1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
|
implementation module transform
import syntax, check, StdCompare, utilities, RWSDebug
:: LiftState =
{ ls_var_heap :: !.VarHeap
, ls_fun_defs :: !.{#FunDef}
, ls_expr_heap :: !.ExpressionHeap
}
class lift a :: !a !*LiftState -> (!a, !*LiftState)
instance lift [a] | lift a
where
lift l ls = mapSt lift l ls
instance lift (a,b) | lift a & lift b
where
lift t ls = app2St (lift,lift) t ls
instance lift (Optional a) | lift a
where
lift (Yes x) ls
# (x, ls) = lift x ls
= (Yes x, ls)
lift no ls
= (no, ls)
instance lift Expression
where
lift (FreeVar {fv_name,fv_info_ptr}) ls=:{ls_var_heap}
#! var_info = sreadPtr fv_info_ptr ls_var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
_
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
lift (App app) ls
# (app, ls) = lift app ls
= (App app, ls)
lift (expr @ exprs) ls
# ((expr,exprs), ls) = lift (expr,exprs) ls
= (expr @ exprs, ls)
lift (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) ls
# (let_strict_binds, ls) = lift let_strict_binds ls
(let_lazy_binds, ls) = lift let_lazy_binds ls
(let_expr, ls) = lift let_expr ls
= (Let {lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr}, ls)
lift (Case case_expr) ls
# (case_expr, ls) = lift case_expr ls
= (Case case_expr, ls)
lift (Selection is_unique expr selectors) ls
# (selectors, ls) = lift selectors ls
(expr, ls) = lift expr ls
= (Selection is_unique expr selectors, ls)
lift (Update expr1 selectors expr2) ls
# (selectors, ls) = lift selectors ls
(expr1, ls) = lift expr1 ls
(expr2, ls) = lift expr2 ls
= (Update expr1 selectors expr2, ls)
lift (RecordUpdate cons_symbol expression expressions) ls
# (expression, ls) = lift expression ls
(expressions, ls) = lift expressions ls
= (RecordUpdate cons_symbol expression expressions, ls)
lift (TupleSelect symbol argn_nr expr) ls
# (expr, ls) = lift expr ls
= (TupleSelect symbol argn_nr expr, ls)
lift (Lambda vars expr) ls
# (expr, ls) = lift expr ls
= (Lambda vars expr, ls)
lift (MatchExpr opt_tuple cons_symb expr) ls
# (expr, ls) = lift expr ls
= (MatchExpr opt_tuple cons_symb expr, ls)
lift expr ls
= (expr, ls)
instance lift Selection
where
lift (ArraySelection array_select expr_ptr index_expr) ls
# (index_expr, ls) = lift index_expr ls
= (ArraySelection array_select expr_ptr index_expr, ls)
lift record_selection ls
= (record_selection, ls)
instance lift App
where
lift app=:{app_symb = app_symbol=:{symb_arity,symb_kind = SK_Function {glob_object,glob_module}}, app_args} ls
# (app_args, ls) = lift app_args ls
| glob_module == cIclModIndex
#! fun_def = ls.ls_fun_defs.[glob_object]
# {fun_info={fi_free_vars}} = fun_def
fun_lifted = length fi_free_vars
| fun_lifted > 0
# (app_args, ls_var_heap, ls_expr_heap) = add_free_variables fi_free_vars app_args ls.ls_var_heap ls.ls_expr_heap
= ({ app & app_args = app_args, app_symb = { app_symbol & symb_arity = symb_arity + fun_lifted }},
{ ls & ls_var_heap = ls_var_heap, ls_expr_heap = ls_expr_heap })
= ({ app & app_args = app_args }, ls)
= ({ app & app_args = app_args }, ls)
where
add_free_variables :: ![FreeVar] ![Expression] !u:VarHeap !*ExpressionHeap -> (![Expression],!u:VarHeap,!*ExpressionHeap)
add_free_variables [] app_args var_heap expr_heap
= (app_args, var_heap, expr_heap)
add_free_variables [{fv_name, fv_info_ptr} : free_vars] app_args var_heap expr_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
_
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
lift app=:{app_args} ls
# (app_args, ls) = lift app_args ls
= ({ app & app_args = app_args }, ls)
instance lift (Bind a b) | lift a
where
lift bind=:{bind_src} ls
# (bind_src, ls) = lift bind_src ls
= ({ bind & bind_src = bind_src }, ls)
instance lift Case
where
lift kees=:{ case_expr,case_guards,case_default } ls
# ((case_expr,(case_guards,case_default)), ls) = lift (case_expr,(case_guards,case_default)) ls
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, ls)
instance lift CasePatterns
where
lift (AlgebraicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (AlgebraicPatterns type patterns, ls)
lift (BasicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (BasicPatterns type patterns, ls)
lift (DynamicPatterns patterns) ls
# (patterns, ls) = lift patterns ls
= (DynamicPatterns patterns, ls)
instance lift AlgebraicPattern
where
lift pattern=:{ap_expr} ls
# (ap_expr, ls) = lift ap_expr ls
= ({ pattern & ap_expr = ap_expr }, ls)
instance lift BasicPattern
where
lift pattern=:{bp_expr} ls
# (bp_expr, ls) = lift bp_expr ls
= ({ pattern & bp_expr = bp_expr }, ls)
instance lift DynamicPattern
where
lift pattern=:{dp_rhs} ls
# (dp_rhs, ls) = lift dp_rhs ls
= ({ pattern & dp_rhs = dp_rhs }, ls)
:: UnfoldState =
{ us_var_heap :: !.VarHeap
, us_symbol_heap :: !.ExpressionHeap
, us_opt_type_heaps :: !.Optional .TypeHeaps
, us_cleanup_info :: ![ExprInfoPtr]
, us_handle_aci_free_vars :: !AciFreeVarHandleMode
}
:: AciFreeVarHandleMode = LeaveThem | RemoveThem | SubstituteThem
class unfold a :: !a !*UnfoldState -> (!a, !*UnfoldState)
instance unfold [a] | unfold a
where
unfold l us = mapSt unfold l us
instance unfold (a,b) | unfold a & unfold b
where
unfold t us = app2St (unfold,unfold) t us
instance unfold (Optional a) | unfold a
where
unfold (Yes x) us
# (x, us) = unfold x us
= (Yes x, us)
unfold no us
= (no, us)
unfoldVariable :: !BoundVar !*UnfoldState -> (!Expression, !*UnfoldState)
unfoldVariable var=:{var_name,var_info_ptr} us
#! (var_info, us) = readVarInfo var_info_ptr us
= case var_info of
VI_Expression expr
-> (expr, us)
VI_Variable var_name var_info_ptr
# (var_expr_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
-> (Var {var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr}, { us & us_symbol_heap = us_symbol_heap})
VI_Body fun_symb _ vars
-> (App { app_symb = fun_symb,
app_args = [ Var { var_name=fv_name, var_info_ptr=fv_info_ptr, var_expr_ptr=nilPtr }
\\ {fv_name,fv_info_ptr}<-vars],
app_info_ptr = nilPtr }, us)
VI_Dictionary app_symb app_args class_type
# (new_class_type, us_opt_type_heaps) = substitute_class_types class_type us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr (EI_DictionaryType new_class_type) us.us_symbol_heap
-> (App { app_symb = app_symb, app_args = app_args, app_info_ptr = new_info_ptr },
{ us & us_opt_type_heaps = us_opt_type_heaps, us_symbol_heap = us_symbol_heap })
_
-> (Var var, us)
where
substitute_class_types class_types no=:No
= (class_types, no)
substitute_class_types class_types (Yes type_heaps)
# (new_class_types, type_heaps) = substitute class_types type_heaps
= (new_class_types, Yes type_heaps)
readVarInfo var_info_ptr us
#! var_info = sreadPtr var_info_ptr us.us_var_heap
= case var_info of
VI_Extended _ original -> (original, us)
_ -> (var_info, us)
writeVarInfo :: VarInfoPtr VarInfo *VarHeap -> *VarHeap
writeVarInfo var_info_ptr new_var_info var_heap
# (old_var_info, var_heap) = readPtr var_info_ptr var_heap
= case old_var_info of
VI_Extended extensions _ -> writePtr var_info_ptr (VI_Extended extensions new_var_info) var_heap
_ -> writePtr var_info_ptr new_var_info var_heap
instance unfold Expression
where
unfold (Var var) us
= unfoldVariable var us
unfold (App app) us
# (app, us) = unfold app us
= (App app, us)
unfold (expr @ exprs) us
# ((expr,exprs), us) = unfold (expr,exprs) us
= (expr @ exprs, us)
unfold (Let lad) us
# (lad, us) = unfold lad us
= (Let lad, us)
unfold (Case case_expr) us
# (case_expr, us) = unfold case_expr us
= (Case case_expr, us)
unfold (Selection is_unique expr selectors) us
# ((expr, selectors), us) = unfold (expr, selectors) us
= (Selection is_unique expr selectors, us)
unfold (Update expr1 selectors expr2) us
# (((expr1, expr2), selectors), us) = unfold ((expr1, expr2), selectors) us
= (Update expr1 selectors expr2, us)
unfold (RecordUpdate cons_symbol expression expressions) us
# ((expression, expressions), us) = unfold (expression, expressions) us
= (RecordUpdate cons_symbol expression expressions, us)
unfold (TupleSelect symbol argn_nr expr) us
# (expr, us) = unfold expr us
= (TupleSelect symbol argn_nr expr, us)
unfold (Lambda vars expr) us
# (expr, us) = unfold expr us
= (Lambda vars expr, us)
unfold (MatchExpr opt_tuple cons_symb expr) us
# (expr, us) = unfold expr us
= (MatchExpr opt_tuple cons_symb expr, us)
unfold expr us
= (expr, us)
/* Sjaak ... */
instance unfold Selection
where
unfold (ArraySelection array_select expr_ptr index_expr) us=:{us_symbol_heap}
# (new_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
(index_expr, us) = unfold index_expr { us & us_symbol_heap = us_symbol_heap}
= (ArraySelection array_select new_ptr index_expr, us)
unfold (DictionarySelection var selectors expr_ptr index_expr) us=:{us_symbol_heap}
# (new_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
(index_expr, us) = unfold index_expr { us & us_symbol_heap = us_symbol_heap}
(var_expr, us) = unfoldVariable var us
= case var_expr of
App {app_symb={symb_kind= SK_Constructor _ }, app_args}
# [RecordSelection _ field_index:_] = selectors
(App { app_symb = {symb_name, symb_kind = SK_Function array_select}}) = app_args !! field_index
-> (ArraySelection { array_select & glob_object = { ds_ident = symb_name, ds_arity = 2, ds_index = array_select.glob_object}}
new_ptr index_expr, us)
Var var
-> (DictionarySelection var selectors new_ptr index_expr, us)
unfold record_selection ls
= (record_selection, ls)
/* ... Sjaak */
instance unfold FreeVar
where
unfold fv=:{fv_info_ptr,fv_name} us=:{us_var_heap}
# (new_info_ptr, us_var_heap) = newPtr VI_Empty us_var_heap
= ({ fv & fv_info_ptr = new_info_ptr }, { us & us_var_heap = writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) us_var_heap })
instance unfold App
where
unfold app=:{app_symb, app_args, app_info_ptr} us
# (new_info_ptr, us)
= case is_function_or_macro app_symb.symb_kind of
True # (new_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
-> (new_ptr, { us & us_symbol_heap = us_symbol_heap })
_ -> case (app_symb.symb_kind, isNilPtr app_info_ptr) of
(SK_Constructor _, False)
# (app_info, us_symbol_heap) = readPtr app_info_ptr us.us_symbol_heap
(new_app_info, us_opt_type_heaps) = substitute_EI_DictionaryType app_info us.us_opt_type_heaps
(new_ptr, us_symbol_heap) = newPtr new_app_info us_symbol_heap
-> (new_ptr, { us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps })
_ -> (nilPtr, us)
(app_args, us) = unfold app_args us
= ({ app & app_args = app_args, app_info_ptr = new_info_ptr}, us)
where
is_function_or_macro (SK_Function _)
= True
is_function_or_macro (SK_Macro _)
= True
is_function_or_macro (SK_OverloadedFunction _)
= True
is_function_or_macro _
= False
substitute_EI_DictionaryType (EI_DictionaryType class_type) (Yes type_heaps)
# (new_class_type, type_heaps) = substitute class_type type_heaps
= (EI_DictionaryType new_class_type, Yes type_heaps)
substitute_EI_DictionaryType x opt_type_heaps
= (x, opt_type_heaps)
instance unfold (Bind a b) | unfold a
where
unfold bind=:{bind_src} us
# (bind_src, us) = unfold bind_src us
= ({ bind & bind_src = bind_src }, us)
instance unfold Case
where
unfold kees=:{ case_expr,case_guards,case_default,case_info_ptr} us=:{us_cleanup_info}
# (old_case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
(new_case_info, us_opt_type_heaps) = substitute_let_or_case_type old_case_info us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr new_case_info us_symbol_heap
us_cleanup_info = case old_case_info of
EI_Extended _ _ -> [new_info_ptr:us_cleanup_info]
_ -> us_cleanup_info
us = { us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps, us_cleanup_info=us_cleanup_info }
((case_guards,case_default), us) = unfold (case_guards,case_default) us
(case_expr, us) = update_active_case_info_and_unfold case_expr new_info_ptr us
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default, case_info_ptr = new_info_ptr}, us)
where
update_active_case_info_and_unfold case_expr=:(Var {var_info_ptr}) case_info_ptr us=:{us_handle_aci_free_vars}
# (case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
us = { us & us_symbol_heap = us_symbol_heap }
= case case_info of
EI_Extended (EEI_ActiveCase aci=:{aci_free_vars}) ei
#!(new_aci_free_vars, us) = case us_handle_aci_free_vars of
LeaveThem -> (aci_free_vars, us)
RemoveThem -> (No, us)
SubstituteThem -> case aci_free_vars of
No -> (No, us)
Yes fvs # (fvs_subst, us) = mapSt unfoldBoundVar fvs us
-> (Yes fvs_subst, us)
(var_info, us_var_heap) = readPtr var_info_ptr us.us_var_heap
us = { us & us_var_heap = us_var_heap }
-> case var_info of
VI_Body fun_symb {tb_args, tb_rhs} new_aci_params
# tb_args_ptrs = [ fv_info_ptr \\ {fv_info_ptr}<-tb_args ]
(original_bindings, us_var_heap) = mapSt readPtr tb_args_ptrs us.us_var_heap
us_var_heap = fold2St bind tb_args_ptrs new_aci_params us_var_heap
(tb_rhs, us) = unfold tb_rhs { us & us_var_heap = us_var_heap }
us_var_heap = fold2St writePtr tb_args_ptrs original_bindings us.us_var_heap
new_aci = { aci & aci_params = new_aci_params, aci_opt_unfolder = Yes fun_symb, aci_free_vars = new_aci_free_vars }
new_eei = (EI_Extended (EEI_ActiveCase new_aci) ei)
us_symbol_heap = writePtr case_info_ptr new_eei us.us_symbol_heap
-> (tb_rhs, { us & us_var_heap = us_var_heap, us_symbol_heap = us_symbol_heap })
_ # new_eei = EI_Extended (EEI_ActiveCase { aci & aci_free_vars = new_aci_free_vars }) ei
us_symbol_heap = writePtr case_info_ptr new_eei us.us_symbol_heap
-> unfold case_expr { us & us_symbol_heap = us_symbol_heap }
_ -> unfold case_expr us
where
// XXX consider to store BoundVars in VI_Body
bind fv_info_ptr {fv_name=name, fv_info_ptr=info_ptr} var_heap
= writeVarInfo fv_info_ptr (VI_Expression (Var {var_name=name, var_info_ptr=info_ptr, var_expr_ptr = nilPtr})) var_heap
/*
bind ({fv_info_ptr}, var_bound_var) var_heap
= writeVarInfo fv_info_ptr (VI_Expression var_bound_var) var_heap
*/
/* update_active_case_info_and_unfold case_expr=:(Var {var_info_ptr}) case_info_ptr us
#! var_info = sreadPtr var_info_ptr us.us_var_heap
= case var_info of
VI_Body fun_symb fun_body new_aci_var_info_ptr
# (fun_body, us) = unfold fun_body us
(EI_Extended (EEI_ActiveCase aci) ei, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
new_aci = { aci & aci_var_info_ptr = new_aci_var_info_ptr, aci_opt_unfolder = Yes fun_symb }
us_symbol_heap = writePtr case_info_ptr (EI_Extended (EEI_ActiveCase new_aci) ei) us_symbol_heap
-> (fun_body, { us & us_symbol_heap = us_symbol_heap })
_ -> unfold case_expr us
*/
update_active_case_info_and_unfold case_expr _ us
= unfold case_expr us
unfoldBoundVar {var_info_ptr} us
# (VI_Expression (Var act_var), us_var_heap) = readPtr var_info_ptr us.us_var_heap
= (act_var, { us & us_var_heap = us_var_heap })
instance unfold Let
where
unfold lad=:{let_strict_binds, let_lazy_binds, let_expr, let_info_ptr} us
# (let_strict_binds, us) = copy_bound_vars let_strict_binds us
# (let_lazy_binds, us) = copy_bound_vars let_lazy_binds us
# (let_strict_binds, us) = unfold let_strict_binds us
# (let_lazy_binds, us) = unfold let_lazy_binds us
# (let_expr, us) = unfold let_expr us
(old_let_info, us_symbol_heap) = readPtr let_info_ptr us.us_symbol_heap
(new_let_info, us_opt_type_heaps) = substitute_let_or_case_type old_let_info us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr new_let_info us_symbol_heap
= ({lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr, let_info_ptr = new_info_ptr},
{ us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps })
where
copy_bound_vars [bind=:{bind_dst} : binds] us
# (bind_dst, us) = unfold bind_dst us
(binds, us) = copy_bound_vars binds us
= ([ {bind & bind_dst = bind_dst} : binds ], us)
copy_bound_vars [] us
= ([], us)
substitute_let_or_case_type expr_info No
= (expr_info, No)
substitute_let_or_case_type (EI_Extended extensions expr_info) yes_type_heaps
# (new_expr_info, yes_type_heaps) = substitute_let_or_case_type expr_info yes_type_heaps
= (EI_Extended extensions new_expr_info, yes_type_heaps)
substitute_let_or_case_type (EI_CaseType case_type) (Yes type_heaps)
# (new_case_type, type_heaps) = substitute case_type type_heaps
= (EI_CaseType new_case_type, Yes type_heaps)
// = (EI_CaseType case_type, Yes type_heaps)
substitute_let_or_case_type (EI_LetType let_type) (Yes type_heaps)
# (new_let_type, type_heaps) = substitute let_type type_heaps
= (EI_LetType new_let_type, Yes type_heaps)
instance unfold CasePatterns
where
unfold (AlgebraicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (AlgebraicPatterns type patterns, us)
unfold (BasicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (BasicPatterns type patterns, us)
unfold (DynamicPatterns patterns) us
# (patterns, us) = unfold patterns us
= (DynamicPatterns patterns, us)
instance unfold BasicPattern
where
unfold guard=:{bp_expr} us
# (bp_expr, us) = unfold bp_expr us
= ({ guard & bp_expr = bp_expr }, us)
instance unfold AlgebraicPattern
where
unfold guard=:{ap_vars,ap_expr} us
# (ap_vars, us) = unfold ap_vars us
(ap_expr, us) = unfold ap_expr us
= ({ guard & ap_vars = ap_vars, ap_expr = ap_expr }, us)
instance unfold DynamicPattern
where
unfold guard=:{dp_var,dp_rhs} us
# (dp_var, us) = unfold dp_var us
(dp_rhs, us) = unfold dp_rhs us
= ({ guard & dp_var = dp_var, dp_rhs = dp_rhs }, us)
updateFunctionCalls :: ![FunCall] ![FunCall] !*{# FunDef} !*SymbolTable
-> (![FunCall], !*{# FunDef}, !*SymbolTable)
updateFunctionCalls calls collected_calls fun_defs symbol_table
= foldSt add_function_call calls (collected_calls, fun_defs, symbol_table)
where
add_function_call fc (collected_calls, fun_defs, symbol_table)
# ({fun_symb}, fun_defs) = fun_defs![fc.fc_index]
(collected_calls, symbol_table) = examineFunctionCall fun_symb fc (collected_calls, symbol_table)
= (collected_calls, fun_defs, symbol_table)
examineFunctionCall {id_info} fc=:{fc_index} (calls, symbol_table)
# (entry, symbol_table) = readPtr id_info symbol_table
= case entry.ste_kind of
STE_Called indexes
| isMember fc_index indexes
-> (calls, symbol_table)
-> ([ fc : calls ], symbol_table <:= (id_info, { entry & ste_kind = STE_Called [ fc_index : indexes ]}))
_
-> ( [ fc : calls ], symbol_table <:=
(id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
//unfoldMacro :: !FunDef ![Expression] !*ExpandInfo -> (!Expression, !*ExpandInfo)
unfoldMacro {fun_body = TransformedBody {tb_args,tb_rhs}, fun_info = {fi_calls}} args fun_defs (calls, es=:{es_var_heap,es_symbol_heap, es_symbol_table})
# (let_binds, var_heap) = bind_expressions tb_args args [] es_var_heap
us = { us_symbol_heap = es_symbol_heap, us_var_heap = var_heap, us_opt_type_heaps = No, us_cleanup_info = [],
us_handle_aci_free_vars = RemoveThem }
(result_expr, {us_symbol_heap,us_var_heap}) = unfold tb_rhs us
(calls, fun_defs, es_symbol_table) = updateFunctionCalls fi_calls calls fun_defs es_symbol_table
| isEmpty let_binds
= (result_expr, fun_defs, (calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
# (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
= (Let { let_strict_binds = [], let_lazy_binds = let_binds, let_expr = result_expr, let_info_ptr = new_info_ptr}, fun_defs,
(calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
where
bind_expressions [var : vars] [expr : exprs] binds var_heap
# (binds, var_heap) = bind_expressions vars exprs binds var_heap
= bind_expression var expr binds var_heap
bind_expressions _ _ binds var_heap
= (binds, var_heap)
bind_expression {fv_count} expr binds var_heap
| fv_count == 0
= (binds, var_heap)
bind_expression {fv_info_ptr} (Var {var_name,var_info_ptr}) binds var_heap
= (binds, writePtr fv_info_ptr (VI_Variable var_name var_info_ptr) var_heap)
bind_expression {fv_name,fv_info_ptr,fv_count} expr binds var_heap
| fv_count == 1
= (binds, writePtr fv_info_ptr (VI_Expression expr) var_heap)
# (new_info, var_heap) = newPtr VI_Empty var_heap
new_var = { fv_name = fv_name, fv_def_level = NotALevel, fv_info_ptr = new_info, fv_count = 0 }
= ([{ bind_src = expr, bind_dst = new_var} : binds], writePtr fv_info_ptr (VI_Variable fv_name new_info) var_heap)
:: Group =
{ group_members :: ![Int]
// , group_number :: !Int
}
:: PartitioningInfo =
{ pi_symbol_table :: !.SymbolTable
// , pi_marks :: !.{# Int}
, pi_var_heap :: !.VarHeap
, pi_symbol_heap :: !.ExpressionHeap
, pi_error :: !.ErrorAdmin
, pi_next_num :: !Int
, pi_next_group :: !Int
, pi_groups :: ![[Int]]
, pi_deps :: ![Int]
}
NotChecked :== -1
partitionateMacros :: !IndexRange !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateMacros {ir_from,ir_to} mod_index fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap,
pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error, pi_next_group, pi_groups, pi_deps})
= iFoldSt (pationate_macro mod_index max_fun_nr) ir_from ir_to (fun_defs, modules, partitioning_info)
= (foldSt reset_body_of_rhs_macro pi_deps fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
reset_body_of_rhs_macro macro_index macro_defs
# (macro_def, macro_defs) = macro_defs![macro_index]
= case macro_def.fun_body of
RhsMacroBody body
-> { macro_defs & [macro_index] = { macro_def & fun_body = CheckedBody body }}
_
-> macro_defs
pationate_macro mod_index max_fun_nr macro_index (macro_defs, modules, pi)
# (macro_def, macro_defs) = macro_defs![macro_index]
| macro_def.fun_kind == FK_Macro
= case macro_def.fun_body of
CheckedBody body
# macros_modules_pi = foldSt (visit_macro mod_index max_fun_nr) macro_def.fun_info.fi_calls (
{ macro_defs & [macro_index] = { macro_def & fun_body = PartioningMacro }}, modules, pi)
-> expand_simple_macro mod_index macro_index macro_def macros_modules_pi
PartioningMacro
# identPos = newPosition macro_def.fun_symb macro_def.fun_pos
-> (macro_defs, modules, { pi & pi_error = checkError macro_def.fun_symb "recursive macro definition" (setErrorAdmin identPos pi.pi_error) })
_
-> (macro_defs, modules, pi)
= (macro_defs, modules, pi)
visit_macro mod_index max_fun_nr {fc_index} macros_modules_pi
= pationate_macro mod_index max_fun_nr fc_index macros_modules_pi
expand_simple_macro mod_index macro_index macro=:{fun_body = CheckedBody body, fun_info, fun_symb, fun_pos}
(macro_defs, modules, pi=:{pi_symbol_table,pi_symbol_heap,pi_var_heap,pi_error})
| macros_are_simple fun_info.fi_calls macro_defs
# identPos = newPosition fun_symb fun_pos
es = { es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap,
es_symbol_heap = pi_symbol_heap, es_error = setErrorAdmin identPos pi_error }
(tb_args, tb_rhs, local_vars, fi_calls, macro_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expandMacrosInBody [] body macro_defs mod_index modules es
macro = { macro & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = local_vars }}
= ({ macro_defs & [macro_index] = macro }, modules,
{ pi & pi_symbol_table = es_symbol_table, pi_symbol_heap = es_symbol_heap, pi_var_heap = es_var_heap, pi_error = es_error })
# pi = { pi & pi_deps = [macro_index:pi.pi_deps] }
= ({ macro_defs & [macro_index] = { macro & fun_body = RhsMacroBody body }}, modules, pi)
macros_are_simple [] macro_defs
= True
macros_are_simple [ {fc_index} : calls ] macro_defs
# {fun_kind,fun_body} = macro_defs.[fc_index]
= is_a_pattern_macro fun_kind fun_body && macros_are_simple calls macro_defs
where
is_a_pattern_macro FK_Macro (TransformedBody {tb_args})
= True
is_a_pattern_macro _ _
= False
partitionateAndLiftFunctions :: ![IndexRange] !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{! Group}, !*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateAndLiftFunctions ranges mod_index fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap, pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_groups, pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error})
= foldSt (partitionate_functions mod_index max_fun_nr) ranges (fun_defs, modules, partitioning_info)
groups = { {group_members = group} \\ group <- reverse pi_groups }
= (groups, fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
partitionate_functions mod_index max_fun_nr {ir_from,ir_to} funs_modules_pi
= iFoldSt (partitionate_global_function mod_index max_fun_nr) ir_from ir_to funs_modules_pi
partitionate_global_function mod_index max_fun_nr fun_index funs_modules_pi
# (_, funs_modules_pi) = partitionate_function mod_index max_fun_nr fun_index funs_modules_pi
= funs_modules_pi
partitionate_function mod_index max_fun_nr fun_index (fun_defs, modules, pi)
# (fun_def, fun_defs) = fun_defs![fun_index]
= case fun_def.fun_body of
CheckedBody body
# fun_number = pi.pi_next_num
# (min_dep, funs_modules_pi) = foldSt (visit_function mod_index max_fun_nr) fun_def.fun_info.fi_calls
(max_fun_nr, ({ fun_defs & [fun_index] = { fun_def & fun_body = PartioningFunction body fun_number }}, modules,
{ pi & pi_next_num = inc fun_number, pi_deps = [fun_index : pi.pi_deps] }))
-> try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep fun_def.fun_info.fi_def_level funs_modules_pi
PartioningFunction _ fun_number
-> (fun_number, (fun_defs, modules, pi))
TransformedBody _
| fun_def.fun_info.fi_group_index == NoIndex
-> (max_fun_nr, ({ fun_defs & [fun_index] = {fun_def & fun_info.fi_group_index = pi.pi_next_group }}, modules,
{pi & pi_next_group = inc pi.pi_next_group, pi_groups = [ [fun_index] : pi.pi_groups]}))
-> (max_fun_nr, (fun_defs, modules, pi))
visit_function mod_index max_fun_nr {fc_index} (min_dep, funs_modules_pi)
# (next_min, funs_modules_pi) = partitionate_function mod_index max_fun_nr fc_index funs_modules_pi
= (min next_min min_dep, funs_modules_pi)
try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep def_level (fun_defs, modules,
pi=:{pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_deps, pi_groups, pi_next_group, pi_error})
| fun_number <= min_dep
# (pi_deps, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index pi_deps [] [] max_fun_nr pi_next_group fun_defs
(fun_defs, pi_var_heap, pi_symbol_heap)
= liftFunctions def_level (group_without_macros ++ group_without_funs) pi_next_group fun_defs pi_var_heap pi_symbol_heap
(fun_defs, modules, es)
= expand_macros_in_group mod_index group_without_funs (fun_defs, modules,
{ es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap, es_symbol_heap = pi_symbol_heap,
es_error = pi_error })
(fun_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expand_macros_in_group mod_index group_without_macros (fun_defs, modules, es)
= (max_fun_nr, (fun_defs, modules, { pi & pi_deps = pi_deps, pi_var_heap = es_var_heap,
pi_symbol_table = es_symbol_table, pi_error = es_error, pi_symbol_heap = es_symbol_heap,
pi_next_group = inc pi_next_group, pi_groups = [ group_without_macros ++ group_without_funs : pi_groups ] }))
= (min_dep, (fun_defs, modules, pi))
where
close_group fun_index [d:ds] group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# (fun_def, fun_defs) = fun_defs![d]
fun_defs = { fun_defs & [d] = { fun_def & fun_info.fi_group_index = group_number }}
| fun_def.fun_kind == FK_Macro
# group_without_funs = [d : group_without_funs]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# group_without_macros = [d : group_without_macros]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
expand_macros_in_group mod_index group funs_modules_es
= foldSt (expand_macros mod_index) group (funs_modules_es)
expand_macros mod_index fun_index (fun_and_macro_defs, modules, es)
# (fun_def, fun_and_macro_defs) = fun_and_macro_defs![fun_index]
{fun_symb,fun_body = PartioningFunction body _, fun_info, fun_pos} = fun_def
identPos = newPosition fun_symb fun_pos
(tb_args, tb_rhs, fi_local_vars, fi_calls, fun_and_macro_defs, modules, es)
= expandMacrosInBody fun_info.fi_calls body fun_and_macro_defs mod_index modules { es & es_error = setErrorAdmin identPos es.es_error }
fun_def = { fun_def & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = fi_local_vars }}
= ({ fun_and_macro_defs & [fun_index] = fun_def }, modules, es)
// ---> ("expand_macros", fun_symb, tb_args, tb_rhs)
addFunctionCallsToSymbolTable calls fun_defs symbol_table
= foldSt add_function_call_to_symbol_table calls ([], fun_defs, symbol_table)
where
add_function_call_to_symbol_table fc=:{fc_index} (collected_calls, fun_defs, symbol_table)
# ({fun_symb = { id_info }, fun_kind}, fun_defs) = fun_defs![fc_index]
| fun_kind == FK_Macro
= (collected_calls, fun_defs, symbol_table)
# (entry, symbol_table) = readPtr id_info symbol_table
= ([fc : collected_calls], fun_defs,
symbol_table <:= (id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
removeFunctionCallsFromSymbolTable calls fun_defs symbol_table
= foldSt remove_function_call_from_symbol_table calls (fun_defs, symbol_table)
where
remove_function_call_from_symbol_table {fc_index} (fun_defs, symbol_table)
# ({fun_symb = { id_info }}, fun_defs) = fun_defs![fc_index]
# (entry, symbol_table) = readPtr id_info symbol_table
= (fun_defs, symbol_table <:= (id_info, entry.ste_previous))
expandMacrosInBody fi_calls {cb_args,cb_rhs} fun_defs mod_index modules es=:{es_symbol_table}
# (prev_calls, fun_defs, es_symbol_table) = addFunctionCallsToSymbolTable fi_calls fun_defs es_symbol_table
([rhs:rhss], fun_defs, modules, (all_calls, es)) = expand cb_rhs fun_defs mod_index modules (prev_calls, { es & es_symbol_table = es_symbol_table })
(fun_defs, es_symbol_table) = removeFunctionCallsFromSymbolTable all_calls fun_defs es.es_symbol_table
(merged_rhs, es_var_heap, es_symbol_heap, es_error) = mergeCases rhs rhss es.es_var_heap es.es_symbol_heap es.es_error
(new_rhs, new_args, local_vars, {cos_error, cos_var_heap, cos_symbol_heap}) = determineVariablesAndRefCounts cb_args merged_rhs
{ cos_error = es_error, cos_var_heap = es_var_heap, cos_symbol_heap = es_symbol_heap }
= (new_args, new_rhs, local_vars, all_calls, fun_defs, modules,
{ es & es_error = cos_error, es_var_heap = cos_var_heap, es_symbol_heap = cos_symbol_heap,
es_symbol_table = es_symbol_table })
// ---> ("expandMacrosInBody", (cb_args, cb_rhs, '\n'), ("merged_rhs", merged_rhs, '\n'), (new_args, new_rhs, '\n'))
cContainsFreeVars :== True
cContainsNoFreeVars :== False
cMacroIsCalled :== True
cNoMacroIsCalled :== False
mergeCases :: !Expression ![Expression] !*VarHeap !*ExpressionHeap !*ErrorAdmin -> *(!Expression, !*VarHeap, !*ExpressionHeap, !*ErrorAdmin);
mergeCases expr [] var_heap symbol_heap error
= (expr, var_heap, symbol_heap, error)
mergeCases (Let lad=:{let_expr}) exprs var_heap symbol_heap error
# (let_expr, var_heap, symbol_heap, error) = mergeCases let_expr exprs var_heap symbol_heap error
= (Let {lad & let_expr = let_expr}, var_heap,symbol_heap, error)
mergeCases case_expr=:(Case first_case=:{case_expr = Var {var_info_ptr}, case_default = No}) [expr : exprs] var_heap symbol_heap error
= case (split_case var_info_ptr expr) of
Yes {case_guards,case_default}
# (case_guards, var_heap, symbol_heap, error) = merge_guards first_case.case_guards case_guards var_heap symbol_heap error
-> mergeCases (Case { first_case & case_guards = case_guards, case_default = case_default }) exprs var_heap symbol_heap error
No
# (case_default, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error
-> (Case { first_case & case_default = Yes case_default}, var_heap, symbol_heap, error)
where
split_case split_var_info_ptr (Case this_case=:{case_expr = Var {var_info_ptr}, case_guards, case_default})
| split_var_info_ptr == var_info_ptr
= Yes this_case
| has_no_default case_default
= case case_guards of
AlgebraicPatterns type [alg_pattern]
-> case (split_case split_var_info_ptr alg_pattern.ap_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
AlgebraicPatterns type [ { alg_pattern & ap_expr = guard_expr }] })
split_case.case_guards }
No
-> No
BasicPatterns type [basic_pattern]
-> case (split_case split_var_info_ptr basic_pattern.bp_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
BasicPatterns type [ { basic_pattern & bp_expr = guard_expr }] })
split_case.case_guards }
No
-> No
DynamicPatterns [dynamic_pattern]
-> case (split_case split_var_info_ptr dynamic_pattern.dp_rhs) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
DynamicPatterns [ { dynamic_pattern & dp_rhs = guard_expr }] })
split_case.case_guards }
No
-> No
_
-> No
| otherwise
= No
split_case split_var_info_ptr (Let lad=:{let_expr})
= case (split_case split_var_info_ptr let_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\let_expr -> Let { lad & let_expr = let_expr}) split_case.case_guards }
No
-> No
split_case split_var_info_ptr expr
= No
has_no_default No = True
has_no_default (Yes _) = False
push_expression_into_guards expr_fun (AlgebraicPatterns type patterns)
= AlgebraicPatterns type (map (\algpattern -> { algpattern & ap_expr = expr_fun algpattern.ap_expr }) patterns)
push_expression_into_guards expr_fun (BasicPatterns type patterns)
= BasicPatterns type (map (\baspattern -> { baspattern & bp_expr = expr_fun baspattern.bp_expr }) patterns)
push_expression_into_guards expr_fun (DynamicPatterns patterns)
= DynamicPatterns (map (\dynpattern -> { dynpattern & dp_rhs = expr_fun dynpattern.dp_rhs }) patterns)
/* Happened already */
/*
skip_aliases info_ptr []
= info_ptr
skip_aliases info_ptr [{bind_src=Var {var_info_ptr},bind_dst} : binds ]
| info_ptr == var_info_ptr
= skip_aliases bind_dst.fv_info_ptr binds
= skip_aliases info_ptr binds
*/
merge_guards guards=:(AlgebraicPatterns type1 patterns1) (AlgebraicPatterns type2 patterns2) var_heap symbol_heap error
| type1 == type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_algebraic_patterns patterns1 patterns2 var_heap symbol_heap error
= (AlgebraicPatterns type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(BasicPatterns basic_type1 patterns1) (BasicPatterns basic_type2 patterns2) var_heap symbol_heap error
| basic_type1 == basic_type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_basic_patterns patterns1 patterns2 var_heap symbol_heap error
= (BasicPatterns basic_type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(DynamicPatterns patterns1) (DynamicPatterns patterns2) var_heap symbol_heap error
# (merged_patterns, var_heap, symbol_heap, error) = merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (DynamicPatterns merged_patterns, var_heap, symbol_heap, error)
merge_guards patterns1 patterns2 var_heap symbol_heap error
= (patterns1, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_algebraic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_algebraic_patterns patterns alg_patterns var_heap symbol_heap error
merge_algebraic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_basic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_basic_patterns patterns alg_patterns var_heap symbol_heap error
merge_basic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (patterns1 ++ patterns2, var_heap, symbol_heap, error)
merge_algebraic_pattern_with_patterns new_pattern [pattern=:{ap_symbol,ap_vars,ap_expr} : patterns] var_heap symbol_heap error
| new_pattern.ap_symbol == ap_symbol
# (new_expr, var_heap, symbol_heap) = replace_variables new_pattern.ap_vars new_pattern.ap_expr ap_vars var_heap symbol_heap
(ap_expr, var_heap, symbol_heap, error) = mergeCases ap_expr [new_expr] var_heap symbol_heap error
= ([{ pattern & ap_expr = ap_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
where
replace_variables [] expr ap_vars var_heap symbol_heap
= (expr, var_heap, symbol_heap)
replace_variables vars expr ap_vars var_heap symbol_heap
# us = { us_var_heap = build_aliases vars ap_vars var_heap, us_symbol_heap = symbol_heap, us_opt_type_heaps = No,
us_cleanup_info=[], us_handle_aci_free_vars = RemoveThem }
(expr, us) = unfold expr us
= (expr, us.us_var_heap, us.us_symbol_heap)
build_aliases [var1 : vars1] [ {fv_name,fv_info_ptr} : vars2 ] var_heap
= build_aliases vars1 vars2 (writePtr var1.fv_info_ptr (VI_Variable fv_name fv_info_ptr) var_heap)
build_aliases [] [] var_heap
= var_heap
merge_algebraic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [pattern=:{bp_value,bp_expr} : patterns] var_heap symbol_heap error
| new_pattern.bp_value == bp_value
# (bp_expr, var_heap, symbol_heap, error) = mergeCases bp_expr [new_pattern.bp_expr] var_heap symbol_heap error
= ([{ pattern & bp_expr = bp_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
mergeCases case_expr=:(Case first_case=:{case_default}) [expr : exprs] var_heap symbol_heap error
= case case_default of
Yes default_expr
# (default_expr, var_heap, symbol_heap, error) = mergeCases default_expr [expr : exprs] var_heap symbol_heap error
-> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error)
No
# (default_expr, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error
-> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error)
mergeCases expr _ var_heap symbol_heap error
= (expr, var_heap, symbol_heap, checkWarning "" " alternative will never match" error)
liftFunctions min_level group group_index fun_defs var_heap expr_heap
# (contains_free_vars, lifted_function_called, fun_defs)
= foldSt (add_free_vars_of_non_recursive_calls_to_function group_index) group (False, False, fun_defs)
| contains_free_vars
# fun_defs = iterateSt (add_free_vars_of_recursive_calls_to_functions group_index group) fun_defs
= lift_functions group fun_defs var_heap expr_heap
| lifted_function_called
= lift_functions group fun_defs var_heap expr_heap
= (fun_defs, var_heap, expr_heap)
where
add_free_vars_of_non_recursive_calls_to_function group_index fun (contains_free_vars, lifted_function_called, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(lifted_function_called, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_non_recursive_call fi_def_level group_index) fi_calls (lifted_function_called, fi_free_vars, fun_defs)
= (contains_free_vars || not (isEmpty fi_free_vars), lifted_function_called,
{ fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_non_recursive_call fun_def_level group_index {fc_index} (lifted_function_called, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
= (lifted_function_called, free_vars, fun_defs)
| isEmpty fi_free_vars
= (lifted_function_called, free_vars, fun_defs)
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (False, free_vars)
= (True, free_vars, fun_defs)
add_free_vars_of_recursive_calls_to_functions group_index group fun_defs
= foldSt (add_free_vars_of_recursive_calls_to_function group_index) group (False, fun_defs)
add_free_vars_of_recursive_calls_to_function group_index fun (free_vars_added, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(free_vars_added, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_recursive_call fi_def_level group_index) fi_calls (free_vars_added, fi_free_vars, fun_defs)
= (free_vars_added, { fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_recursive_call fun_def_level group_index {fc_index} (free_vars_added, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (free_vars_added, free_vars)
= (free_vars_added, free_vars, fun_defs)
= (free_vars_added, free_vars, fun_defs)
add_free_variables fun_level new_vars (free_vars_added, free_vars)
= add_free_global_variables (skip_local_variables fun_level new_vars) (free_vars_added, free_vars)
where
skip_local_variables level vars=:[{fv_def_level}:rest_vars]
| fv_def_level > level
= skip_local_variables level rest_vars
= vars
skip_local_variables _ []
= []
add_free_global_variables [] (free_vars_added, free_vars)
= (free_vars_added, free_vars)
add_free_global_variables free_vars (free_vars_added, [])
= (True, free_vars)
add_free_global_variables [var:vars] (free_vars_added, free_vars)
# (free_var_added, free_vars) = newFreeVariable var free_vars
= add_free_global_variables vars (free_var_added || free_vars_added, free_vars)
lift_functions group fun_defs var_heap expr_heap
= foldSt lift_function group (fun_defs, var_heap, expr_heap)
where
lift_function fun (fun_defs=:{[fun] = fun_def}, var_heap, expr_heap)
# {fi_free_vars} = fun_def.fun_info
fun_lifted = length fi_free_vars
(PartioningFunction {cb_args,cb_rhs} fun_number) = fun_def.fun_body
(cb_args, var_heap) = add_lifted_args fi_free_vars cb_args var_heap
(cb_rhs, {ls_fun_defs,ls_var_heap,ls_expr_heap}) = lift cb_rhs { ls_fun_defs = fun_defs, ls_var_heap = var_heap, ls_expr_heap = expr_heap }
ls_var_heap = remove_lifted_args fi_free_vars ls_var_heap
ls_fun_defs = { ls_fun_defs & [fun] = { fun_def & fun_lifted = fun_lifted, fun_body = PartioningFunction {cb_args = cb_args, cb_rhs = cb_rhs} fun_number}}
= (ls_fun_defs, ls_var_heap, ls_expr_heap)
// ---> ("lift_function", fun_def.fun_symb, fi_free_vars, cb_args, cb_rhs)
remove_lifted_args vars var_heap
= foldl (\var_heap {fv_name,fv_info_ptr} -> writePtr fv_info_ptr VI_Empty var_heap) var_heap vars
add_lifted_args [lifted_arg=:{fv_name,fv_info_ptr} : lifted_args] args var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
args = [{ lifted_arg & fv_info_ptr = new_info_ptr } : args ]
= add_lifted_args lifted_args args (writePtr fv_info_ptr (VI_LiftedVariable new_info_ptr) var_heap)
add_lifted_args [] args var_heap
= (args, var_heap)
:: ExpandInfo :== (![FunCall], !.ExpandState)
:: ExpandState =
{ es_symbol_table :: !.SymbolTable
, es_var_heap :: !.VarHeap
, es_symbol_heap :: !.ExpressionHeap
, es_error :: !.ErrorAdmin
}
class expand a :: !a !*{#FunDef} !Int !v:{# DclModule} !*ExpandInfo -> (!a, !*{#FunDef}, !v:{# DclModule}, !*ExpandInfo)
instance expand [a] | expand a
where
expand [x:xs] fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(xs, fun_and_macro_defs, modules, es) = expand xs fun_and_macro_defs mod_index modules es
= ([x:xs], fun_and_macro_defs, modules, es)
expand [] fun_and_macro_defs mod_index modules es
= ([], fun_and_macro_defs, modules, es)
instance expand (a,b) | expand a & expand b
where
expand (x,y) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(y, fun_and_macro_defs, modules, es) = expand y fun_and_macro_defs mod_index modules es
= ((x,y), fun_and_macro_defs, modules, es)
instance expand (Optional a) | expand a
where
expand (Yes x) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
= (Yes x, fun_and_macro_defs, modules, es)
expand no fun_and_macro_defs mod_index modules es
= (no, fun_and_macro_defs, modules, es)
/*
determineArity (SK_Function)
determineArity (SK_OverloadedFunction
determineArity (SK_Constructor
*/
instance expand Expression
where
expand (App app=:{app_symb = symb=:{symb_arity, symb_kind = SK_Macro {glob_object,glob_module}}, app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, (calls, state)) = expand app_args fun_and_macro_defs mod_index modules es
# (macro, fun_and_macro_defs) = fun_and_macro_defs![glob_object]
| macro.fun_arity == symb_arity
# (expr, fun_and_macro_defs, es) = unfoldMacro macro app_args fun_and_macro_defs (calls, state)
= (expr, fun_and_macro_defs, modules, es)
# (calls, es_symbol_table) = examineFunctionCall macro.fun_symb {fc_index = glob_object, fc_level = NotALevel} (calls, state.es_symbol_table)
= (App { app & app_symb = { symb & symb_kind = SK_Function {glob_object = glob_object, glob_module = glob_module} }, app_args = app_args },
fun_and_macro_defs, modules, (calls, { state & es_symbol_table = es_symbol_table }))
expand (App app=:{app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, es) = expand app_args fun_and_macro_defs mod_index modules es
= (App { app & app_args = app_args }, fun_and_macro_defs, modules, es)
expand (expr @ exprs) fun_and_macro_defs mod_index modules es
# ((expr,exprs), fun_and_macro_defs, modules, es) = expand (expr,exprs) fun_and_macro_defs mod_index modules es
= (expr @ exprs, fun_and_macro_defs, modules, es)
expand (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) fun_and_macro_defs mod_index modules es
# (let_strict_binds, fun_and_macro_defs, modules, es) = expand let_strict_binds fun_and_macro_defs mod_index modules es
# (let_lazy_binds, fun_and_macro_defs, modules, es) = expand let_lazy_binds fun_and_macro_defs mod_index modules es
# (let_expr, fun_and_macro_defs, modules, es) = expand let_expr fun_and_macro_defs mod_index modules es
= (Let {lad & let_expr = let_expr, let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds}, fun_and_macro_defs, modules, es)
expand (Case case_expr) fun_and_macro_defs mod_index modules es
# (case_expr, fun_and_macro_defs, modules, es) = expand case_expr fun_and_macro_defs mod_index modules es
= (Case case_expr, fun_and_macro_defs, modules, es)
expand (Selection is_unique expr selectors) fun_and_macro_defs mod_index modules es
# ((expr, selectors), fun_and_macro_defs, modules, es) = expand (expr, selectors) fun_and_macro_defs mod_index modules es
= (Selection is_unique expr selectors, fun_and_macro_defs, modules, es)
expand (Update expr1 selectors expr2) fun_and_macro_defs mod_index modules es
# (((expr1, expr2), selectors), fun_and_macro_defs, modules, es) = expand ((expr1, expr2), selectors) fun_and_macro_defs mod_index modules es
= (Update expr1 selectors expr2, fun_and_macro_defs, modules, es)
expand (RecordUpdate cons_symbol expression expressions) fun_and_macro_defs mod_index modules es
# ((expression, expressions), fun_and_macro_defs, modules, es) = expand (expression, expressions) fun_and_macro_defs mod_index modules es
= (RecordUpdate cons_symbol expression expressions, fun_and_macro_defs, modules, es)
expand (TupleSelect symbol argn_nr expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (TupleSelect symbol argn_nr expr, fun_and_macro_defs, modules, es)
expand (Lambda vars expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (Lambda vars expr, fun_and_macro_defs, modules, es)
expand (MatchExpr opt_tuple cons_symb expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (MatchExpr opt_tuple cons_symb expr, fun_and_macro_defs, modules, es)
expand expr fun_and_macro_defs mod_index modules es
= (expr, fun_and_macro_defs, modules, es)
instance expand Selection
where
expand (ArraySelection array_select expr_ptr index_expr) fun_and_macro_defs mod_index modules es
# (index_expr, fun_and_macro_defs, modules, es) = expand index_expr fun_and_macro_defs mod_index modules es
= (ArraySelection array_select expr_ptr index_expr, fun_and_macro_defs, modules, es)
expand record_selection fun_and_macro_defs mod_index modules es
= (record_selection, fun_and_macro_defs, modules, es)
instance expand (Bind a b) | expand a
where
expand bind=:{bind_src} fun_and_macro_defs mod_index modules es
# (bind_src, fun_and_macro_defs, modules, es) = expand bind_src fun_and_macro_defs mod_index modules es
= ({ bind & bind_src = bind_src }, fun_and_macro_defs, modules, es)
instance expand Case
where
expand kees=:{ case_expr,case_guards,case_default } fun_and_macro_defs mod_index modules es
# ((case_expr,(case_guards,case_default)), fun_and_macro_defs, modules, es) = expand (case_expr,(case_guards,case_default)) fun_and_macro_defs mod_index modules es
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, fun_and_macro_defs, modules, es)
instance expand CasePatterns
where
expand (AlgebraicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (AlgebraicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (BasicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (BasicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (DynamicPatterns patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (DynamicPatterns patterns, fun_and_macro_defs, modules, es)
instance expand AlgebraicPattern
where
expand alg_pattern=:{ap_expr} fun_and_macro_defs mod_index modules es
# (ap_expr, fun_and_macro_defs, modules, es) = expand ap_expr fun_and_macro_defs mod_index modules es
= ({ alg_pattern & ap_expr = ap_expr }, fun_and_macro_defs, modules, es)
instance expand BasicPattern
where
expand bas_pattern=:{bp_expr} fun_and_macro_defs mod_index modules es
# (bp_expr, fun_and_macro_defs, modules, es) = expand bp_expr fun_and_macro_defs mod_index modules es
= ({ bas_pattern & bp_expr = bp_expr }, fun_and_macro_defs, modules, es)
instance expand DynamicPattern
where
expand dyn_pattern=:{dp_rhs} fun_and_macro_defs mod_index modules es
# (dp_rhs, fun_and_macro_defs, modules, es) = expand dp_rhs fun_and_macro_defs mod_index modules es
= ({ dyn_pattern & dp_rhs = dp_rhs }, fun_and_macro_defs, modules, es)
:: CollectState =
{ cos_var_heap :: !.VarHeap
, cos_symbol_heap :: !.ExpressionHeap
, cos_error :: !.ErrorAdmin
}
determineVariablesAndRefCounts :: ![FreeVar] !Expression !*CollectState -> (!Expression , ![FreeVar], ![FreeVar], !*CollectState)
determineVariablesAndRefCounts free_vars expr cos=:{cos_var_heap}
# (expr, local_vars, cos) = collectVariables expr [] { cos & cos_var_heap = clearCount free_vars cIsAGlobalVar cos_var_heap }
(free_vars, cos_var_heap) = retrieveRefCounts free_vars cos.cos_var_heap
(local_vars, cos_var_heap) = retrieveRefCounts local_vars cos_var_heap
= (expr, free_vars, local_vars, { cos & cos_var_heap = cos_var_heap })
retrieveRefCounts free_vars var_heap
= mapSt retrieveRefCount free_vars var_heap
retrieveRefCount fv=:{fv_info_ptr} var_heap
# (VI_Count count _, var_heap) = readPtr fv_info_ptr var_heap
= ({ fv & fv_count = count }, var_heap)
/*
'clearCount' initialises the 'fv_info_ptr' field of each 'FreeVar'
*/
class clearCount a :: !a !Bool !*VarHeap -> *VarHeap
instance clearCount [a] | clearCount a
where
clearCount [x:xs] locality var_heap
= clearCount x locality (clearCount xs locality var_heap)
clearCount [] locality var_heap
= var_heap
instance clearCount (Bind a b) | clearCount b
where
clearCount bind=:{bind_dst} locality var_heap
= clearCount bind_dst locality var_heap
instance clearCount FreeVar
where
clearCount{fv_info_ptr} locality var_heap
= var_heap <:= (fv_info_ptr, VI_Count 0 locality)
/*
In 'collectVariables' all local variables are collected. Moreover the reference counts
of the local as well as of the global variables are determined. Aliases and unreachable
bindings introduced in a 'let' are removed.
*/
class collectVariables a :: !a ![FreeVar] !*CollectState -> !(!a, ![FreeVar],!*CollectState)
cContainsACycle :== True
cContainsNoCycle :== False
instance collectVariables Expression
where
collectVariables (Var var) free_vars cos
# (var, free_vars, cos) = collectVariables var free_vars cos
= (Var var, free_vars, cos)
collectVariables (App app=:{app_args}) free_vars cos
# (app_args, free_vars, cos) = collectVariables app_args free_vars cos
= (App { app & app_args = app_args}, free_vars, cos)
collectVariables (expr @ exprs) free_vars cos
# ((expr, exprs), free_vars, cos) = collectVariables (expr, exprs) free_vars cos
= (expr @ exprs, free_vars, cos)
collectVariables (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) free_vars cos=:{cos_var_heap}
# cos_var_heap = determine_aliases let_strict_binds cos_var_heap
# cos_var_heap = determine_aliases let_lazy_binds cos_var_heap
(is_cyclic_s, let_strict_binds, cos_var_heap) = detect_cycles_and_remove_alias_binds let_strict_binds cos_var_heap
(is_cyclic_l, let_lazy_binds, cos_var_heap) = detect_cycles_and_remove_alias_binds let_lazy_binds cos_var_heap
| is_cyclic_s || is_cyclic_l
= (Let {lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds }, free_vars,
{ cos & cos_var_heap = cos_var_heap, cos_error = checkError "" "cyclic let definition" cos.cos_error})
// | otherwise
# (let_expr, free_vars, cos) = collectVariables let_expr free_vars { cos & cos_var_heap = cos_var_heap }
all_binds = mapAppend (\sb->(True, sb)) let_strict_binds [(False, lb) \\ lb<-let_lazy_binds]
(collected_binds, free_vars, cos) = collect_variables_in_binds all_binds [] free_vars cos
(let_strict_binds, let_lazy_binds) = split collected_binds
| isEmpty let_strict_binds && isEmpty let_lazy_binds
= (let_expr, free_vars, cos)
= (Let {lad & let_expr = let_expr, let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds}, free_vars, cos)
where
/* Set the 'var_info_field' of each bound variable to either 'VI_Alias var' (if
this variable is an alias for 'var') or to 'VI_Count 0 cIsALocalVar' to initialise
the reference count info.
*/
determine_aliases [{bind_dst={fv_info_ptr}, bind_src = Var var} : binds] var_heap
= determine_aliases binds (writePtr fv_info_ptr (VI_Alias var) var_heap)
determine_aliases [bind : binds] var_heap
= determine_aliases binds (clearCount bind cIsALocalVar var_heap)
determine_aliases [] var_heap
= var_heap
/* Remove all aliases from the list of 'let'-binds. Be careful with cycles! */
detect_cycles_and_remove_alias_binds [] var_heap
= (cContainsNoCycle, [], var_heap)
detect_cycles_and_remove_alias_binds [bind=:{bind_dst={fv_info_ptr}} : binds] var_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_Alias {var_info_ptr}
| is_cyclic fv_info_ptr var_info_ptr var_heap
-> (cContainsACycle, binds, var_heap)
-> detect_cycles_and_remove_alias_binds binds var_heap
_
# (is_cyclic, binds, var_heap) = detect_cycles_and_remove_alias_binds binds var_heap
-> (is_cyclic, [bind : binds], var_heap)
where
is_cyclic orig_info_ptr info_ptr var_heap
| orig_info_ptr == info_ptr
= True
#! var_info = sreadPtr info_ptr var_heap
= case var_info of
VI_Alias {var_info_ptr}
-> is_cyclic orig_info_ptr var_info_ptr var_heap
_
-> False
/* Apply 'collectVariables' to the bound expressions (the 'bind_src' field of 'let'-bind) if
the corresponding bound variable (the 'bind_dst' field) has been used. This can be determined
by examining the reference count.
*/
collect_variables_in_binds binds collected_binds free_vars cos
# (continue, binds, collected_binds, free_vars, cos) = examine_reachable_binds False binds collected_binds free_vars cos
| continue
= collect_variables_in_binds binds collected_binds free_vars cos
= (collected_binds, free_vars, cos)
examine_reachable_binds bind_found [bind=:(is_strict, {bind_dst=fv=:{fv_info_ptr},bind_src}) : binds] collected_binds free_vars cos
# (bind_found, binds, collected_binds, free_vars, cos) = examine_reachable_binds bind_found binds collected_binds free_vars cos
#! var_info = sreadPtr fv_info_ptr cos.cos_var_heap
# (VI_Count count is_global) = var_info
| count > 0
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= (True, binds, [ (is_strict, { bind_dst = { fv & fv_count = count }, bind_src = bind_src }) : collected_binds ], free_vars, cos)
= (bind_found, [bind : binds], collected_binds, free_vars, cos)
examine_reachable_binds bind_found [] collected_binds free_vars cos
= (bind_found, [], collected_binds, free_vars, cos)
split :: ![(Bool, x)] -> (![x], ![x])
split []
= ([], [])
split [(p, x):xs]
# (l, r) = split xs
| p
= ([x:l], r)
= (l, [x:r])
collectVariables (Case case_expr) free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
= (Case case_expr, free_vars, cos)
collectVariables (Selection is_unique expr selectors) free_vars cos
# ((expr, selectors), free_vars, cos) = collectVariables (expr, selectors) free_vars cos
= (Selection is_unique expr selectors, free_vars, cos)
collectVariables (Update expr1 selectors expr2) free_vars cos
# (((expr1, expr2), selectors), free_vars, cos) = collectVariables ((expr1, expr2), selectors) free_vars cos
= (Update expr1 selectors expr2, free_vars, cos)
collectVariables (RecordUpdate cons_symbol expression expressions) free_vars cos
# ((expression, expressions), free_vars, cos) = collectVariables (expression, expressions) free_vars cos
= (RecordUpdate cons_symbol expression expressions, free_vars, cos)
collectVariables (TupleSelect symbol argn_nr expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (TupleSelect symbol argn_nr expr, free_vars, cos)
collectVariables (MatchExpr opt_tuple cons_symb expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (MatchExpr opt_tuple cons_symb expr, free_vars, cos)
collectVariables expr free_vars cos
= (expr, free_vars, cos)
instance collectVariables Selection
where
collectVariables (ArraySelection array_select expr_ptr index_expr) free_vars cos
# (index_expr, free_vars, cos) = collectVariables index_expr free_vars cos
= (ArraySelection array_select expr_ptr index_expr, free_vars, cos)
collectVariables record_selection free_vars cos
= (record_selection, free_vars, cos)
instance collectVariables [a] | collectVariables a
where
collectVariables [x:xs] free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (xs, free_vars, cos) = collectVariables xs free_vars cos
= ([x:xs], free_vars, cos)
collectVariables [] free_vars cos
= ([], free_vars, cos)
instance collectVariables (!a,!b) | collectVariables a & collectVariables b
where
collectVariables (x,y) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (y, free_vars, cos) = collectVariables y free_vars cos
= ((x,y), free_vars, cos)
instance collectVariables (Optional a) | collectVariables a
where
collectVariables (Yes x) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
= (Yes x, free_vars, cos)
collectVariables no free_vars cos
= (no, free_vars, cos)
instance collectVariables (Bind a b) | collectVariables a where
collectVariables bind=:{bind_src} free_vars cos
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= ({bind & bind_src = bind_src}, free_vars, cos)
instance collectVariables Case
where
collectVariables kees=:{ case_expr, case_guards, case_default } free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
# (case_guards, free_vars, cos) = collectVariables case_guards free_vars cos
# (case_default, free_vars, cos) = collectVariables case_default free_vars cos
= ({ kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default }, free_vars, cos)
instance collectVariables CasePatterns
where
collectVariables (AlgebraicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (AlgebraicPatterns type patterns, free_vars, cos)
collectVariables (BasicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (BasicPatterns type patterns, free_vars, cos)
collectVariables (DynamicPatterns patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (DynamicPatterns patterns, free_vars, cos)
instance collectVariables AlgebraicPattern
where
collectVariables pattern=:{ap_vars,ap_expr} free_vars cos
# (ap_expr, free_vars, cos) = collectVariables ap_expr free_vars { cos & cos_var_heap = clearCount ap_vars cIsALocalVar cos.cos_var_heap}
(ap_vars, cos_var_heap) = retrieveRefCounts ap_vars cos.cos_var_heap
= ({ pattern & ap_expr = ap_expr, ap_vars = ap_vars }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BasicPattern
where
collectVariables pattern=:{bp_expr} free_vars cos
# (bp_expr, free_vars, cos) = collectVariables bp_expr free_vars cos
= ({ pattern & bp_expr = bp_expr }, free_vars, cos)
instance collectVariables DynamicPattern
where
collectVariables pattern=:{dp_var,dp_rhs} free_vars cos
# (dp_rhs, free_vars, cos) = collectVariables dp_rhs free_vars { cos & cos_var_heap = clearCount dp_var cIsALocalVar cos.cos_var_heap}
(dp_var, cos_var_heap) = retrieveRefCount dp_var cos.cos_var_heap
= ({ pattern & dp_rhs = dp_rhs, dp_var = dp_var }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BoundVar
where
collectVariables var=:{var_name,var_info_ptr,var_expr_ptr} free_vars cos=:{cos_var_heap}
#! var_info = sreadPtr var_info_ptr cos_var_heap
= case var_info of
VI_Alias alias
# (original, free_vars, cos) = collectVariables alias free_vars cos
-> ({ original & var_expr_ptr = var_expr_ptr }, free_vars, cos)
VI_Count count is_global
| count > 0 || is_global
-> (var, free_vars, { cos & cos_var_heap = writePtr var_info_ptr (VI_Count (inc count) is_global) cos.cos_var_heap })
-> (var, [{fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0} : free_vars ],
{ cos & cos_var_heap = writePtr var_info_ptr (VI_Count 1 is_global) cos.cos_var_heap })
_
-> abort "collectVariables [BoundVar] (transform, 1227)" <<- (var_info ---> var_name)
instance <<< (Ptr a)
where
(<<<) file p = file <<< ptrToInt p
instance <<< FunCall
where
(<<<) file {fc_index} = file <<< fc_index
instance <<< VarInfo
where
(<<<) file (VI_Expression expr) = file <<< expr
(<<<) file vi = file <<< "VI??"
|