aboutsummaryrefslogtreecommitdiff
path: root/pypride.py
blob: 91ffeef0ed6789715fe0ea58324ba7ff80ea5ca5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding=utf8

# =============================================================================
# Python PRIDE implementation
# Version: 1.0
# Date: 23/04/2015
#
# =============================================================================
#
# Python implementation of the PRIDE cipher
# Copyright (C) 2015 Camil Staps (info@camilstaps.nl)
#
# Some general implementation ideas were taken from Cristophe Osterlynck and 
# Philippe Teuwen's PRESENT implementation:
# http://www.lightweightcrypto.org/downloads/implementations/pypresent.py
#
# =============================================================================
#
# PRIDE is a modern (2014) lightweight block cipher optimized for 8-bit 
# microcontrollers, that "significantly outperforms all existing block ciphers
# of similar key-sizes, with the exception of SIMON and SPECK". Its design 
# rationale is described in Block Ciphers -- Focus On The Linear Layer (feat. 
# PRIDE); Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor 
# Leander, Christof Paar, Tolga Yalçın: https://eprint.iacr.org/2014/453
# 
# =============================================================================

"""
PRIDE block cipher implementation

USAGE EXAMPLE:
---------------
Importing:
-----------
>>> from pypride import Pride

Create a Pride object:
-----------------------
>>> key = "00000000000000000000000000000000".decode('hex')
>>> cipher = Pride(key)

Encryption:
------------
>>> plain = "0000000000000000".decode('hex')
>>> encrypted = cipher.encrypt(plain)
>>> encrypted.encode('hex')
'82b4109fcc70bd1f'

Decryption:
------------
>>> decrypted = cipher.decrypt(encrypted)
>>> decrypted.encode('hex')
'0000000000000000'

This implementation is fully based on the report PRIDE was presented in (https://eprint.iacr.org/2014/453; specifically section 5.4).
Test vectors can be found in test-vectors.py and were taken from appendix J of that paper.
"""

class Pride:

    def __init__(self,key):
        """Create a PRIDE cipher object

        Input:  the key as a 128-bit raw string"""

        if len(key) != 16:
            raise ValueError, "Key must be a 128-bit raw string"
        self.whitening_key = string2number(key[:8])
        self.roundkeys = [roundKey(key[8:], i) for i in xrange(0,21)]

    def encrypt(self,block):
        """Encrypt 1 block (8 bytes)

        Input:  plaintext block as raw string
        Output: ciphertext block as raw string"""

        state = string2number(block)

        # Initial permutation & pre-whitening
        state = pLayer_dec(state)
        state = addRoundKey(state, self.whitening_key)
        # 19 rounds R
        for i in xrange (1,20):
            state = addRoundKey(state, self.roundkeys[i])
            state = sBoxLayer(state)
            state = lLayer(state)
        # Last round R'
        state = addRoundKey(state, self.roundkeys[20])
        state = sBoxLayer(state)
        # Post-whitening & final permutation
        state = addRoundKey(state, self.whitening_key)
        state = pLayer(state)

        return number2string_N(state,8)

    def decrypt(self,block):
        """Decrypt 1 block (8 bytes)

        Input:  ciphertext block as raw string
        Output: plaintex block as raw string"""

        state = string2number(block)

        # Final permutation & post-whitening
        state = pLayer_dec(state)
        state = addRoundKey(state, self.whitening_key)
        # Last round R'
        state = sBoxLayer_dec(state)
        state = addRoundKey(state, self.roundkeys[20])
        # 19 rounds R
        for i in xrange(19,0,-1):
            state = lLayer_dec(state)
            state = sBoxLayer_dec(state)
            state = addRoundKey(state, self.roundkeys[i])
        # Pre-whitening & initial permutation
        state = addRoundKey(state, self.whitening_key)
        state = pLayer(state)

        return number2string_N(state,8)

# 4 to 4-bit S-Box and its inverse
Sbox= [0x0,0x4,0x8,0xf,0x1,0x5,0xe,0x9,0x2,0x7,0xa,0xc,0xb,0xd,0x6,0x3]
Sbox_inv = [Sbox.index(x) for x in xrange(16)]

# 64-bit permutation P and its inverse
PBox = [0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51, 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55, 8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59, 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63]
PBox_inv = [PBox.index(x) for x in xrange(64)]

# Matrices for permutation in the L layer
L0_inv = L0 = [0b0000100010001000, 0b0000010001000100, 0b0000001000100010, 0b0000000100010001, 0b1000000010001000, 0b0100000001000100, 0b0010000000100010, 0b0001000000010001, 0b1000100000001000, 0b0100010000000100, 0b0010001000000010, 0b0001000100000001, 0b1000100010000000, 0b0100010001000000, 0b0010001000100000, 0b0001000100010000]
L1 = [0b1100000000010000, 0b0110000000001000, 0b0011000000000100, 0b0001100000000010, 0b0000110000000001, 0b0000011010000000, 0b0000001101000000, 0b1000000100100000, 0b1000000000011000, 0b0100000000001100, 0b0010000000000110, 0b0001000000000011, 0b0000100010000001, 0b0000010011000000, 0b0000001001100000, 0b0000000100110000]
L1_inv = [0b0000001100000010, 0b1000000100000001, 0b1100000010000000, 0b0110000001000000, 0b0011000000100000, 0b0001100000010000, 0b0000110000001000, 0b0000011000000100, 0b0001000000011000, 0b0000100000001100, 0b0000010000000110, 0b0000001000000011, 0b0000000110000001, 0b1000000011000000, 0b0100000001100000, 0b0010000000110000]
L2 = [0b0000110000000001, 0b0000011010000000, 0b0000001101000000, 0b1000000100100000, 0b1100000000010000, 0b0110000000001000, 0b0011000000000100, 0b0001100000000010, 0b0000100010000001, 0b0000010011000000, 0b0000001001100000, 0b0000000100110000, 0b1000000000011000, 0b0100000000001100, 0b0010000000000110, 0b0001000000000011]
L2_inv = [0b0011000000100000, 0b0001100000010000, 0b0000110000001000, 0b0000011000000100, 0b0000001100000010, 0b1000000100000001, 0b1100000010000000, 0b0110000001000000, 0b0000000110000001, 0b1000000011000000, 0b0100000001100000, 0b0010000000110000, 0b0001000000011000, 0b0000100000001100, 0b0000010000000110, 0b0000001000000011]
L3_inv = L3 = [0b1000100000001000, 0b0100010000000100, 0b0010001000000010, 0b0001000100000001, 0b1000100010000000, 0b0100010001000000, 0b0010001000100000, 0b0001000100010000, 0b0000100010001000, 0b0000010001000100, 0b0000001000100010, 0b0000000100010001, 0b1000000010001000, 0b0100000001000100, 0b0010000000100010, 0b0001000000010001]

def matrixMultiply(matrix, input):
    """Multiply a vector with a binary matrix

    Input:  matrix as [Int], where the rows are integers;
            input as Int
    Output: Int"""
    mult = [bin(r & input).count("1") % 2 for r in matrix]
    return sum([(1 << (15 - i)) * v for i,v in enumerate(mult)])

def roundKey(key, i):
    """Calculate a round key

    Input:  the base key (second half of it) as a raw string;
            the round number
    Output: the round key as raw string"""

    return pLayer_dec(string2number(
          key[0] 
        + chr((ord(key[1]) + 193 * i) % 256) 
        + key[2] 
        + chr((ord(key[3]) + 165 * i) % 256) 
        + key[4] 
        + chr((ord(key[5]) + 81 * i) % 256) 
        + key[6] 
        + chr((ord(key[7]) + 197 * i) % 256)
    ))

def addRoundKey(state,roundkey):
    return state ^ roundkey

def sBoxLayer(state):
    """SBox function for encryption

    Input:  64-bit integer
    Output: 64-bit integer"""

    return sum([Sbox[( state >> (i * 4)) & 0xf] << (i * 4) for i in xrange(16)])

def sBoxLayer_dec(state):
    """Inverse SBox function for decryption

    Input:  64-bit integer
    Output: 64-bit integer"""

    return sum([Sbox_inv[( state >> (i * 4)) & 0xf] << (i * 4) for i in xrange(16)])

def pLayer(state):
    """Permutation layer for encryption

    Input:  64-bit integer
    Output: 64-bit integer"""

    return sum ([((state >> i) & 1) << PBox[i] for i in xrange(64)])

def pLayer_dec(state):
    """Permutation layer for decryption

    Input:  64-bit integer
    Output: 64-bit integer"""

    return sum ([((state >> i) & 1) << PBox_inv[i] for i in xrange(64)])

def lLayer(state):
    """Perform the L layer:
    * P (permutation)
    * L0 .. L3 on all four 16-bit substrings
    * P_inv (permutation inverse)

    Input:  the current state, as raw string
    Output: the new state, as an raw string"""

    state = pLayer(state)
    state = (matrixMultiply(L0, (state >> 48) & 0xffff) << 48) + (
        matrixMultiply(L1, (state >> 32) & 0xffff) << 32) + (
        matrixMultiply(L2, (state >> 16) & 0xffff) << 16) + (
        matrixMultiply(L3, state & 0xffff))
    return pLayer_dec(state)

def lLayer_dec(state):
    """L layer for decryption:
    * P (permutation)
    * L0_inv .. L3_inv multiplication on the four 16-bit substrings, respectively
    * P_inv (permutation inverse)

    Input:  the current state, as raw string
    Output: the new state, as raw string"""

    state = pLayer(state)
    state = (matrixMultiply(L0_inv, (state >> 48) & 0xffff) << 48) + (
        matrixMultiply(L1_inv, (state >> 32) & 0xffff) << 32) + (
        matrixMultiply(L2_inv, (state >> 16) & 0xffff) << 16) + (
        matrixMultiply(L3_inv, state & 0xffff))
    return pLayer_dec(state)

def string2number(i):
    """ Convert a string to a number

    Input: string (big-endian)
    Output: long or integer
    """
    return int(i.encode('hex'), 16)

def number2string_N(i, N):
    """Convert a number to a string of fixed size

    i: long or integer
    N: length of string
    Output: string (big-endian)
    """
    s = '%0*x' % (N*2, i)
    return s.decode('hex')