
+ if (inputs.length < nn.getInputCount()) {
// Resize array to fit new input size
inputs = Arrays.copyOf(inputs, nn.getInputCount());
}
@@ -188,30 +145,28 @@ public class FeedSorter implements Serializable{ /**
* Returns a sorted list of all the items in the List, according to the neural network.
+ *
* @param items The list of items.
* @return A new, sorted, list of items. The parameter items is not modified.
*/
public List<FeedItem> sortItems(List<FeedItem> items) {
- // Sort list based on something like date + nn.computeOutput() * DAY.
- final List<FeedItem> newItems = new ArrayList<FeedItem>(items);
- final Hashtable<FeedItem, PredictionInterface> predictions = new Hashtable<>();
-
- for(FeedItem feed : newItems)
- {
- PredictionInterface prediction = getPrediction(feed);
- predictions.put(feed, prediction);
+ final int SECONDS_IN_DAY = 24 * 60 * 60;
+
+ final List<FeedItem> newItems = new ArrayList<>(items);
+ final Hashtable<FeedItem, Long> predictions = new Hashtable<>();
+
+ for (FeedItem item : newItems) {
+ PredictionInterface prediction = getPrediction(item);
+ predictions.put(item, (long) (prediction.getOutput() * SECONDS_IN_DAY));
}
Collections.sort(newItems, new Comparator<FeedItem>() {
@Override
public int compare(FeedItem lhs, FeedItem rhs) {
- PredictionInterface lPrediction = predictions.get(lhs),
- rPrediction = predictions.get(rhs);
-
- long lhsSeconds = (long)(lhs.getPubDate().getTime() / 1000 + lPrediction.getOutput() * SECONDS_IN_DAY);
- long rhsSeconds = (long)(rhs.getPubDate().getTime() / 1000 + rPrediction.getOutput() * SECONDS_IN_DAY);
+ long lhsScore = lhs.getPubDate().getTime() / 1000 + predictions.get(lhs);
+ long rhsScore = rhs.getPubDate().getTime() / 1000 + predictions.get(rhs);
- return (int)Math.signum(rhsSeconds - lhsSeconds);
+ return (int) Math.signum(rhsScore - lhsScore);
}
});
diff --git a/app/src/main/java/org/rssin/neurons/Feedback.java b/app/src/main/java/org/rssin/neurons/Feedback.java index 9652b2b..fe59b1b 100755 --- a/app/src/main/java/org/rssin/neurons/Feedback.java +++ b/app/src/main/java/org/rssin/neurons/Feedback.java @@ -1,21 +1,18 @@ package org.rssin.neurons;
/**
- * Created by Jos on 19-5-2015.
+ * @author Jos.
*/
public enum Feedback {
- Like, Dislike;
+ Like(1.0d), Dislike(-1.0d);
- double toExpectedOutput()
- {
- switch(this)
- {
- case Like:
- return 1;
- case Dislike:
- return -1;
- default:
- throw new IllegalArgumentException();
- }
+ private final double expectedOutput;
+
+ private Feedback(double expectedOutput) {
+ this.expectedOutput = expectedOutput;
+ }
+
+ double toExpectedOutput() {
+ return expectedOutput;
}
}
diff --git a/app/src/main/java/org/rssin/neurons/MultiNeuralNetwork.java b/app/src/main/java/org/rssin/neurons/MultiNeuralNetwork.java index 68ff390..03ad2d1 100755 --- a/app/src/main/java/org/rssin/neurons/MultiNeuralNetwork.java +++ b/app/src/main/java/org/rssin/neurons/MultiNeuralNetwork.java @@ -3,12 +3,12 @@ package org.rssin.neurons; import java.io.Serializable;
/**
- * Created by Jos on 14-5-2015.
- * Is used to migitate the problem of neural networks ending up in the wrong local minimum.
+ * @author Jos
+ * Is used to migitate the problem of neural networks ending up in the wrong local minimum.
*/
-class MultiNeuralNetwork implements Serializable{
+class MultiNeuralNetwork implements Serializable {
private static final long serialVersionUID = 0;
- private NeuralNetwork[] networks;
+ private final NeuralNetwork[] networks;
public MultiNeuralNetwork(int numNetworks, int numHiddenNodes) {
networks = new NeuralNetwork[numNetworks];
@@ -28,8 +28,7 @@ class MultiNeuralNetwork implements Serializable{ public PredictionInterface computeOutput(double[] inputs) {
PredictionInterface[] predictions = new PredictionInterface[networks.length];
- for(int i = 0; i < predictions.length; i++)
- {
+ for (int i = 0; i < predictions.length; i++) {
predictions[i] = networks[i].computeOutput(inputs);
}
diff --git a/app/src/main/java/org/rssin/neurons/MultiNeuralNetworkPrediction.java b/app/src/main/java/org/rssin/neurons/MultiNeuralNetworkPrediction.java index dc85261..f618749 100755 --- a/app/src/main/java/org/rssin/neurons/MultiNeuralNetworkPrediction.java +++ b/app/src/main/java/org/rssin/neurons/MultiNeuralNetworkPrediction.java @@ -1,22 +1,20 @@ package org.rssin.neurons;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
class MultiNeuralNetworkPrediction implements PredictionInterface {
- private PredictionInterface[] predictions;
- MultiNeuralNetworkPrediction(PredictionInterface[] predictions)
- {
- if(predictions.length <= 0)
- {
+ private final PredictionInterface[] predictions;
+
+ MultiNeuralNetworkPrediction(PredictionInterface[] predictions) {
+ if (predictions.length <= 0) {
throw new IllegalArgumentException("predictions");
}
this.predictions = predictions;
}
- public double getOutput()
- {
+ public double getOutput() {
double average = 0;
for (PredictionInterface prediction : predictions) {
average += prediction.getOutput();
@@ -25,16 +23,13 @@ class MultiNeuralNetworkPrediction implements PredictionInterface { return average / (double) predictions.length;
}
- public void learn(double expectedOutput)
- {
- for(PredictionInterface prediction : predictions)
- {
+ public void learn(double expectedOutput) {
+ for (PredictionInterface prediction : predictions) {
prediction.learn(expectedOutput);
}
}
- public double[] getInputs()
- {
+ public double[] getInputs() {
return predictions[0].getInputs();
}
}
diff --git a/app/src/main/java/org/rssin/neurons/NeuralNetwork.java b/app/src/main/java/org/rssin/neurons/NeuralNetwork.java index 7fe003f..0acfda7 100755 --- a/app/src/main/java/org/rssin/neurons/NeuralNetwork.java +++ b/app/src/main/java/org/rssin/neurons/NeuralNetwork.java @@ -1,18 +1,19 @@ package org.rssin.neurons;
+import android.annotation.SuppressLint;
+
import java.io.Serializable;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
-class NeuralNetwork implements Serializable{
+class NeuralNetwork implements Serializable {
private static final long serialVersionUID = 0;
- private Neuron[] hiddenNodes;
- private Neuron outputNode;
+ private final Neuron[] hiddenNodes;
+ private final Neuron outputNode;
- public NeuralNetwork(int numHiddenNodes) {
- if(numHiddenNodes < 1)
- {
+ NeuralNetwork(int numHiddenNodes) {
+ if (numHiddenNodes < 1) {
throw new IllegalArgumentException("numHiddenNodes must be > 0");
}
@@ -25,7 +26,8 @@ class NeuralNetwork implements Serializable{ outputNode = new Neuron(numHiddenNodes + 1);
}
- public int addInput() {
+ @SuppressLint("Assert")
+ int addInput() {
assert hiddenNodes.length > 0;
int result = 0;
@@ -36,7 +38,7 @@ class NeuralNetwork implements Serializable{ return result;
}
- public PredictionInterface computeOutput(double[] inputs) {
+ PredictionInterface computeOutput(double[] inputs) {
double[] intermediateValues = new double[outputNode.getWeightCount()];
//Output of hidden neurons
@@ -60,20 +62,19 @@ class NeuralNetwork implements Serializable{ }
void learn(NeuralNetworkPrediction p, double expectedOutput) {
- //TODO: See if adding momentum helps avoid local minima
+ //TODO: See if adding momentum helps avoid local minimum
double actualOutput = p.getOutput();
double[] intermediateValues = p.getIntermediateValues();
double[] inputs = p.getInputs();
- double[] hiddenGradients = new double[hiddenNodes.length];
-
- //Calculate output gradients
+ //Calculate output gradient
double outputDerivative = (1 - actualOutput) * (1 + actualOutput);
//Derivative of HyperTan function
double outputGradient = outputDerivative * (expectedOutput - actualOutput);
- //Calulate hidden gradients
+ //Calculate hidden gradients
+ double[] hiddenGradients = new double[hiddenNodes.length];
for (int i = 0; i < hiddenGradients.length; i++) {
//Derivative of HyperTan function
double hiddenDerivative = (1 - intermediateValues[i]) * (1 + intermediateValues[i]);
@@ -111,7 +112,7 @@ class NeuralNetwork implements Serializable{ else return Math.tanh(x);
}
- public int getInputCount() {
+ int getInputCount() {
return hiddenNodes[0].getWeightCount();
}
}
diff --git a/app/src/main/java/org/rssin/neurons/NeuralNetworkPrediction.java b/app/src/main/java/org/rssin/neurons/NeuralNetworkPrediction.java index 9d6fc89..169caee 100755 --- a/app/src/main/java/org/rssin/neurons/NeuralNetworkPrediction.java +++ b/app/src/main/java/org/rssin/neurons/NeuralNetworkPrediction.java @@ -1,13 +1,13 @@ package org.rssin.neurons;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
class NeuralNetworkPrediction implements PredictionInterface {
- private double[] inputs;
- private double[] intermediateValues;
- private double output;
- private NeuralNetwork nn;
+ private final double[] inputs;
+ private final double[] intermediateValues;
+ private final double output;
+ private final NeuralNetwork nn;
NeuralNetworkPrediction(NeuralNetwork nn, double[] inputs, double[] intermediateValues, double output) {
this.inputs = inputs;
diff --git a/app/src/main/java/org/rssin/neurons/Neuron.java b/app/src/main/java/org/rssin/neurons/Neuron.java index d668ebc..23f69e1 100755 --- a/app/src/main/java/org/rssin/neurons/Neuron.java +++ b/app/src/main/java/org/rssin/neurons/Neuron.java @@ -1,17 +1,18 @@ package org.rssin.neurons;
+import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
-class Neuron {
+class Neuron implements Serializable {
private static final long serialVersionUID = 0;
- private static Random r = new Random();
+ private static final Random r = new Random();
- private List<Double> weights = new ArrayList<Double>();
+ private final List<Double> weights = new ArrayList<>();
public Neuron() {
}
diff --git a/app/src/main/java/org/rssin/neurons/PredictionInterface.java b/app/src/main/java/org/rssin/neurons/PredictionInterface.java index 27a214f..ff46992 100755 --- a/app/src/main/java/org/rssin/neurons/PredictionInterface.java +++ b/app/src/main/java/org/rssin/neurons/PredictionInterface.java @@ -1,10 +1,12 @@ package org.rssin.neurons;
/**
- * Created by Jos on 14-5-2015.
+ * @author Jos.
*/
interface PredictionInterface {
- public double getOutput();
- public void learn(double expectedOutput);
- public double[] getInputs();
+ double getOutput();
+
+ void learn(double expectedOutput);
+
+ double[] getInputs();
}
diff --git a/app/src/main/java/org/rssin/neurons/SentenceSplitter.java b/app/src/main/java/org/rssin/neurons/SentenceSplitter.java index 6fefe52..887439d 100755 --- a/app/src/main/java/org/rssin/neurons/SentenceSplitter.java +++ b/app/src/main/java/org/rssin/neurons/SentenceSplitter.java @@ -6,20 +6,25 @@ import java.util.regex.Matcher; import java.util.regex.Pattern;
/**
- * Created by Jos on 21-5-2015.
+ * @author Jos.
*/
public class SentenceSplitter {
- private Pattern wordMatch = Pattern.compile("[\\w-]+");
- public SentenceSplitter()
- { }
+ private final Pattern wordMatch = Pattern.compile("[\\w-]+");//For unicode support, add the Pattern.UNICODE_CHARACTER_CLASS flag. Works only in Java 7+.
- public List<String> splitSentence(String sentence)
- {
+ public SentenceSplitter() {
+ }
+
+ /**
+ * Returns all the words in a sentence.
+ *
+ * @param sentence The sentence.
+ * @return The list of words in a sentence.
+ */
+ public List<String> splitSentence(String sentence) {
List<String> allMatches = new ArrayList<>();
Matcher m = wordMatch.matcher(sentence);
- while (m.find())
- {
+ while (m.find()) {
allMatches.add(m.group().toLowerCase());
}
diff --git a/app/src/main/java/org/rssin/neurons/TrainingCase.java b/app/src/main/java/org/rssin/neurons/TrainingCase.java index 77162be..69f72cb 100755 --- a/app/src/main/java/org/rssin/neurons/TrainingCase.java +++ b/app/src/main/java/org/rssin/neurons/TrainingCase.java @@ -3,15 +3,14 @@ package org.rssin.neurons; import java.io.Serializable;
/**
- * Created by Jos on 20-5-2015.
+ * @author Jos.
*/
class TrainingCase implements Serializable {
- private static long serialVersionID;
- private double[] inputs;
- private Feedback feedback;
+ private static final long serialVersionUID = 0;
+ private final double[] inputs;
+ private final Feedback feedback;
- public TrainingCase(double[] inputs, Feedback feedback)
- {
+ public TrainingCase(double[] inputs, Feedback feedback) {
this.inputs = inputs;
this.feedback = feedback;
}
diff --git a/app/src/main/java/org/rssin/rssin/FeedLoaderAndSorter.java b/app/src/main/java/org/rssin/rssin/FeedLoaderAndSorter.java index eda0526..e9d3e5d 100755 --- a/app/src/main/java/org/rssin/rssin/FeedLoaderAndSorter.java +++ b/app/src/main/java/org/rssin/rssin/FeedLoaderAndSorter.java @@ -28,8 +28,7 @@ public class FeedLoaderAndSorter { {
FeedLoader loader = new FeedLoader(feed.getURL());
loader.fetchXML();
- org.rssin.rss.Feed loadedFeed = loader.getFeed();
- for(FeedItem item : loadedFeed.getPosts())
+ for(FeedItem item : loader.getFeed().getPosts())
{
if(matchesKeyword(item))
{
@@ -55,10 +54,9 @@ public class FeedLoaderAndSorter { return filter.getKeywords().size() == 0;
}
- private static boolean contains( String haystack, String needle ) {
- haystack = haystack == null ? "" : haystack;
- needle = needle == null ? "" : needle;
-
- return haystack.toLowerCase().contains(needle.toLowerCase());
+ private static boolean contains(String haystack, String needle) {
+ return haystack != null
+ && needle != null
+ && haystack.toLowerCase().contains(needle.toLowerCase());
}
}
|