1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
/*
module owner: Ronny Wichers Schreur
*/
implementation module typereify
import checksupport
import typesupport
// import StdDebug
typeFunName :: Ident -> {#Char}
typeFunName {id_name}
= "TD;" +++ id_name
class makeTypeFun a :: Ident Position SymbolType *VarHeap *SymbolTable
-> (a, *VarHeap, *SymbolTable)
instance makeTypeFun FunDef where
makeTypeFun ident position symbol_type var_heap symbol_table
= (function, var_heap, symbol_table)
where
function =
{ fun_ident = ident
, fun_arity = 1
, fun_priority = NoPrio
, fun_body = GeneratedBody
, fun_type = Yes symbol_type
, fun_pos = position
, fun_kind = FK_Function False
, fun_lifted = 0
, fun_info = EmptyFunInfo
}
instance makeTypeFun FunType where
makeTypeFun ident position symbol_type var_heap symbol_table
# (entry, symbol_table)
= readPtr ident.id_info symbol_table
# entry
= { entry & ste_kind = STE_DclFunction}
# symbol_table
= writePtr ident.id_info entry symbol_table
# (ft_type_ptr, var_heap)
= newPtr VI_Empty var_heap
= ({ ft_ident = ident
, ft_arity = 1
, ft_priority = NoPrio
, ft_type = symbol_type
, ft_pos = position
, ft_specials = SP_None
, ft_type_ptr = ft_type_ptr
}, var_heap, symbol_table)
class isTypeSynonym a :: a -> Bool
instance isTypeSynonym (TypeDef a) | isTypeSynonym a where
isTypeSynonym {td_rhs}
= isTypeSynonym td_rhs
// Currently type functions are generated for all types, including type
// synonyms. This should be changed to only type synonyms that are abstract.
instance isTypeSynonym TypeRhs where
isTypeSynonym (AlgType _)
= False
isTypeSynonym (RecordType _)
= False
isTypeSynonym (AbstractType _)
= False
isTypeSynonym (SynType _)
= False
isTypeSynonym (AbstractSynType _ _)
= False
add_dcl_type_fun_types :: TypeSymbIdent Int *{#DclModule} *VarHeap *SymbolTable
-> (*{#DclModule}, *VarHeap, *SymbolTable)
add_dcl_type_fun_types ctTypeDefSymb add_dcl_type_fun_types dcl_mods var_heap symbols
# (n, dcl_mods)
= usize dcl_mods
= add_type_fun_types add_dcl_type_fun_types n ctTypeDefSymb dcl_mods var_heap symbols
where
add_type_fun_types :: Int Int TypeSymbIdent *{#DclModule} *VarHeap *SymbolTable
-> (*{#DclModule}, *VarHeap, *SymbolTable)
add_type_fun_types i n ctTypeDefSymb dcl_mods var_heap symbols
| i >= n
= (dcl_mods, var_heap, symbols)
| i == cPredefinedModuleIndex
= add_type_fun_types (i+1) n ctTypeDefSymb dcl_mods var_heap symbols
// otherwise
# (dcl_mod, dcl_mods)
= dcl_mods![i]
# (dcl_mod, var_heap, symbols)
= add_fun_types ctTypeDefSymb dcl_mod var_heap symbols
# dcl_mods
= {dcl_mods & [i] = dcl_mod}
= add_type_fun_types (i+1) n ctTypeDefSymb dcl_mods var_heap symbols
add_fun_types :: TypeSymbIdent DclModule *VarHeap *SymbolTable
-> (DclModule, *VarHeap, *SymbolTable)
add_fun_types ctTypeDefSymb
dcl_mod=:{dcl_name, dcl_functions, dcl_common={com_type_defs}}
var_heap symbols
# n_functions
= size dcl_functions
# (type_funs, com_type_defs, var_heap, symbols)
= addTypeFunctionsA dcl_name n_functions ctTypeDefSymb
{def \\ def <-: com_type_defs} var_heap symbols
# dcl_functions
= {function \\ function <- [e \\ e <-: dcl_functions] ++ type_funs}
# dcl_type_funs
= {ir_from = n_functions, ir_to = size dcl_functions}
# dcl_mod
= { dcl_mod
& dcl_functions = dcl_functions
, dcl_common.com_type_defs = com_type_defs
, dcl_type_funs = dcl_type_funs
}
= (dcl_mod, var_heap, symbols)
addTypeFunctions :: Ident Int *{#DclModule} *{#FunDef} *CommonDefs *PredefinedSymbols *VarHeap *SymbolTable
-> (IndexRange, *{#DclModule}, *{#FunDef}, *CommonDefs, *PredefinedSymbols, *VarHeap, *SymbolTable)
addTypeFunctions mod_ident nr_cached_dcls dcl_modules icl_functions icl_common
predefs var_heap symbols
# (ctTypeDefSymb, predefs)
= getCTTypeDefSymb predefs
with
getCTTypeDefSymb predefs
# ({pds_module, pds_def}, predefs)
= predefs![PD_CTTypeDef]
# ident
= predefined_idents.[PD_CTTypeDef]
# type_symb
= { MakeNewTypeSymbIdent ident 0
& type_index.glob_module = pds_module
, type_index.glob_object = pds_def
}
= (type_symb, predefs)
# (dcl_modules, var_heap, symbols)
= add_dcl_type_fun_types ctTypeDefSymb nr_cached_dcls dcl_modules var_heap symbols
# (icl_type_fun_range, icl_functions, icl_common, var_heap, symbols)
= add_icl_type_functions icl_functions ctTypeDefSymb icl_common var_heap symbols
with
add_icl_type_functions :: *{#FunDef} TypeSymbIdent *CommonDefs *VarHeap *SymbolTable
-> (IndexRange, *{#FunDef}, *CommonDefs, *VarHeap, *SymbolTable)
add_icl_type_functions icl_functions ctTypeDefSymb icl_common=:{com_type_defs} var_heap symbols
# (n_functions_before, icl_functions)
= usize icl_functions
# (type_funs, com_type_defs, var_heap, symbols)
= addTypeFunctionsA mod_ident n_functions_before ctTypeDefSymb com_type_defs var_heap symbols
# icl_common
= {icl_common & com_type_defs=com_type_defs}
# icl_functions
= {function \\ function <- [e \\ e <-: icl_functions] ++ type_funs}
# (n_functions_after, icl_functions)
= usize icl_functions
# type_fun_range
= {ir_from=n_functions_before,ir_to=n_functions_after}
= (type_fun_range, icl_functions, icl_common, var_heap, symbols)
# (nr_of_functions, icl_functions)
= usize icl_functions
= (icl_type_fun_range, dcl_modules, icl_functions, icl_common, predefs, var_heap, symbols)
getSymbol :: Index ((Global Index) -> SymbKind) *PredefinedSymbols -> (SymbIdent, !*PredefinedSymbols)
getSymbol index symb_kind predef_symbols
# ({pds_module, pds_def}, predef_symbols) = predef_symbols![index]
# pds_ident = predefined_idents.[index]
symbol = { symb_ident = pds_ident, symb_kind = symb_kind { glob_module = pds_module, glob_object = pds_def} }
= (symbol, predef_symbols)
predefFunction :: Index *PredefinedSymbols -> (SymbIdent, !*PredefinedSymbols)
predefFunction cons_index predefs
= getSymbol cons_index SK_Function predefs
predefConstructor :: Index *PredefinedSymbols -> (SymbIdent, !*PredefinedSymbols)
predefConstructor cons_index predefs
= getSymbol cons_index SK_Constructor predefs
predefRecordConstructor :: Index {#CommonDefs} *PredefinedSymbols -> (SymbIdent, !*PredefinedSymbols)
predefRecordConstructor record_type_index common_defs predefs
# ({pds_module=pds_module1, pds_def=pds_def1}, predefs)
= predefs![record_type_index]
# {td_rhs=RecordType {rt_constructor,rt_fields}} = common_defs.[pds_module1].com_type_defs.[pds_def1]
# record_cons_symbol
= {glob_module = pds_module1, glob_object = rt_constructor}
# dynamic_type = {glob_module = pds_module1, glob_object = pds_def1}
# record_cons_symb_ident
= { SymbIdent |
symb_ident = rt_constructor.ds_ident
, symb_kind = SK_Constructor {glob_module = pds_module1, glob_object = rt_constructor.ds_index}
}
= (record_cons_symb_ident, predefs)
:: BuildTypeFunState =
!{ bs_predefs :: !.PredefinedSymbols
, bs_type_heaps :: .TypeHeaps
, bs_var_heap :: .VarHeap
}
buildTypeFunctions :: !Int !*{#FunDef} !{#CommonDefs}
*PredefinedSymbols *VarHeap *TypeHeaps
-> (*{#FunDef}, *PredefinedSymbols, *VarHeap, *TypeHeaps)
buildTypeFunctions main icl_functions common_defs predefs var_heap type_heaps
# bs_state =
{ bs_predefs = predefs
, bs_var_heap = var_heap
, bs_type_heaps = type_heaps
}
# type_defs
= common_defs.[main].com_type_defs
# (type_funs, bs_state)
= build 0 (size type_defs) type_defs icl_functions bs_state
= (type_funs, bs_state.bs_predefs, bs_state.bs_var_heap,
bs_state.bs_type_heaps)
where
build i n type_defs functions bs_state
| i < n
# info =
{ ri_main = main
, ri_common_defs = common_defs
, ri_type_var_num = 0
}
# (functions, bs_state)
= buildTypeFunction type_defs.[i] functions info bs_state
= build (i+1) n type_defs functions bs_state
// otherwise
= (functions, bs_state)
buildTypeFunction :: CheckedTypeDef *{#FunDef} Info *BuildTypeFunState
-> (*{#FunDef}, *BuildTypeFunState)
buildTypeFunction type_def=:{td_fun_index, td_args} functions info bs_state
| td_fun_index == NoIndex
= (functions, bs_state)
// otherwise
# (rhs, bs_state)
= numberTypeVarsBeforeRiefy td_args (reify type_def) info bs_state
# (new_info_ptr, bs_var_heap) = newPtr VI_Empty bs_state.bs_var_heap
# bs_state
= {bs_state & bs_var_heap=bs_var_heap}
# var_id
= {id_name = "_x", id_info = nilPtr}
lhs_free_var
= {fv_def_level = NotALevel, fv_ident = var_id,
fv_info_ptr = new_info_ptr, fv_count = 0}
# body
= {tb_args = [lhs_free_var], tb_rhs = rhs}
# functions
= {functions & [td_fun_index].fun_body=TransformedBody body}
= (functions, bs_state)
numberTypeVarsBeforeRiefy :: a Riefier Info *BuildTypeFunState
-> (Expression, *BuildTypeFunState) | numberTypeVars a
numberTypeVarsBeforeRiefy vars riefier info bs_state
# bs_type_heaps
= bs_state.bs_type_heaps
# (ri_type_var_num, th_vars)
= numberTypeVars vars (info.ri_type_var_num, bs_type_heaps.th_vars)
# bs_type_heaps
= {bs_type_heaps & th_vars = th_vars}
# bs_state
= {bs_state & bs_type_heaps = bs_type_heaps}
# (expr, bs_state)
= riefier {info & ri_type_var_num=ri_type_var_num} bs_state
= (expr, bs_state)
class numberTypeVars a :: a (!Int, !*TypeVarHeap) -> (!Int, !*TypeVarHeap)
instance numberTypeVars [a] | numberTypeVars a where
numberTypeVars l h
= foldSt numberTypeVars l h
instance numberTypeVars ATypeVar where
numberTypeVars {atv_variable} h
= numberTypeVars atv_variable h
instance numberTypeVars TypeVar where
numberTypeVars {tv_info_ptr} (n, h)
= (n+1, writePtr tv_info_ptr (TVI_Reify n) h)
addTypeFunctionsA :: Ident Int TypeSymbIdent *{#CheckedTypeDef} *VarHeap *SymbolTable
-> ([a], *{#CheckedTypeDef}, *VarHeap, *SymbolTable) | makeTypeFun a
addTypeFunctionsA mod first_td_fun_index ct_type_def type_defs var_heap symbol_table
= add_td_fun_defs first_td_fun_index ct_type_def type_defs var_heap symbol_table
where
add_td_fun_defs :: Int TypeSymbIdent *{#CheckedTypeDef} *VarHeap *SymbolTable
-> ([a], *{#CheckedTypeDef}, *VarHeap, *SymbolTable) | makeTypeFun a
add_td_fun_defs type_fun_index ct_type_def type_defs var_heap symbol_table
# (n, type_defs)
= usize type_defs
= add_td_funs_acc 0 n type_fun_index ct_type_def type_defs [] var_heap symbol_table
add_td_funs_acc :: Int Int Int TypeSymbIdent *{#CheckedTypeDef} [a] *VarHeap *SymbolTable
-> ([a], *{#CheckedTypeDef}, *VarHeap, *SymbolTable) | makeTypeFun a
add_td_funs_acc i n index ct_type_def type_defs rev_type_fun_defs var_heap symbol_table
| i >= n
= (reverse rev_type_fun_defs, type_defs, var_heap, symbol_table)
// otherwise
# (type_def, type_defs)
= type_defs![i]
| isTypeSynonym type_def || is_dictionary type_def
= add_td_funs_acc (i+1) n index ct_type_def type_defs rev_type_fun_defs var_heap symbol_table
// otherwise
# (type_fun_def, var_heap, symbol_table)
= add_td_fun_def index ct_type_def type_def var_heap symbol_table
# type_defs
= {type_defs & [i].td_fun_index = index}
# rev_type_fun_defs
= [type_fun_def : rev_type_fun_defs]
= add_td_funs_acc (i+1) n (index+1) ct_type_def type_defs rev_type_fun_defs var_heap symbol_table
is_dictionary {td_ident} // FIXME, fragile
= name.[size name - 1] == ';'
where
name
= td_ident.id_name
add_td_fun_def :: Int TypeSymbIdent CheckedTypeDef *VarHeap *SymbolTable
-> (a, *VarHeap, *SymbolTable) | makeTypeFun a
add_td_fun_def index ct_type_def type_def=:{td_ident, td_pos} var_heap symbol_table
# entry
= { ste_kind = STE_Empty
, ste_index = index
, ste_def_level = -1
, ste_previous = EmptySymbolTableEntry
}
# (fun_ident, symbol_table)
= newPtr entry symbol_table
# type_fun_ident
= {id_name=typeFunName td_ident, id_info=fun_ident}
# ident = predefined_idents.[PD_CTTypeDef]
# type_symb = ct_type_def
# result_type
= TA ct_type_def []
# symbol_type =
{ st_vars = []
, st_args = [{at_attribute= TA_None, at_type = TB BT_Bool}]
, st_args_strictness = NotStrict
, st_arity = 1
, st_result = {at_attribute = TA_None, at_type = result_type}
, st_context = []
, st_attr_vars = []
, st_attr_env = []
}
= makeTypeFun type_fun_ident td_pos symbol_type var_heap symbol_table
:: ExpressionM :== BMonad Expression
:: BMonad a :== *BuildTypeFunState -> *(a, *BuildTypeFunState)
apply :: Expression Expression -> Expression
apply (App app=:{app_args}) a
= App {app & app_args = app_args ++ [a]}
apply f a
= f @ [a]
lift symb
= return (App {app_symb = symb, app_args = [], app_info_ptr = nilPtr})
cons :: Index Info *BuildTypeFunState
-> *(Expression, *BuildTypeFunState)
cons cons_index info bs=:{bs_predefs}
# (symbol, bs_predefs)
= getSymbol cons_index SK_Constructor bs_predefs
= lift symbol {bs & bs_predefs=bs_predefs}
record :: Index Info *BuildTypeFunState
-> *(Expression, *BuildTypeFunState)
record type_index info=:{ri_common_defs} bs=:{bs_predefs}
# (symbol, bs_predefs)
= predefRecordConstructor type_index ri_common_defs bs_predefs
= lift symbol {bs & bs_predefs=bs_predefs}
quote :: {#Char} -> {#Char}
quote string
= "\"" +++ string +++ "\""
(o`) infixr 9
(o`) f g info x :== g info (f info x)
function :: Index Info *BuildTypeFunState
-> *(Expression, *BuildTypeFunState)
function fun_index info bs=:{bs_predefs}
# (symbol, bs_predefs)
= getSymbol fun_index SK_Function bs_predefs
= lift symbol {bs & bs_predefs=bs_predefs}
(`) infixl 9
(`) f a info state
# (rf, state)
= f info state
# (ra, state)
= reify a info state
= (apply rf ra, state)
:: Info =
{ ri_main :: !Int
, ri_common_defs :: !{#CommonDefs}
, ri_type_var_num :: !Int
}
:: Riefier :== Info -> BMonad Expression
class reify a :: a -> Riefier
instance reify [a] | reify a where
reify []
= cons PD_NilSymbol
reify [h:t]
= cons PD_ConsSymbol ` h ` t
instance reify Int where
reify int
= basic (BVInt int)
instance reify Bool where
reify bool
= basic (BVB bool)
instance reify {#Char} where
reify string
= basic (BVS string)
instance reify CheckedTypeDef where
reify {td_ident, td_arity, td_attribute, td_rhs}
= record PD_CTTypeDef ` quote td_ident.id_name ` td_arity
` is_unq_attribute td_attribute ` td_rhs
where
is_unq_attribute (TA_Var _)
= False
is_unq_attribute TA_Unique
= True
instance reify TypeRhs where
reify (AlgType constructors)
= cons PD_CTAlgType ` get constructors
where
get constructors info=:{ri_main, ri_common_defs} state
= reify [(ds_index,common_defs.[ds_index]) \\ {ds_index} <- constructors] info state
where
common_defs
= ri_common_defs.[ri_main].com_cons_defs
reify (RecordType record_type)
= reify record_type
reify (SynType _)
= cons PD_CTSynType
instance reify (Int, ConsDef) where
reify (cons_index, {cons_ident, cons_type, cons_exi_vars})
= numberTypeVarsBeforeRiefy cons_exi_vars
(record PD_CTConsDef
` (function PD__CTToCons ` consSymbol cons_ident cons_index)
` cons_type.st_args ` length cons_exi_vars)
where
consSymbol cons_ident cons_index info=:{ri_main} state
# cons_symb =
{ symb_ident = cons_ident
, symb_kind = SK_Constructor { glob_module = ri_main, glob_object = cons_index}
}
= reify cons_symb info state
instance reify RecordType where
reify {rt_fields} // +++ constructor ??? +++ is_boxed
= cons PD_CTRecordType ` [field \\ field <-: rt_fields]
instance reify FieldSymbol where
reify {fs_index}
= selector fs_index
where
selector fs_index info=:{ri_main,ri_common_defs} st
= (numberTypeVarsBeforeRiefy vars
(record PD_CTFieldDef
` quote def.sd_ident.id_name
` length (def.sd_exi_vars)
` def.sd_type.st_result))
info st
where
def
= ri_common_defs.[ri_main]
.com_selector_defs.[fs_index]
vars
= [atv_variable \\ {atv_variable} <- def.sd_exi_vars]
++ def.sd_type.st_vars
instance reify AType where
reify {at_type}
= reify at_type
instance reify Riefier where
reify x
= x
instance reify Type where
reify type=:(TA symb args)
= reifyApp symb args
reify type=:(TAS symb args _)
= reifyApp symb args
reify (TV var)
= reify var
reify (TQV var)
= reify var
reify (a :@: args)
= foldl` reifyApply (reify a) args
reify TArrow
= cons PD_Dyn_TypeCons ` function PD_Dyn_TypeCodeConstructor_Arrow
reify (TArrow1 a)
= cons PD_Dyn_TypeApp `
(cons PD_Dyn_TypeCons ` function PD_Dyn_TypeCodeConstructor_Arrow) ` a
reify (a --> b)
= cons PD_Dyn_TypeApp ` (cons PD_Dyn_TypeApp `
(cons PD_Dyn_TypeCons ` function PD_Dyn_TypeCodeConstructor_Arrow) ` a) ` b
reify (TB basic_type)
= reify basic_type
reify (TFA vars type)
= numberTypeVarsBeforeRiefy vars (reify type)
reify t
= undef // <<- ("reify", t)
reifyApp :: TypeSymbIdent [AType] Info *BuildTypeFunState
-> (Expression, *BuildTypeFunState)
reifyApp symb args info=:{ri_common_defs} bs_state=:{bs_type_heaps}
# (expanded, expanded_type, bs_type_heaps)
= expandTypeSynonym ri_common_defs symb args bs_type_heaps
# bs_state
= {bs_state & bs_type_heaps=bs_type_heaps}
| expanded
= reify expanded_type info bs_state
// otherwise
= foldl` reifyApply (reify symb) args info bs_state
foldl` op r l = foldl r l // crashes if it's a macro
where
foldl r [] = r
foldl r [a:x] = foldl (op r a) x
reifyApply a h
= cons PD_Dyn_TypeApp ` a ` h
instance reify ConsVariable where
reify (CV var)
= reify var
instance reify TypeVar where
reify {tv_info_ptr, tv_ident}
= cons PD_Dyn_TypeVar ` typeVarNum tv_info_ptr
where
typeVarNum tv_info_ptr info bs=:{bs_type_heaps}
# (tv_info, th_vars)
= readPtr tv_info_ptr bs_type_heaps.th_vars
# tv_num
= case tv_info of
TVI_Reify tv_num
-> tv_num
_
-> abort "typeVar" // <<- (tv_ident.id_name, tv_info)
# bs_type_heaps
= {bs_type_heaps & th_vars = th_vars}
= reify tv_num info {bs & bs_type_heaps = bs_type_heaps}
instance reify BasicType where
reify (BT_String string_type)
= reify string_type
reify basic_type
= cons PD_Dyn_TypeCons ` function (predef basic_type)
where
predef BT_Int
= PD_Dyn_TypeCodeConstructorInt
predef BT_Char
= PD_Dyn_TypeCodeConstructorChar
predef BT_Real
= PD_Dyn_TypeCodeConstructorReal
predef BT_Bool
= PD_Dyn_TypeCodeConstructorBool
predef BT_Dynamic
= PD_Dyn_TypeCodeConstructorDynamic
predef BT_File
= PD_Dyn_TypeCodeConstructorFile
predef BT_World
= PD_Dyn_TypeCodeConstructorWorld
instance reify SymbIdent where
reify symb
= reify {app_symb = symb, app_args = [], app_info_ptr = nilPtr}
instance reify TypeSymbIdent where
reify symb
= cons PD_Dyn_TypeCons ` reifyTypeIdent symb
where
reifyTypeIdent {type_index} info=:{ri_common_defs} st
= reify (toTypeCodeConstructor type_index ri_common_defs) info st
instance reify GlobalTCType where
reify (GTT_PredefTypeConstructor {glob_object=type_index})
| PD_Arity2TupleTypeIndex <= type_index && type_index <= PD_Arity32TupleTypeIndex
# arity
= type_index - PD_Arity2TupleTypeIndex + 2
= function PD_Dyn_TypeCodeConstructor_Tuple ` arity
// otherwise
# predef_type_index
= type_index + FirstTypePredefinedSymbolIndex
= function (predefinedTypeConstructor predef_type_index)
reify (GTT_Constructor type_fun)
= function PD_Dyn__to_TypeCodeConstructor ` type_fun
predefinedTypeConstructor predef_type_index
| predef_type_index == PD_ListType
= PD_Dyn_TypeCodeConstructor_List
| predef_type_index == PD_StrictListType
= PD_Dyn_TypeCodeConstructor_StrictList
| predef_type_index == PD_UnboxedListType
= PD_Dyn_TypeCodeConstructor_UnboxedList
| predef_type_index == PD_TailStrictListType
= PD_Dyn_TypeCodeConstructor_TailStrictList
| predef_type_index == PD_StrictTailStrictListType
= PD_Dyn_TypeCodeConstructor_StrictTailStrictList
| predef_type_index == PD_UnboxedTailStrictListType
= PD_Dyn_TypeCodeConstructor_UnboxedTailStrictList
| predef_type_index == PD_LazyArrayType
= PD_Dyn_TypeCodeConstructor_LazyArray
| predef_type_index == PD_StrictArrayType
= PD_Dyn_TypeCodeConstructor_StrictArray
| predef_type_index == PD_UnboxedArrayType
= PD_Dyn_TypeCodeConstructor_UnboxedArray
// otherwise
= fatal "predefinedType" "TC code from predef"
instance reify App where
reify app
= reify (App app)
instance reify Expression where
reify expr
= \x -> return expr
basic :: BasicValue -> Riefier
basic value
= \x -> return (BasicExpr value)
// copied and adopted from overloading
toTypeCodeConstructor type=:{glob_object=type_index, glob_module=module_index} common_defs
| module_index == cPredefinedModuleIndex
= GTT_PredefTypeConstructor type
// otherwise
# type
= common_defs.[module_index].com_type_defs.[type_index]
# td_fun_index
= type.td_fun_index
// sanity check ...
| td_fun_index == NoIndex
= fatal "toTypeCodeConstructor" ("no function (" +++ type.td_ident.id_name +++ ")")
// ... sanity check
# type_fun
= { symb_ident = {type.td_ident & id_info = nilPtr} // this is wrong but let's give it a try
, symb_kind = SK_Function {glob_module = module_index, glob_object = td_fun_index}
}
= GTT_Constructor type_fun
fatal :: {#Char} {#Char} -> .a
fatal function_name message
= abort ("typereflection, " +++ function_name +++ ": " +++ message)
expandTypeSynonym :: {#CommonDefs} TypeSymbIdent [AType] *TypeHeaps
-> (Bool, Type, *TypeHeaps)
expandTypeSynonym defs cons_id type_args type_heaps
# {type_ident,type_index={glob_object,glob_module}}
= cons_id
# {td_ident,td_rhs,td_args,td_attribute}
= defs.[glob_module].com_type_defs.[glob_object]
= case td_rhs of
SynType {at_type}
# (expanded_type, type_heaps)
= substituteType td_attribute TA_Multi td_args type_args
at_type type_heaps
-> (True, expanded_type, type_heaps)
_
-> (False, undef, type_heaps)
sanityCheckTypeFunctions :: !Int !CommonDefs !{#DclModule} !{#FunDef}
-> Bool
sanityCheckTypeFunctions main_dcl icl_common dcl_mods fun_defs
= checkType {def.fun_ident.id_name \\ def <-: fun_defs} icl_common
&& all checkDcl [dcl \\ dcl <-: dcl_mods]
&& compareTypes icl_common dcl_mods.[main_dcl].dcl_common
where
checkDcl :: DclModule -> Bool
checkDcl {dcl_functions, dcl_common}
= checkType {f.ft_ident.id_name \\ f <-: dcl_functions} dcl_common
class checkType a :: {{#Char}} a -> Bool
instance checkType CommonDefs where
checkType names {com_type_defs}
= checkType names com_type_defs
instance checkType (a e) | Array a e & checkType e where
checkType names a
= all (checkType names) [e \\ e <-: a]
instance checkType (TypeDef a) where
checkType names {td_ident, td_fun_index}
| td_fun_index == NoIndex
= True
| names.[td_fun_index] == typeFunName td_ident
= True
// otherwise
= False // ->> (names.[td_fun_index], "<>", typeFunName td_ident)
class compareTypes a :: a a -> Bool
instance compareTypes CommonDefs where
compareTypes a b
= compareTypes a.com_type_defs b.com_type_defs
instance compareTypes (a e) | Array a e & compareTypes e where
compareTypes a b
= and [compareTypes ea eb \\ ea <-: a & eb <-: b]
instance compareTypes (TypeDef a) where
compareTypes a b
| a.td_fun_index == b.td_fun_index
= True
// otherwise
= False // ->> (a.td_ident.id_name, a.td_fun_index, "<>",
// b.td_ident.id_name, b.td_fun_index)
|