1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
|
implementation module trans
import StdEnv
import syntax, transform, checksupport, StdCompare, check, utilities
import RWSDebug, StdDebug
:: PartitioningInfo =
{ pi_marks :: !.{# Int}
, pi_next_num :: !Int
, pi_next_group :: !Int
, pi_groups :: ![[Int]]
, pi_deps :: ![Int]
}
NotChecked :== -1
implies a b :== not a || b
partitionateFunctions :: !*{# FunDef} ![IndexRange] -> (!*{! Group}, !*{# FunDef})
partitionateFunctions fun_defs ranges
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_marks = createArray max_fun_nr NotChecked, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, {pi_groups,pi_next_group}) =
foldSt (partitionate_functions max_fun_nr) ranges (fun_defs, partitioning_info)
groups = { {group_members = group} \\ group <- reverse pi_groups }
= (groups, fun_defs)
where
partitionate_functions :: !Index !IndexRange !(!*{# FunDef}, !*PartitioningInfo) -> (!*{# FunDef}, !*PartitioningInfo)
partitionate_functions max_fun_nr ir=:{ir_from,ir_to} (fun_defs, pi=:{pi_marks})
| ir_from == ir_to
= (fun_defs, pi)
| pi_marks.[ir_from] == NotChecked
# (_, fun_defs, pi) = partitionate_function ir_from max_fun_nr fun_defs pi
= partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi)
= partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi)
partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo)
partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num}
#! fd = fun_defs.[fun_index]
# {fi_calls} = fd.fun_info
(min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi)
= try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi
/*
partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo)
partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num}
#! fd = fun_defs.[fun_index]
| fd.fun_kind
# {fi_calls} = fd.fun_info
(min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi)
= try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi
= (max_fun_nr, fun_defs, pi)
*/
push_on_dep_stack :: !Int !*PartitioningInfo -> *PartitioningInfo;
push_on_dep_stack fun_index pi=:{pi_deps,pi_marks,pi_next_num}
= { pi & pi_deps = [fun_index : pi_deps], pi_marks = { pi_marks & [fun_index] = pi_next_num}, pi_next_num = inc pi_next_num}
visit_functions :: ![FunCall] !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo)
visit_functions [{fc_index}:funs] min_dep max_fun_nr fun_defs pi=:{pi_marks}
#! mark = pi_marks.[fc_index]
| mark == NotChecked
# (mark, fun_defs, pi) = partitionate_function fc_index max_fun_nr fun_defs pi
= visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi
= visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi
visit_functions [] min_dep max_fun_nr fun_defs pi
= (min_dep, fun_defs, pi)
try_to_close_group :: !Int !Int !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo)
try_to_close_group fun_index fun_nr min_dep max_fun_nr fun_defs pi=:{pi_marks, pi_deps, pi_groups, pi_next_group}
| fun_nr <= min_dep
# (pi_deps, pi_marks, group, fun_defs)
= close_group fun_index pi_deps pi_marks [] max_fun_nr pi_next_group fun_defs
pi = { pi & pi_deps = pi_deps, pi_marks = pi_marks, pi_next_group = inc pi_next_group, pi_groups = [group : pi_groups] }
= (max_fun_nr, fun_defs, pi)
= (min_dep, fun_defs, pi)
where
close_group :: !Int ![Int] !*{# Int} ![Int] !Int !Int !*{# FunDef} -> (![Int], !*{# Int}, ![Int], !*{# FunDef})
close_group fun_index [d:ds] marks group max_fun_nr group_number fun_defs
# marks = { marks & [d] = max_fun_nr }
#! fd = fun_defs.[d]
# fun_defs = { fun_defs & [d] = { fd & fun_info.fi_group_index = group_number }}
| d == fun_index
= (ds, marks, [d : group], fun_defs)
= close_group fun_index ds marks [d : group] max_fun_nr group_number fun_defs
:: BitVector :== Int
:: *AnalyseInfo =
{ ai_heap :: !*VarHeap
, ai_cons_class :: !*{! ConsClasses}
, ai_cur_ref_counts :: !*{#Int} // for each variable 0,1 or 2
, ai_class_subst :: !* ConsClassSubst
, ai_next_var :: !Int
, ai_cases_of_vars_for_function :: ![(!ExprInfoPtr,!VarInfoPtr)]
}
:: ConsClassSubst :== {# ConsClass}
:: CleanupInfo :== [ExprInfoPtr]
/*
The argument classification (i.e. 'accumulating', 'active' or 'passive') of consumers
is represented by an negative integer value.
Possitive classifications are used to identify variables.
Unification of classifications is done on-the-fly
*/
cNoFunArg :== -1
cPassive :== -1
cActive :== -2
cAccumulating :== -3
IsAVariable cons_class :== cons_class >= 0
combineClasses cc1 cc2
| IsAVariable cc1
= cAccumulating
| IsAVariable cc2
= cAccumulating
= min cc1 cc2
unifyClassifications :: !ConsClass !ConsClass !*ConsClassSubst -> *ConsClassSubst
unifyClassifications cc1 cc2 subst
# (cc1,subst) = skip_indirections_of_variables cc1 subst
(cc2,subst) = skip_indirections_of_variables cc2 subst
= combine_cons_classes cc1 cc2 subst
where
skip_indirections_of_variables :: Int !*ConsClassSubst -> (!Int,!*ConsClassSubst)
skip_indirections_of_variables cc subst
| IsAVariable cc
#! cc = skip_indirections cc subst
= (cc, subst)
= (cc, subst)
where
skip_indirections cons_var subst
#! redir = subst.[cons_var]
| IsAVariable redir
= skip_indirections redir subst
= cons_var
combine_cons_classes :: !Int !Int !*ConsClassSubst -> *ConsClassSubst
combine_cons_classes cc1 cc2 subst
| cc1 == cc2
= subst
| IsAVariable cc1
#! cc_val1 = subst.[cc1]
| IsAVariable cc2
#! cc_val2 = subst.[cc2]
= { subst & [cc2] = cc1, [cc1] = combine_cons_constants cc_val1 cc_val2 }
= { subst & [cc1] = combine_cons_constants cc_val1 cc2 }
| IsAVariable cc2
#! cc_val2 = subst.[cc2]
= { subst & [cc2] = combine_cons_constants cc1 cc_val2 }
= subst
combine_cons_constants cc1 cc2
= min cc1 cc2
write_ptr ptr val heap mess
| isNilPtr ptr
= abort mess
= heap <:= (ptr,val)
class consumerRequirements a :: !a !AnalyseInfo -> (!ConsClass, !AnalyseInfo)
instance consumerRequirements BoundVar
where
consumerRequirements {var_info_ptr} ai=:{ai_heap}
#! var_info = sreadPtr var_info_ptr ai_heap
= continuation var_info ai
where
continuation (VI_AccVar temp_var arg_position) ai=:{ai_cur_ref_counts}
| arg_position<0
= (temp_var, ai)
#! ref_count = ai_cur_ref_counts.[arg_position]
ai_cur_ref_counts = { ai_cur_ref_counts & [arg_position]=min (ref_count+1) 2 }
= (temp_var, { ai & ai_cur_ref_counts=ai_cur_ref_counts })
// continuation vi ai
// = (cPassive, ai)
instance consumerRequirements Expression where
consumerRequirements (Var var) ai
= consumerRequirements var ai
consumerRequirements (App app) ai
= consumerRequirements app ai
consumerRequirements (fun_expr @ exprs) ai
# (cc_fun, ai) = consumerRequirements fun_expr ai
ai_class_subst = unifyClassifications cActive cc_fun ai.ai_class_subst
= consumerRequirements exprs { ai & ai_class_subst = ai_class_subst }
consumerRequirements (Let {let_binds,let_expr}) ai=:{ai_next_var,ai_heap}
# (new_next_var, ai_heap) = init_variables let_binds ai_next_var ai_heap
# ai = acc_requirements_of_let_binds let_binds ai_next_var { ai & ai_next_var = new_next_var, ai_heap = ai_heap }
= consumerRequirements let_expr ai
where
init_variables [{bind_dst={fv_info_ptr}} : binds] ai_next_var ai_heap
= init_variables binds (inc ai_next_var)
(write_ptr fv_info_ptr (VI_AccVar ai_next_var cNoFunArg) ai_heap "init_variables")
init_variables [] ai_next_var ai_heap
= (ai_next_var, ai_heap)
acc_requirements_of_let_binds [ {bind_src, bind_dst={fv_info_ptr}} : binds ] ai_next_var ai
# (bind_var, ai) = consumerRequirements bind_src ai
ai_class_subst = unifyClassifications ai_next_var bind_var ai.ai_class_subst
= acc_requirements_of_let_binds binds (inc ai_next_var) { ai & ai_class_subst = ai_class_subst }
acc_requirements_of_let_binds [] ai_next_var ai
= ai
consumerRequirements (Case case_expr) ai
= consumerRequirements case_expr ai
consumerRequirements (BasicExpr _ _) ai
= (cPassive, ai)
consumerRequirements (MatchExpr _ _ expr) ai
= consumerRequirements expr ai
consumerRequirements (Selection _ expr selectors) ai
# (cc, ai) = consumerRequirements expr ai
ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst
ai = requirementsOfSelectors selectors { ai & ai_class_subst = ai_class_subst }
= (cPassive, ai)
consumerRequirements (Update expr1 selectors expr2) ai
# (cc, ai) = consumerRequirements expr1 ai
ai = requirementsOfSelectors selectors ai
(cc, ai) = consumerRequirements expr2 ai
= (cPassive, ai)
consumerRequirements (RecordUpdate cons_symbol expression expressions) ai
# (cc, ai) = consumerRequirements expression ai
(cc, ai) = consumerRequirements expressions ai
= (cPassive, ai)
consumerRequirements (TupleSelect tuple_symbol arg_nr expr) ai
= consumerRequirements expr ai
consumerRequirements (AnyCodeExpr _ _ _) ai
= (cPassive, ai)
consumerRequirements (ABCCodeExpr _ _) ai
= (cPassive, ai)
consumerRequirements (DynamicExpr dynamic_expr) ai
= consumerRequirements dynamic_expr ai
consumerRequirements (TypeCodeExpression _) ai
= (cPassive, ai)
consumerRequirements EE ai
= (cPassive, ai)
consumerRequirements expr ai
= abort ("consumerRequirements " <<- expr)
requirementsOfSelectors selectors ai
= foldSt reqs_of_selector selectors ai
where
reqs_of_selector (ArraySelection _ _ index_expr) ai
# (_, ai) = consumerRequirements index_expr ai
= ai
reqs_of_selector (DictionarySelection dict_var _ _ index_expr) ai
# (_, ai) = consumerRequirements index_expr ai
(cc_var, ai) = consumerRequirements dict_var ai
= { ai & ai_class_subst = unifyClassifications cActive cc_var ai.ai_class_subst }
reqs_of_selector _ ai
= ai
instance consumerRequirements App where
consumerRequirements {app_symb={symb_kind = SK_Function {glob_module,glob_object}, symb_arity, symb_name}, app_args} ai=:{ai_cons_class}
| glob_module == cIclModIndex
| glob_object < size ai_cons_class
#! fun_class = ai_cons_class.[glob_object]
= reqs_of_args fun_class.cc_args app_args cPassive ai
= consumerRequirements app_args ai
= consumerRequirements app_args ai
where
reqs_of_args _ [] cumm_arg_class ai
= (cumm_arg_class, ai)
reqs_of_args [] _ cumm_arg_class ai
= (cumm_arg_class, ai)
reqs_of_args [form_cc : ccs] [arg : args] cumm_arg_class ai
# (act_cc, ai) = consumerRequirements arg ai
ai_class_subst = unifyClassifications form_cc act_cc ai.ai_class_subst
= reqs_of_args ccs args (combineClasses act_cc cumm_arg_class) { ai & ai_class_subst = ai_class_subst }
/*
consumerRequirements {app_symb={symb_kind = SK_InternalFunction _}, app_args=[arg:_]} ai
# (cc, ai) = consumerRequirements arg ai
ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst
= (cPassive, { ai & ai_class_subst = ai_class_subst })
*/
consumerRequirements {app_args} ai
= consumerRequirements app_args ai
instance consumerRequirements Case where
consumerRequirements {case_expr,case_guards,case_default,case_info_ptr} ai
# ai = case case_expr of
(Var {var_info_ptr}) -> { ai & ai_cases_of_vars_for_function=[(case_info_ptr,var_info_ptr):ai.ai_cases_of_vars_for_function] }
_ -> ai
(cce, ai) = consumerRequirements case_expr ai
ai_class_subst = unifyClassifications cActive cce ai.ai_class_subst
(ccgs, ai) = consumerRequirements case_guards { ai & ai_class_subst = ai_class_subst }
(ccd, ai) = consumerRequirements case_default ai
= (combineClasses ccgs ccd, ai)
/* XXX was
instance consumerRequirements Case where
consumerRequirements {case_expr,case_guards,case_default} ai
# (cce, ai) = consumerRequirements case_expr ai
ai_class_subst = unifyClassifications cActive cce ai.ai_class_subst
(ccgs, ai) = consumerRequirements (case_guards,case_default) { ai & ai_class_subst = ai_class_subst }
= (ccgs, ai)
*/
instance consumerRequirements DynamicExpr where
consumerRequirements {dyn_expr} ai
= consumerRequirements dyn_expr ai
/*
instance consumerRequirements TypeCase where
consumerRequirements {type_case_dynamic,type_case_patterns,type_case_default} ai
# (_, ai) = consumerRequirements type_case_dynamic ai
(ccgs, ai) = consumerRequirements (type_case_patterns,type_case_default) ai
= (ccgs, ai)
*/
instance consumerRequirements DynamicPattern where
consumerRequirements {dp_rhs} ai
= consumerRequirements dp_rhs ai
instance consumerRequirements CasePatterns where
consumerRequirements (AlgebraicPatterns type patterns) ai
# pattern_exprs = [ ap_expr \\ {ap_expr}<-patterns]
pattern_vars = flatten [ filter (\{fv_count}->fv_count>0) ap_vars \\ {ap_vars}<-patterns]
(ai_next_var, ai_heap) = bind_pattern_vars pattern_vars ai.ai_next_var ai.ai_heap
= independentConsumerRequirements pattern_exprs { ai & ai_heap=ai_heap, ai_next_var=ai_next_var }
where
bind_pattern_vars [{fv_info_ptr,fv_count} : vars] next_var var_heap
| fv_count > 0
= bind_pattern_vars vars (inc next_var) (write_ptr fv_info_ptr (VI_AccVar next_var cNoFunArg) var_heap "bind_pattern_vars")
= bind_pattern_vars vars (inc next_var) var_heap
bind_pattern_vars [] next_var var_heap
= (next_var, var_heap)
consumerRequirements (BasicPatterns type patterns) ai
# pattern_exprs = [ bp_expr \\ {bp_expr}<-patterns]
= independentConsumerRequirements pattern_exprs ai
consumerRequirements (DynamicPatterns dyn_patterns) ai
= abort "trans.icl: consumerRequirements CasePatterns case missing"
// XXX was before adding reference counting = consumerRequirements dyn_patterns ai
/*
instance consumerRequirements AlgebraicPattern where
consumerRequirements {ap_vars,ap_expr} ai=:{ai_heap}
# ai_heap = bind_pattern_vars ap_vars ai_heap
= consumerRequirements ap_expr { ai & ai_heap = ai_heap }
where
bind_pattern_vars [{fv_info_ptr,fv_count} : vars] var_heap
| fv_count > 0
= bind_pattern_vars vars (write_ptr fv_info_ptr (VI_AccVar cPassive cNoFunArg) var_heap "bind_pattern_vars") -!-> "NOT BINDING"
= bind_pattern_vars vars var_heap
bind_pattern_vars [] var_heap
= var_heap
*/
instance consumerRequirements BasicPattern where
consumerRequirements {bp_expr} ai
= consumerRequirements bp_expr ai
instance consumerRequirements (Optional a) | consumerRequirements a where
consumerRequirements (Yes x) ai
= consumerRequirements x ai
consumerRequirements No ai
= (cPassive, ai)
instance consumerRequirements (!a,!b) | consumerRequirements a & consumerRequirements b where
consumerRequirements (x, y) ai
# (ccx, ai) = consumerRequirements x ai
(ccy, ai) = consumerRequirements y ai
= (combineClasses ccx ccy, ai)
instance consumerRequirements [a] | consumerRequirements a where
consumerRequirements [x : xs] ai
# (ccx, ai) = consumerRequirements x ai
(ccxs, ai) = consumerRequirements xs ai
= (combineClasses ccx ccxs, ai)
consumerRequirements [] ai
= (cPassive, ai)
instance consumerRequirements (Bind a b) | consumerRequirements a where
consumerRequirements {bind_src} ai
= consumerRequirements bind_src ai
independentConsumerRequirements exprs ai=:{ai_cur_ref_counts}
// reference counting happens independently for each pattern expression
#! s = size ai_cur_ref_counts
zero_array = createArray s 0
(_, cc, ai) = foldSt independent_consumer_requirements exprs (zero_array, cPassive, ai)
= (cc, ai)
where
independent_consumer_requirements :: Expression (*{#Int}, ConsClass, AnalyseInfo) -> (*{#Int}, ConsClass, AnalyseInfo)
independent_consumer_requirements expr (zero_array, cc, ai=:{ai_cur_ref_counts})
#! s = size ai_cur_ref_counts
ai = { ai & ai_cur_ref_counts=zero_array }
(cce, ai) = consumerRequirements expr ai
(unused, unified_ref_counts) = unify_ref_count_arrays s ai_cur_ref_counts ai.ai_cur_ref_counts
ai = { ai & ai_cur_ref_counts=unified_ref_counts }
= ({ unused & [i]=0 \\ i<-[0..s-1]}, combineClasses cce cc, ai)
unify_ref_count_arrays 0 src1 src2_dest
= (src1, src2_dest)
unify_ref_count_arrays i src1 src2_dest
#! i1 = dec i
rc1 = src1.[i1]
rc2 = src2_dest.[i1]
= unify_ref_count_arrays i1 src1 { src2_dest & [i1]= unify_ref_counts rc1 rc2}
// unify_ref_counts outer_ref_count ref_count_in_pattern
unify_ref_counts 0 x = if (x==2) 2 0
unify_ref_counts 1 x = if (x==0) 1 2
unify_ref_counts 2 _ = 2
analyseGroups :: !*{! Group} !*{#FunDef} !*VarHeap !*ExpressionHeap
-> (!CleanupInfo, !*{! ConsClasses}, !*{! Group}, !*{#FunDef}, !*VarHeap, !*ExpressionHeap)
analyseGroups groups fun_defs var_heap expr_heap
#! nr_of_funs = size fun_defs
nr_of_groups = size groups
= iFoldSt analyse_group 0 nr_of_groups
([], createArray nr_of_funs { cc_size = 0, cc_args = [], cc_linear_bits = []}, groups, fun_defs, var_heap, expr_heap)
// = analyse_groups 0 groups (createArray nr_of_funs { cc_size = 0, cc_args = [], cc_linear_bits = []})
// fun_defs var_heap expr_heap
where
/* analyse_groups group_nr groups class_env fun_defs var_heap expr_heap
| group_nr == size groups
= (class_env, groups, fun_defs, var_heap, expr_heap)
#! fun_indexes = groups.[group_nr]
# (class_env, fun_defs, var_heap, expr_heap)
= analyse_group fun_indexes.group_members class_env fun_defs var_heap expr_heap
= analyse_groups (inc group_nr) groups class_env fun_defs var_heap expr_heap
*/
analyse_group group_nr (cleanup_info, class_env, groups, fun_defs, var_heap, expr_heap)
#! {group_members} = groups.[group_nr]
# (nr_of_vars, nr_of_local_vars, var_heap, class_env, fun_defs) = initial_cons_class group_members 0 0 var_heap class_env fun_defs
initial_subst = createArray (nr_of_vars + nr_of_local_vars) cPassive
(ai_cases_of_vars_for_group, ai, fun_defs)
= analyse_functions group_members []
{ ai_heap = var_heap,
ai_cons_class = class_env,
ai_cur_ref_counts = {}, ai_class_subst = initial_subst,
ai_next_var = nr_of_vars,
ai_cases_of_vars_for_function = [] } fun_defs
class_env = collect_classifications group_members ai.ai_cons_class ai.ai_class_subst
(cleanup_info, class_env, fun_defs, var_heap, expr_heap)
= foldSt set_case_expr_info (flatten ai_cases_of_vars_for_group) (cleanup_info,class_env, fun_defs, ai.ai_heap, expr_heap)
= (cleanup_info, class_env, groups, fun_defs, var_heap, expr_heap)
where
set_case_expr_info ((expr_info_ptr,var_info_ptr),fun_index) (cleanup_acc, class_env, fun_defs, var_heap, expr_heap)
# (VI_AccVar _ arg_position, var_heap) = readPtr var_info_ptr var_heap
({cc_args, cc_linear_bits},class_env) = class_env![fun_index]
| arg_position<>cNoFunArg && cc_args!!arg_position==cActive && cc_linear_bits!!arg_position
// mark cases whose case_expr is an active linear function argument
# aci = { aci_arg_pos = arg_position, aci_opt_unfolder = No, aci_free_vars=No }
= ([expr_info_ptr:cleanup_acc], class_env, fun_defs, var_heap, add_extended_expr_info expr_info_ptr (EEI_ActiveCase aci) expr_heap)
= (cleanup_acc, class_env, fun_defs, var_heap, expr_heap)
initial_cons_class [fun : funs] next_var_number nr_of_local_vars var_heap class_env fun_defs
#! fun_def = fun_defs.[fun]
# (TransformedBody {tb_args}) = fun_def.fun_body
(fresh_vars, next_var_number, var_heap) = fresh_variables tb_args 0 next_var_number var_heap
= initial_cons_class funs next_var_number (length fun_def.fun_info.fi_local_vars + nr_of_local_vars) var_heap
{ class_env & [fun] = { cc_size = 0, cc_args = fresh_vars, cc_linear_bits=[]}} fun_defs
initial_cons_class [] next_var_number nr_of_local_vars var_heap class_env fun_defs
= (next_var_number, nr_of_local_vars, var_heap, class_env, fun_defs)
fresh_variables [{fv_name,fv_info_ptr} : vars] arg_position next_var_number var_heap
# (fresh_vars, last_var_number, var_heap) = fresh_variables vars (inc arg_position) (inc next_var_number) var_heap
var_heap = write_ptr fv_info_ptr (VI_AccVar next_var_number arg_position) var_heap "fresh_variables"
= ([next_var_number : fresh_vars], last_var_number, var_heap)
fresh_variables [] _ next_var_number var_heap
= ([], next_var_number, var_heap)
analyse_functions [fun : funs] cfvog_accu ai fun_defs
#! fun_def = fun_defs.[fun]
# (TransformedBody {tb_args, tb_rhs}) = fun_def.fun_body
ai = { ai & ai_cur_ref_counts = createArray (length tb_args) 0 }
(_, ai) = consumerRequirements tb_rhs ai
ai_cur_ref_counts = ai.ai_cur_ref_counts
ai = { ai & ai_cur_ref_counts={} }
ai_cons_class = update_array_element ai.ai_cons_class fun
(\cc->{ cc & cc_linear_bits=[ ref_count<2 \\ ref_count<-:ai_cur_ref_counts] })
cases_of_vars_for_function = [(a,fun) \\ a<-ai.ai_cases_of_vars_for_function ]
ai = { ai & ai_cons_class=ai_cons_class, ai_cases_of_vars_for_function=[] }
= analyse_functions funs [cases_of_vars_for_function:cfvog_accu] ai fun_defs
where
update_array_element array index transition
# (before, array) = array![index]
= { array & [index]=transition before }
analyse_functions [] cfvog_accu ai fun_defs
= (cfvog_accu, ai, fun_defs)
collect_classifications [] class_env class_subst
= class_env
collect_classifications [fun : funs] class_env class_subst
#! fun_class = class_env.[fun]
# fun_class = determine_classification fun_class class_subst
= collect_classifications funs { class_env & [fun] = fun_class/* ---> (fun, fun_class)*/} class_subst
where
determine_classification cc class_subst
# (cc_size, cc_args) = mapAndLength (skip_indirections class_subst) cc.cc_args
= { cc & cc_size = cc_size, cc_args = cc_args }
skip_indirections class_subst cc
| IsAVariable cc
= skip_indirections class_subst class_subst.[cc]
= cc
mapAndLength f [x : xs]
#! x = f x
(length, xs) = mapAndLength f xs
= (inc length, [x : xs])
mapAndLength f []
= (0, [])
:: *TransformInfo =
{ ti_fun_defs :: !*{# FunDef}
, ti_instances :: !*{! InstanceInfo }
, ti_cons_args :: !{! ConsClasses}
, ti_new_functions :: ![FunctionInfoPtr]
, ti_fun_heap :: !*FunctionHeap
, ti_var_heap :: !*VarHeap
, ti_symbol_heap :: !*ExpressionHeap
, ti_type_heaps :: !*TypeHeaps
, ti_next_fun_nr :: !Index
, ti_cleanup_info :: !CleanupInfo
, ti_recursion_introduced :: !Bool
}
:: ReadOnlyTI =
{ ro_imported_funs :: !{# {# FunType} }
, ro_is_root_case :: !Bool
, ro_fun :: !SymbIdent
, ro_fun_args :: ![FreeVar]
}
class transform a :: !a !ReadOnlyTI !TransformInfo -> (!a, !TransformInfo)
instance transform Expression
where
transform expr=:(App app=:{app_symb,app_args}) ro ti
# (app_args, ti) = transform app_args ro ti
= transformApplication { app & app_args = app_args } [] ro ti
transform appl_expr=:(expr @ exprs) ro ti
# (expr, ti) = transform expr ro ti
(exprs, ti) = transform exprs ro ti
= case expr of
App app
-> transformApplication app exprs ro ti
_
-> (expr @ exprs, ti)
transform (Let lad=:{let_binds, let_expr}) ro ti
# (let_binds, ti) = transform let_binds ro ti
(let_expr, ti) = transform let_expr ro ti
= (Let { lad & let_binds = let_binds, let_expr = let_expr}, ti)
transform (Case case_expr) ro ti
= transformCase case_expr ro ti
transform (Selection opt_type expr selectors) ro ti
# (expr, ti) = transform expr ro ti
= transformSelection opt_type selectors expr ti
transform (DynamicExpr dynamic_expr) ro ti
# (dynamic_expr, ti) = transform dynamic_expr ro ti
= (DynamicExpr dynamic_expr, ti)
transform expr ro ti
= (expr, ti)
neverMatchingCase = { case_expr = EE, case_guards = NoPattern, case_default = No, case_ident = No, case_info_ptr = nilPtr }
instance transform DynamicExpr where
transform dyn=:{dyn_expr} ro ti
# (dyn_expr, ti) = transform dyn_expr ro ti
= ({dyn & dyn_expr = dyn_expr}, ti)
instance transform DynamicPattern where
transform dp=:{dp_rhs} ro ti
# (dp_rhs, ti) = transform dp_rhs ro ti
= ({ dp & dp_rhs = dp_rhs }, ti)
ti_to_unfold_state ti
:== { us_var_heap = ti.ti_var_heap, us_symbol_heap = ti.ti_symbol_heap, us_cleanup_info=ti.ti_cleanup_info }
unfold_state_to_ti us ti
:== { ti & ti_var_heap = us.us_var_heap, ti_symbol_heap = us.us_symbol_heap, ti_cleanup_info=us.us_cleanup_info }
transformCase this_case=:{case_expr,case_guards,case_default,case_ident,case_info_ptr} ro ti
| not do_fusion
= skip_over this_case ro ti
= case case_expr of
Case case_in_case
-> lift_case case_in_case this_case ro ti
App app=:{app_symb,app_args}
# (opt_aci, ti_symbol_heap) = get_opt_active_case_info case_info_ptr ti.ti_symbol_heap
ti = { ti & ti_symbol_heap=ti_symbol_heap }
-> case app_symb.symb_kind of
SK_Constructor cons_index
# algebraicPatterns = getAlgebraicPatterns case_guards
(may_be_match_expr, ti) = match_and_instantiate cons_index app_args algebraicPatterns case_default
ro ti
-> case may_be_match_expr of
Yes match_expr
-> (match_expr, ti)
No
-> (Case neverMatchingCase, ti)
// otherwise it's a function application
_ -> case opt_aci of
Yes aci=:{ aci_arg_pos, aci_opt_unfolder, aci_free_vars }
-> case aci_opt_unfolder of
No | not ro.ro_is_root_case
// ReadOnlyTI
-> possibly_generate_case_function this_case app aci ro ti
# (may_be_unfolded_expr, ti) = tryToUnfoldExpression app_symb app_args ti
-> case may_be_unfolded_expr of
(Yes unfolded_expr)
# ti_symbol_heap = app_EEI_ActiveCase (\aci-> {aci & aci_opt_unfolder=Yes app_symb}) case_info_ptr ti.ti_symbol_heap
ti = { ti & ti_symbol_heap=ti_symbol_heap }
-> transformCase {this_case & case_expr = unfolded_expr } ro ti
No -> skip_over this_case ro ti
Yes unfolder
| not (equal app_symb.symb_kind unfolder.symb_kind)
-> abort ("unrecognized case !!!!!!!!!!!!!!!!!"->>(app_symb.symb_kind, unfolder.symb_kind))
# variables = [ Var {var_name=fv_name, var_info_ptr=fv_info_ptr, var_expr_ptr=nilPtr}
\\ {fv_name, fv_info_ptr} <- ro.ro_fun_args ]
ti = { ti & ti_recursion_introduced = True }
-> (App {app_symb=ro.ro_fun, app_args=replace_at aci_arg_pos app_args variables, app_info_ptr=nilPtr}, ti)
No -> skip_over this_case ro ti
BasicExpr basic_value _
# basicPatterns = getBasicPatterns case_guards
# may_be_match_pattern = dropWhile (\{bp_value} -> bp_value<>basic_value) basicPatterns
| isEmpty may_be_match_pattern
-> case case_default of
Yes default_expr-> (default_expr, ti)
No -> (Case neverMatchingCase, ti)
-> ((hd may_be_match_pattern).bp_expr, ti)
_ -> skip_over this_case ro ti
where
skip_over this_case=:{case_expr,case_guards,case_default} ro ti
# ro_lost_root = { ro & ro_is_root_case = False }
(new_case_expr, ti) = transform case_expr ro_lost_root ti
(new_case_guards, ti) = transform case_guards ro_lost_root ti
(new_case_default, ti) = transform case_default ro_lost_root ti
= (Case { this_case & case_expr=new_case_expr, case_guards=new_case_guards, case_default=new_case_default }, ti)
equal (SK_Function glob_index1) (SK_Function glob_index2)
= glob_index1==glob_index2
equal (SK_GeneratedFunction _ index1) (SK_GeneratedFunction _ index2)
= index1==index2
equal _ _
= False
get_opt_active_case_info case_info_ptr symbol_heap
# (expr_info, symbol_heap) = readPtr case_info_ptr symbol_heap
= case expr_info of
EI_Extended extensions _
-> (lookup extensions, symbol_heap)
_ -> (No, symbol_heap)
where
lookup [] = No
lookup [EEI_ActiveCase aci:t] = Yes aci
lookup [h:t] = lookup t
get_instance_info (SK_Function {glob_object}) instances fun_heap
# (instance_info, instances) = instances![glob_object]
= (instance_info, instances, fun_heap)
get_instance_info (SK_GeneratedFunction fun_info_ptr _) instances fun_heap
# (FI_Function {gf_instance_info, gf_fun_def}, fun_heap) = readPtr fun_info_ptr fun_heap
= (gf_instance_info, instances, fun_heap)
replace_at :: !Int [x] [x] -> [x]
replace_at _ _ []
= abort "compiler bug nr 67 in module trans"
replace_at 0 x l
= x++(drop (length x) l)
replace_at i x [h:t]
= [h : replace_at (dec i ) x t]
// XXX this function has free variables .. and isnt used at all (hehe)
case_of_app_but_no_fold app_symb=:{symb_kind=SK_Constructor cons_index} app_args ti
# algebraicPatterns = getAlgebraicPatterns case_guards
# (may_be_match_expr, ti) = match_and_instantiate cons_index app_args algebraicPatterns case_default ro ti
= case may_be_match_expr of
Yes match_expr
-> (match_expr, ti)
No
-> (Case neverMatchingCase, ti)
case_of_app_but_no_fold app_symb app_args ti
# (may_be_unfolded_expr, ti) = tryToUnfoldExpression app_symb app_args ti
= case may_be_unfolded_expr of
(Yes unfolded_expr)
-> transformCase {this_case & case_expr = unfolded_expr } ro ti
No
# (this_case, ti) = transform this_case ro ti
-> (Case this_case, ti)
getAlgebraicPatterns (AlgebraicPatterns _ algebraicPatterns)
= algebraicPatterns
getBasicPatterns (BasicPatterns _ basicPatterns)
= basicPatterns
lift_case nested_case=:{case_guards,case_default} outer_case ro ti
# default_exists = case case_default of
Yes _ -> True
No -> False
(case_guards, ti) = lift_patterns default_exists case_guards outer_case ro ti
(case_default, ti) = lift_default case_default outer_case ro ti
(EI_CaseType outer_case_type, ti_symbol_heap) = readExprInfo outer_case.case_info_ptr ti.ti_symbol_heap
// the result type of the nested case becomes the result type of the outer case
ti_symbol_heap = overwrite_result_type nested_case.case_info_ptr outer_case_type.ct_result_type ti_symbol_heap
ti = { ti & ti_symbol_heap = ti_symbol_heap }
= (Case {nested_case & case_guards = case_guards, case_default = case_default}, ti)
where
overwrite_result_type case_info_ptr new_result_type ti_symbol_heap
#! (EI_CaseType case_type, ti_symbol_heap) = readExprInfo case_info_ptr ti_symbol_heap
= writeExprInfo case_info_ptr (EI_CaseType { case_type & ct_result_type = new_result_type}) ti_symbol_heap
lift_patterns default_exists (AlgebraicPatterns type case_guards) outer_case ro ti
# guard_exprs = [ ap_expr \\ {ap_expr} <- case_guards ]
# (guard_exprs_with_case, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti
= (AlgebraicPatterns type [ { case_guard & ap_expr=guard_expr } \\ case_guard<-case_guards & guard_expr<-guard_exprs_with_case], ti)
lift_patterns default_exists (BasicPatterns basic_type case_guards) outer_case ro ti
# guard_exprs = [ bp_expr \\ {bp_expr} <- case_guards ]
# (guard_exprs_with_case, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti
= (BasicPatterns basic_type [ { case_guard & bp_expr=guard_expr } \\ case_guard<-case_guards & guard_expr<-guard_exprs_with_case], ti)
lift_patterns_2 False [guard_expr] outer_case ro ti
// if no default pattern exists, then the outer case expression does not have to be copied for the last pattern
# (guard_expr, ti) = transformCase {outer_case & case_expr = guard_expr} ro ti
= ([guard_expr], ti)
lift_patterns_2 default_exists [guard_expr : guard_exprs] outer_case ro ti
# (outer_guards, unfold_state) = unfold outer_case.case_guards (ti_to_unfold_state ti)
ti = unfold_state_to_ti unfold_state ti
# (guard_expr, ti) = transformCase { outer_case & case_expr = guard_expr, case_guards=outer_guards } ro ti
(guard_exprs, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti
= ([guard_expr : guard_exprs], ti)
lift_patterns_2 _ [] _ _ ti
= ([], ti)
lift_default (Yes default_expr) outer_case ro ti
# (default_expr, ti) = transformCase { outer_case & case_expr = default_expr } ro ti
= (Yes default_expr, ti)
lift_default No _ _ ti
= (No, ti)
match_and_instantiate cons_index app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards]
case_default ro ti
| cons_index.glob_module == glob_module && cons_index.glob_object == ds_index
# ti_var_heap = fold2St (\{fv_info_ptr} arg -> writePtr fv_info_ptr (VI_Expression arg)) ap_vars app_args ti.ti_var_heap
// XXX was # (unfolded_ap_expr, unfold_state) = unfold ap_expr (bindVariables ap_vars app_args (ti_to_unfold_state ti))
unfold_state = { us_var_heap = ti_var_heap, us_symbol_heap = ti.ti_symbol_heap, us_cleanup_info=ti.ti_cleanup_info }
(unfolded_ap_expr, unfold_state) = unfold ap_expr unfold_state
(ap_expr, ti) = transform unfolded_ap_expr ro (unfold_state_to_ti unfold_state ti)
= (Yes ap_expr, ti)
= match_and_instantiate cons_index app_args guards case_default ro ti
match_and_instantiate cons_index app_args [guard : guards] case_default ro ti
= match_and_instantiate cons_index app_args guards case_default ro ti
match_and_instantiate cons_index app_args [] default_expr ro ti
= transform default_expr ro ti
possibly_generate_case_function kees app aci=:{aci_free_vars} ro ti
# old_ti_recursion_introduced = ti.ti_recursion_introduced
(free_vars, ti)
= case aci_free_vars of
Yes free_vars
-> (free_vars, ti)
No # fvi = { fvi_var_heap = ti.ti_var_heap, fvi_expr_heap = ti.ti_symbol_heap, fvi_variables = [],
fvi_expr_ptrs = ti.ti_cleanup_info }
{fvi_var_heap, fvi_expr_heap, fvi_variables, fvi_expr_ptrs} = freeVariables (Case kees) fvi
ti = { ti & ti_var_heap = fvi_var_heap, ti_symbol_heap = fvi_expr_heap, ti_cleanup_info = fvi_expr_ptrs }
-> (fvi_variables, ti)
(outer_fun_def, outer_cons_args, ti_fun_defs, ti_fun_heap) = get_fun_def_and_cons_args ro.ro_fun.symb_kind ti.ti_cons_args ti.ti_fun_defs ti.ti_fun_heap
// ti.ti_cons_args shared
outer_arguments = case outer_fun_def.fun_body of
TransformedBody {tb_args} -> tb_args
Expanding args -> args
outer_info_ptrs = [ fv_info_ptr \\ {fv_info_ptr}<-outer_arguments]
free_var_info_ptrs = map (\{v_info_ptr}->v_info_ptr) free_vars
arguments_from_outer_fun = filter (\{fv_info_ptr}->isMember fv_info_ptr free_var_info_ptrs) outer_arguments
lifted_arguments = [ { fv_def_level = undeff, fv_name = v_name, fv_info_ptr = v_info_ptr, fv_count = undeff}
\\ {v_name, v_info_ptr} <- free_vars | not (isMember v_info_ptr outer_info_ptrs)]
all_args = lifted_arguments++arguments_from_outer_fun
(fun_info_ptr, ti_fun_heap) = newPtr FI_Empty ti_fun_heap
fun_ident = { id_name = ro.ro_fun.symb_name.id_name+++"_case", id_info = nilPtr }
fun_symb = { symb_name = fun_ident, symb_kind=SK_GeneratedFunction fun_info_ptr ti.ti_next_fun_nr, symb_arity = length all_args }
new_ro = {ro_imported_funs = ro.ro_imported_funs, ro_is_root_case = True, ro_fun = fun_symb, ro_fun_args = all_args }
ti = { ti & ti_fun_defs = ti_fun_defs, ti_fun_heap = ti_fun_heap, ti_next_fun_nr = inc ti.ti_next_fun_nr, ti_recursion_introduced = False }
(new_expr, ti) = transformCase kees new_ro ti
| ti.ti_recursion_introduced
= generate_case_function new_expr outer_fun_def outer_cons_args new_ro ti
= (new_expr, ti)
where
get_fun_def_and_cons_args (SK_Function {glob_object}) cons_args fun_defs fun_heap
# (fun_def, fun_defs) = fun_defs![glob_object]
= (fun_def, cons_args.[glob_object], fun_defs, fun_heap)
get_fun_def_and_cons_args (SK_GeneratedFunction fun_info_ptr _) cons_args fun_defs fun_heap
# (FI_Function {gf_fun_def, gf_cons_args}, fun_heap) = readPtr fun_info_ptr fun_heap
= (gf_fun_def, gf_cons_args, fun_defs, fun_heap)
generate_case_function new_expr outer_fun_def outer_cons_args {ro_fun=ro_fun=:{symb_kind=SK_GeneratedFunction fun_info_ptr fun_index}, ro_fun_args} ti
# (r_act_vars, ti_var_heap) = foldSt bind_to_fresh_var ro_fun_args ([], ti.ti_var_heap)
act_vars = reverse r_act_vars
us = { us_var_heap = ti_var_heap, us_symbol_heap = ti.ti_symbol_heap, us_cleanup_info=ti.ti_cleanup_info }
(copied_expr, {us_var_heap, us_symbol_heap}) = unfold new_expr us
fun_arity = length ro_fun_args
fun_def = { fun_symb = ro_fun.symb_name
, fun_arity = fun_arity
, fun_priority = NoPrio
, fun_body = TransformedBody { tb_args = ro_fun_args, tb_rhs = copied_expr}
, fun_type = No
, fun_pos = NoPos
, fun_index = fun_index
, fun_kind = FK_Function
, fun_lifted = undeff
, fun_info = { fi_calls = []
, fi_group_index = outer_fun_def.fun_info.fi_group_index
, fi_def_level = undeff
, fi_free_vars = []
, fi_local_vars = []
, fi_dynamics = []
, fi_is_macro_fun = outer_fun_def.fun_info.fi_is_macro_fun
}
}
nr_of_lifted_vars = fun_arity - outer_fun_def.fun_arity
new_cons_args = { cc_size = fun_arity, cc_args = repeatn nr_of_lifted_vars cPassive++outer_cons_args.cc_args,
cc_linear_bits = repeatn nr_of_lifted_vars False++outer_cons_args.cc_linear_bits }
gf = { gf_fun_def = fun_def, gf_instance_info = II_Empty, gf_cons_args = new_cons_args, gf_fun_index = fun_index}
ti_fun_heap = writePtr fun_info_ptr (FI_Function gf) ti.ti_fun_heap
ti = { ti & ti_new_functions = [fun_info_ptr:ti.ti_new_functions], ti_var_heap = us_var_heap, ti_fun_heap = ti_fun_heap, ti_symbol_heap = us_symbol_heap }
= (App { app_symb = ro_fun, app_args = map Var act_vars, app_info_ptr = nilPtr }, ti)
where
bind_to_fresh_var {fv_name, fv_info_ptr} (accu, var_heap)
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
form_var = { fv_name = new_name, fv_info_ptr = info_ptr, fv_count = undeff, fv_def_level = NotALevel }
act_var = { var_name = fv_name, var_info_ptr = new_info_ptr, var_expr_ptr = nilPtr }
= ([act_var:accu], writePtr fv_info_ptr (VI_Expression (Var act_var)) var_heap)
// GGG SymbolType VarId Let BoundVar
undeff :== -1
readExprInfo expr_info_ptr symbol_heap
# (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap
= case expr_info of
EI_Extended _ ei -> (ei, symbol_heap)
_ -> (expr_info, symbol_heap)
writeExprInfo expr_info_ptr new_expr_info symbol_heap
# (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap
= case expr_info of
EI_Extended extensions _ -> writePtr expr_info_ptr (EI_Extended extensions new_expr_info) symbol_heap
_ -> writePtr expr_info_ptr new_expr_info symbol_heap
tryToUnfoldExpression :: !SymbIdent ![Expression] !*TransformInfo -> *(!Optional Expression, ! *TransformInfo)
tryToUnfoldExpression {symb_kind = SK_Function {glob_module,glob_object},symb_arity} app_args
ti=:{ti_fun_defs, ti_var_heap, ti_symbol_heap, ti_cleanup_info}
| glob_module == cIclModIndex
#! fd = ti_fun_defs.[glob_object]
| fd.fun_arity == symb_arity
# (expr, ti_cleanup_info, ti_var_heap, ti_symbol_heap) = unfoldFunction fd.fun_body app_args ti_cleanup_info ti_var_heap ti_symbol_heap
= (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap, ti_cleanup_info=ti_cleanup_info})
= (No, ti)
= (No, ti)
tryToUnfoldExpression {symb_kind = SK_GeneratedFunction fun_ptr fun_index,symb_arity} app_args
ti=:{ti_fun_heap, ti_var_heap, ti_symbol_heap, ti_cleanup_info}
#! fun_info = sreadPtr fun_ptr ti_fun_heap
# (FI_Function {gf_fun_def}) = fun_info
| gf_fun_def.fun_arity == symb_arity
# (expr, ti_cleanup_info, ti_var_heap, ti_symbol_heap) = unfoldFunction gf_fun_def.fun_body app_args ti_cleanup_info ti_var_heap ti_symbol_heap
= (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap, ti_cleanup_info=ti_cleanup_info })
= (No, ti)
tryToUnfoldExpression expr app_args ti
= (No, ti)
unfoldFunction :: !FunctionBody ![Expression] ![ExprInfoPtr] !*VarHeap !*ExpressionHeap -> (!Expression, ![ExprInfoPtr], !*VarHeap, !*ExpressionHeap)
unfoldFunction (TransformedBody {tb_args,tb_rhs}) act_args cleanup_info var_heap symbol_heap
# var_heap = foldr2 (\{fv_info_ptr} arg -> writePtr fv_info_ptr (VI_Expression arg)) var_heap tb_args act_args
us = { us_var_heap = var_heap, us_symbol_heap = symbol_heap, us_cleanup_info=cleanup_info }
(unfolded_rhs, {us_var_heap,us_symbol_heap,us_cleanup_info}) = unfold tb_rhs us
= (unfolded_rhs, us_cleanup_info, us_var_heap, us_symbol_heap)
instance transform Bind a b | transform a
where
transform bind=:{bind_src} ro ti
# (bind_src, ti) = transform bind_src ro ti
= ({ bind & bind_src = bind_src }, ti)
instance transform BasicPattern
where
transform pattern=:{bp_expr} ro ti
# (bp_expr, ti) = transform bp_expr ro ti
= ({ pattern & bp_expr = bp_expr }, ti)
instance transform AlgebraicPattern
where
transform pattern=:{ap_expr} ro ti
# (ap_expr, ti) = transform ap_expr ro ti
= ({ pattern & ap_expr = ap_expr }, ti)
instance transform CasePatterns
where
transform (AlgebraicPatterns type patterns) ro ti
# (patterns, ti) = transform patterns ro ti
= (AlgebraicPatterns type patterns, ti)
transform (BasicPatterns type patterns) ro ti
# (patterns, ti) = transform patterns ro ti
= (BasicPatterns type patterns, ti)
transform (DynamicPatterns patterns) ro ti
# (patterns, ti) = transform patterns ro ti
= (DynamicPatterns patterns, ti)
instance transform Optional a | transform a
where
transform (Yes x) ro ti
# (x, ti) = transform x ro ti
= (Yes x, ti)
transform no ro ti
= (no, ti)
instance transform [a] | transform a
where
transform [x : xs] ro ti
# (x, ti) = transform x ro ti
(xs, ti) = transform xs ro ti
= ([x : xs], ti)
transform [] ro ti
= ([], ti)
compareProducers prods1 prods2
#! nr_of_prods = size prods1
= compare_producers 0 nr_of_prods prods1 prods2
where
compare_producers prod_index nr_of_prods prods1 prods2
| prod_index == nr_of_prods
= Equal
# cmp = prods1.[prod_index] =< prods2.[prod_index]
| cmp == Equal
= compare_producers (inc prod_index) nr_of_prods prods1 prods2
= cmp
instance =< Producer
where
(=<) pr1 pr2
| equal_constructor pr1 pr2
= compare_constructor_arguments pr1 pr2
| less_constructor pr1 pr2
= Smaller
= Greater
where
compare_constructor_arguments (PR_Function _ index1 _) (PR_Function _ index2 _)
= index1 =< index2
compare_constructor_arguments (PR_GeneratedFunction _ index1 _) (PR_GeneratedFunction _ index2 _)
= index1 =< index2
compare_constructor_arguments (PR_Class app1 _ _) (PR_Class app2 _ _)
= app1.app_args =< app2.app_args
compare_constructor_arguments _ _
= Equal
cIsANewFunction :== True
cIsNotANewFunction :== False
tryToFindInstance :: !{! Producer} !InstanceInfo !*(Heap FunctionInfo) -> (!Bool, !FunctionInfoPtr, !InstanceInfo, !.FunctionHeap)
tryToFindInstance new_prods II_Empty fun_heap
# (fun_def_ptr, fun_heap) = newPtr FI_Empty fun_heap
= (cIsANewFunction, fun_def_ptr, II_Node new_prods fun_def_ptr II_Empty II_Empty, fun_heap)
tryToFindInstance new_prods instances=:(II_Node prods fun_def_ptr left right) fun_heap
# cmp = compareProducers new_prods prods
| cmp == Equal
= (cIsNotANewFunction, fun_def_ptr, instances, fun_heap)
| cmp == Greater
# (is_new, new_fun_def_ptr, right, fun_heap) = tryToFindInstance new_prods right fun_heap
= (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap)
# (is_new, new_fun_def_ptr, left, fun_heap) = tryToFindInstance new_prods left fun_heap
= (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap)
/*searchInstance :: !{! Producer} !InstanceInfo -> FunctionInfoPtr
searchInstance prods II_Empty
= nilPtr
searchInstance prods1 (II_Node prods2 fun_info_ptr left right)
# cmp = compareProducers prods1 prods2
| cmp == Equal
= fun_info_ptr
| cmp == Greater
= searchInstance prods1 right
= searchInstance prods1 left
*/
/* Fragen/to do:
- wird die neu generierte Funktion bereits in der folgenden Transformation gebraucht ?
Antwort: Ich verbiete das einfach, indem generierte funktionen,deren Koerper "Expanding" nicht als Produzent
klassifiziert werden.
- wie wird die neu generierte Funktion klassifiziert ? Antwort: Die Klassifikationen werden weitervererbt (auch die linear_bits)
- type attributes
*/
generateFunction :: !FunDef !ConsClasses !{! Producer} !FunctionInfoPtr !{# {# FunType} } !*TransformInfo -> (!Index, !Int, !*TransformInfo)
generateFunction fd=:{fun_body = TransformedBody {tb_args,tb_rhs},fun_info = {fi_group_index}}
{cc_args,cc_linear_bits} prods fun_def_ptr imported_funs
ti=:{ti_var_heap,ti_next_fun_nr,ti_new_functions,ti_fun_heap,ti_symbol_heap,ti_fun_defs,ti_type_heaps,ti_cons_args,ti_cleanup_info}
#!fi_group_index = max_group_index 0 prods fi_group_index ti_fun_defs ti_fun_heap ti_cons_args
# (Yes fun_type=:{st_vars,st_attr_vars,st_args,st_result}) = fd.fun_type
th_vars = foldSt (\tv type_var_heap -> type_var_heap <:= (tv.tv_info_ptr, TVI_Type (TV tv))) st_vars ti_type_heaps.th_vars
th_attrs = foldSt (\av attr_var_heap -> attr_var_heap <:= (av.av_info_ptr, if do_fusion AVI_Empty (AVI_Attr (TA_Var av)))) st_attr_vars ti_type_heaps.th_attrs
(new_fun_args, new_arg_types, new_linear_bits, new_cons_args, th_vars, ti_symbol_heap, ti_fun_defs, ti_fun_heap, ti_var_heap)
= determine_args cc_linear_bits cc_args 0 prods tb_args st_args (st_vars, ti_cons_args, tb_rhs) th_vars
ti_symbol_heap ti_fun_defs ti_fun_heap ti_var_heap
(fresh_arg_types, ti_type_heaps) = substitute new_arg_types { ti_type_heaps & th_vars = th_vars, th_attrs = th_attrs }
(fresh_result_type, ti_type_heaps) = substitute st_result ti_type_heaps
new_fun_type = Yes { fun_type & st_args = fresh_arg_types, st_result = fresh_result_type }
fun_arity = length new_fun_args
new_fd_expanding = { fd & fun_body = Expanding new_fun_args, fun_arity = fun_arity,fun_type=new_fun_type, fun_index = ti_next_fun_nr,
fun_info.fi_group_index = fi_group_index}
new_gen_fd = { gf_fun_def = new_fd_expanding, gf_instance_info = II_Empty, gf_fun_index = ti_next_fun_nr,
gf_cons_args = {cc_args = new_cons_args, cc_size = length new_cons_args, cc_linear_bits=new_linear_bits} }
ti_fun_heap = writePtr fun_def_ptr (FI_Function new_gen_fd) ti_fun_heap
us = { us_var_heap = ti_var_heap, us_symbol_heap = ti_symbol_heap, us_cleanup_info=ti_cleanup_info }
(tb_rhs, {us_var_heap,us_symbol_heap,us_cleanup_info}) = unfold tb_rhs us
ro = { ro_imported_funs = imported_funs
, ro_is_root_case = case tb_rhs of {Case _ -> True; _ -> False}
, ro_fun= { symb_name = fd.fun_symb, symb_kind = SK_GeneratedFunction fun_def_ptr ti_next_fun_nr, symb_arity = fun_arity}
, ro_fun_args = new_fun_args
}
(new_fun_rhs, ti) = transform tb_rhs ro { ti & ti_var_heap = us_var_heap, ti_fun_heap = ti_fun_heap, ti_symbol_heap = us_symbol_heap,
ti_next_fun_nr = inc ti_next_fun_nr, ti_new_functions = [fun_def_ptr : ti_new_functions],
ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_cleanup_info = us_cleanup_info }
new_fd = { new_fd_expanding & fun_body = TransformedBody {tb_args = new_fun_args, tb_rhs = new_fun_rhs} }
= (ti_next_fun_nr, fun_arity, { ti & ti_fun_heap = ti.ti_fun_heap <:= (fun_def_ptr, FI_Function { new_gen_fd & gf_fun_def = new_fd })})
where
determine_args [] [] prod_index producers forms types _ type_var_heap symbol_heap fun_defs fun_heap var_heap
# (vars, var_heap) = new_variables forms var_heap
= (vars, types, [], [], type_var_heap, symbol_heap, fun_defs, fun_heap, var_heap)
determine_args [linear_bit : linear_bits] [cons_arg : cons_args ] prod_index producers [form : forms] [type : types]
outer_type_vars type_var_heap symbol_heap fun_defs fun_heap var_heap
| cons_arg == cActive
# new_args = determine_args linear_bits cons_args (inc prod_index) prods forms types outer_type_vars type_var_heap
symbol_heap fun_defs fun_heap var_heap
= determine_arg producers.[prod_index] form type ((linear_bit,cons_arg),outer_type_vars) new_args
# (vars, types, new_linear_bits, new_cons_args, type_var_heap, symbol_heap, fun_defs, fun_heap, var_heap)
= determine_args linear_bits cons_args prod_index prods forms types outer_type_vars type_var_heap symbol_heap fun_defs fun_heap var_heap
(new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ([{ form & fv_info_ptr = new_info_ptr } : vars], [type : types], [linear_bit : new_linear_bits], [cons_arg : new_cons_args], type_var_heap, symbol_heap, fun_defs,
fun_heap, var_heap <:= (form.fv_info_ptr, VI_Variable form.fv_name new_info_ptr))
where
build_var_args [] form_vars act_vars var_heap
= (form_vars, act_vars, var_heap)
build_var_args [{fv_name=new_name}:new_names] form_vars act_vars var_heap
# (info_ptr, var_heap) = newPtr VI_Empty var_heap
form_var = { fv_name = new_name, fv_info_ptr = info_ptr, fv_count = 0, fv_def_level = NotALevel }
act_var = { var_name = new_name, var_info_ptr = info_ptr, var_expr_ptr = nilPtr }
= build_var_args new_names [form_var : form_vars] [Var act_var : act_vars] var_heap
determine_arg PR_Empty form=:{fv_name,fv_info_ptr} type ((linear_bit,cons_arg),_)
(vars, types, new_linear_bits, new_cons_args, type_var_heap, symbol_heap, fun_defs, fun_heap, var_heap)
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ( [{ form & fv_info_ptr = new_info_ptr } : vars], [ type : types ],
[linear_bit : new_linear_bits], [cons_arg /* was cActive*/ : new_cons_args], type_var_heap, symbol_heap, fun_defs, fun_heap,
var_heap <:= (fv_info_ptr, VI_Variable fv_name new_info_ptr))
determine_arg (PR_Class class_app free_vars class_types) {fv_info_ptr,fv_name} type _
(vars, types, new_linear_bits, new_cons_args, type_var_heap, symbol_heap, fun_defs, fun_heap, var_heap)
= ( mapAppend (\{var_info_ptr,var_name}
-> { fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0 })
free_vars vars
, mapAppend (\_ -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = TE }) free_vars types
, mapAppend (\_ -> True) free_vars new_linear_bits
, mapAppend (\_ -> cActive) free_vars new_cons_args
, bind_class_types type.at_type class_types type_var_heap
, symbol_heap
, fun_defs
, fun_heap
, var_heap <:= (fv_info_ptr, VI_Expression (App class_app))
)
determine_arg producer {fv_info_ptr,fv_name} type (_,(outer_type_vars, ti_cons_args, consumer_body_rhs))
(vars, types, new_linear_bits, new_cons_args, type_var_heap, symbol_heap, fun_defs, fun_heap, var_heap)
# ((symbol, nr_of_applied_args, fun_def, {cc_args, cc_linear_bits}), fun_defs, fun_heap)
= from_function_or_generated_function producer fun_defs fun_heap
(TransformedBody tb) = fun_def.fun_body
(form_vars, act_vars, var_heap) = build_var_args (reverse (take nr_of_applied_args tb.tb_args)) vars [] var_heap
(Yes symbol_type) = fun_def.fun_type
application_type = build_application_type symbol_type nr_of_applied_args
# type_var_heap = createBindingsForUnifiedTypes application_type type (symbol_type.st_vars++outer_type_vars) type_var_heap
= ( form_vars
, (take nr_of_applied_args symbol_type.st_args)++types
, (take nr_of_applied_args cc_linear_bits)++new_linear_bits
, (take nr_of_applied_args cc_args)++new_cons_args
, type_var_heap
, symbol_heap
, fun_defs
, fun_heap
, writePtr fv_info_ptr
(VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr })) var_heap
)
where
from_function_or_generated_function (PR_Function symbol index nr_of_applied_args) fun_defs fun_heap
# (fun_def, fun_defs) = fun_defs![index]
= ((symbol, nr_of_applied_args, fun_def, ti_cons_args.[index]), fun_defs, fun_heap)
from_function_or_generated_function (PR_GeneratedFunction symbol=:{ symb_kind = SK_GeneratedFunction fun_ptr fun_index} _ nr_of_applied_args)
fun_defs fun_heap
# (FI_Function generated_function, fun_heap) = readPtr fun_ptr fun_heap
= ((symbol, nr_of_applied_args, generated_function.gf_fun_def, generated_function.gf_cons_args), fun_defs, fun_heap)
build_application_type :: !SymbolType !Int -> AType
build_application_type symbol_type=:{st_arity, st_result, st_args} nr_of_applied_args
| st_arity==nr_of_applied_args
= st_result
// XXX ask Sjaak, whether this is correct
= foldr (\atype1 atype2->{at_attribute=TA_None, at_annotation=AN_None, at_type=atype1-->atype2})
st_result (drop nr_of_applied_args st_args)
bind_class_types (TA _ context_types) instance_types type_var_heap
= bind_context_types context_types instance_types type_var_heap
where
bind_context_types [atype : atypes] [type : types] type_var_heap
= bind_context_types atypes types (bind_type atype.at_type type type_var_heap)
bind_context_types [] [] type_var_heap
= type_var_heap
bind_class_types _ _ type_var_heap
= type_var_heap
bind_type (TV {tv_info_ptr}) type type_var_heap
= type_var_heap <:= (tv_info_ptr, TVI_Type type)
bind_type (TA _ arg_types1) (TA _ arg_types2) type_var_heap
= bind_types arg_types1 arg_types2 type_var_heap
bind_type _ _ type_var_heap
= type_var_heap
bind_types [type1 : types1] [type2 : types2] type_var_heap
= bind_types types1 types2 (bind_type type1.at_type type2.at_type type_var_heap)
bind_types [] [] type_var_heap
= type_var_heap
new_variables [] var_heap
= ([], var_heap)
new_variables [form=:{fv_name,fv_info_ptr}:forms] var_heap
# (vars, var_heap) = new_variables forms var_heap
(new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ([{ form & fv_info_ptr = new_info_ptr } : vars], writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) var_heap)
max_group_index prod_index producers current_max fun_defs fun_heap cons_args
| prod_index == size producers
= current_max
# current_max = max_group_index_of_producer producers.[prod_index] current_max fun_defs fun_heap cons_args
= max_group_index (inc prod_index) producers current_max fun_defs fun_heap cons_args
max_group_index_of_producer PR_Empty current_max fun_defs fun_heap cons_args
= current_max
max_group_index_of_producer (PR_Class {app_args} _ _) current_max fun_defs fun_heap cons_args
= max_group_index_of_members app_args current_max fun_defs fun_heap cons_args
max_group_index_of_producer (PR_Function _ fun_index _) current_max fun_defs fun_heap cons_args
# (fun_def, fun_defs) = fun_defs![fun_index]
= max fun_def.fun_info.fi_group_index current_max
max_group_index_of_producer (PR_GeneratedFunction { symb_kind = SK_GeneratedFunction fun_ptr fun_index} _ _)
current_max fun_defs fun_heap cons_args
# (FI_Function generated_function) = sreadPtr fun_ptr fun_heap
fun_def = generated_function.gf_fun_def
= max fun_def.fun_info.fi_group_index current_max
max_group_index_of_producer prod current_max fun_defs fun_heap cons_args
= abort ("trans.icl: max_group_index_of_producer" ---> prod)
max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_name, symb_kind = SK_Function { glob_object = fun_index, glob_module = mod_index}}})
| mod_index == cIclModIndex
| fun_index < size cons_args
# {fun_info = {fi_group_index}} = fun_defs.[fun_index]
= max fi_group_index current_max
= current_max
= current_max
max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_GeneratedFunction fun_ptr fun_index }})
# (FI_Function {gf_fun_def={fun_info = {fi_group_index}}}) = sreadPtr fun_ptr fun_heap
= max fi_group_index current_max
max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_Constructor _}, app_args})
= max_group_index_of_members app_args current_max fun_defs fun_heap cons_args
max_group_index_of_members members current_max fun_defs fun_heap cons_args
= foldl (max_group_index_of_member fun_defs fun_heap cons_args) current_max members
(-!->) infix :: !.a !b -> .a | <<< b
(-!->) a b = a ---> b
createBindingsForUnifiedTypes :: !AType !AType !.[TypeVar] *TypeVarHeap -> .TypeVarHeap;
createBindingsForUnifiedTypes type_1 type_2 all_type_vars type_var_heap
# type_var_heap = foldSt (\tv type_var_heap -> type_var_heap <:= (tv.tv_info_ptr, TVI_Empty)) all_type_vars type_var_heap
# type_var_heap = bind_and_unify_atypes type_1 type_2 type_var_heap
// type_var_heap = type_var_heap -!-> ""
// type_var_heap = foldSt trace_type_var all_type_vars type_var_heap
type_var_heap = foldSt (\ a b -> snd (set_root_tvi_to_non_variable_type_or_fresh_type_var a b)) all_type_vars type_var_heap
// type_var_heap = type_var_heap -!-> ""
// type_var_heap = foldSt trace_type_var all_type_vars type_var_heap
type_var_heap = foldSt bind_to_fresh_type_variable_or_non_variable_type all_type_vars type_var_heap
// type_var_heap = type_var_heap -!-> ""
// type_var_heap = foldSt trace_type_var all_type_vars type_var_heap
= type_var_heap
where
bind_and_unify_types (TV tv_1) (TV tv_2) type_var_heap
# (root_1, type_var_heap) = get_root tv_1 type_var_heap
(root_2, type_var_heap) = get_root tv_2 type_var_heap
maybe_root_tv_1 = only_tv root_1
maybe_root_tv_2 = only_tv root_2
= case (maybe_root_tv_1, maybe_root_tv_2) of
(Yes root_tv_1, No)
-> bind_root_variable_to_type root_tv_1 root_2 type_var_heap
(No, Yes root_tv_2)
-> bind_root_variable_to_type root_tv_2 root_1 type_var_heap
(Yes root_tv_1, Yes root_tv_2)
| root_tv_1.tv_info_ptr==root_tv_2.tv_info_ptr
-> type_var_heap
-> bind_roots_together root_tv_1 root_2 type_var_heap
(No, No)
-> type_var_heap
bind_and_unify_types (TV tv_1) type type_var_heap
| not (is_non_variable_type type)
= abort "compiler error in trans.icl: assertion failed (1)"
= bind_variable_to_type tv_1 type type_var_heap
bind_and_unify_types type (TV tv_1) type_var_heap
| not (is_non_variable_type type)
= abort "compiler error in trans.icl: assertion failed (2)"
= bind_variable_to_type tv_1 type type_var_heap
bind_and_unify_types (TA _ arg_types1) (TA _ arg_types2) type_var_heap
= bind_and_unify_atype_lists arg_types1 arg_types2 type_var_heap
bind_and_unify_types (l1 --> r1) (l2 --> r2) type_var_heap
= bind_and_unify_atypes r1 r2 (bind_and_unify_atypes l1 l2 type_var_heap)
bind_and_unify_types (TB _) (TB _) type_var_heap
= type_var_heap
bind_and_unify_types ((CV l1) :@: r1) ((CV l2) :@: r2) type_var_heap
= bind_and_unify_atype_lists r1 r2 (bind_and_unify_types (TV l1) (TV l2) type_var_heap)
// bind_and_unify_types x y _
// = abort ("bind_and_unify_types"--->(x,y))
bind_and_unify_atype_lists [] [] type_var_heap
= type_var_heap
bind_and_unify_atype_lists [x:xs] [y:ys] type_var_heap
= bind_and_unify_atype_lists xs ys (bind_and_unify_atypes x y type_var_heap)
bind_and_unify_atypes {at_type=t1} {at_type=t2} type_var_heap
= bind_and_unify_types t1 t2 type_var_heap
set_root_tvi_to_non_variable_type_or_fresh_type_var :: !TypeVar !*(Heap TypeVarInfo) -> *(TypeVarInfo,*Heap TypeVarInfo);
set_root_tvi_to_non_variable_type_or_fresh_type_var this_tv type_var_heap
# (tv_info, type_var_heap) = readPtr this_tv.tv_info_ptr type_var_heap
= case tv_info of
(TVI_FreshTypeVar fresh_type_var)
-> (tv_info, type_var_heap)
TVI_Empty
# (fresh_type_var, type_var_heap) = allocate_fresh_type_variable this_tv.tv_name type_var_heap
type_var_heap = type_var_heap <:= (fresh_type_var.tv_info_ptr, TVI_Empty)
type_var_heap = type_var_heap <:= (this_tv.tv_info_ptr, TVI_FreshTypeVar fresh_type_var)
-> (TVI_FreshTypeVar fresh_type_var, type_var_heap)
(TVI_Type type)
| is_non_variable_type type
-> (tv_info, type_var_heap)
-> case type of
(TV next_tv)
# (destination, type_var_heap) = set_root_tvi_to_non_variable_type_or_fresh_type_var next_tv type_var_heap
type_var_heap = type_var_heap <:= (this_tv.tv_info_ptr, destination)
-> (destination, type_var_heap)
bind_to_fresh_type_variable_or_non_variable_type :: !TypeVar !*(Heap TypeVarInfo) -> .Heap TypeVarInfo;
bind_to_fresh_type_variable_or_non_variable_type {tv_info_ptr} type_var_heap
# (tv_info, type_var_heap) = readPtr tv_info_ptr type_var_heap
= case tv_info of
(TVI_FreshTypeVar fresh_variable)
-> type_var_heap <:= (tv_info_ptr,TVI_Type (TV fresh_variable))
(TVI_Type type)
-> type_var_heap
allocate_fresh_type_variable new_name type_var_heap
# new_ident = { id_name=new_name, id_info=nilPtr }
(new_tv_info_ptr, type_var_heap) = newPtr TVI_Empty type_var_heap
= ({ tv_name=new_name, tv_info_ptr=new_tv_info_ptr }, type_var_heap)
only_tv :: u:Type -> Optional u:TypeVar;
only_tv (TV tv) = Yes tv
only_tv _ = No
is_non_variable_type (TA _ _) = True
is_non_variable_type (_ --> _) = True
is_non_variable_type (_ :@: _) = True
is_non_variable_type (TB _) = True
is_non_variable_type _ = False
bind_variable_to_type tv type type_var_heap
# (root, type_var_heap) = get_root tv type_var_heap
= case (only_tv root) of
(Yes tv) -> bind_root_variable_to_type tv type type_var_heap
No -> type_var_heap
bind_root_variable_to_type {tv_info_ptr} type type_var_heap
= type_var_heap <:= (tv_info_ptr, TVI_Type type)
bind_roots_together :: TypeVar Type *(Heap TypeVarInfo) -> .Heap TypeVarInfo;
bind_roots_together root_tv_1 root_type_2 type_var_heap
= type_var_heap <:= (root_tv_1.tv_info_ptr, TVI_Type root_type_2)
get_root :: TypeVar *(Heap TypeVarInfo) -> (Type,.Heap TypeVarInfo);
get_root this_tv type_var_heap
# (tv_info, type_var_heap) = readPtr this_tv.tv_info_ptr type_var_heap
= case tv_info of
TVI_Empty
-> (TV this_tv, type_var_heap)
(TVI_Type type)
| is_non_variable_type type
-> (type, type_var_heap)
-> case type of
(TV next_tv) -> get_root next_tv type_var_heap
// XXX for tracing
trace_type_var tv type_var_heap
= trace_type_vars tv (type_var_heap -!-> "TYPE VARIABLE")
trace_type_vars this_tv type_var_heap
# type_var_heap = type_var_heap -!-> this_tv
# (tv_info, type_var_heap) = readPtr this_tv.tv_info_ptr type_var_heap
= case tv_info of
TVI_Empty
-> type_var_heap
(TVI_Type type)
| is_non_variable_type type
-> (type_var_heap -!-> ("TVI_Type", type))
-> case type of
(TV next_tv) -> trace_type_vars next_tv type_var_heap
(TVI_FreshTypeVar root_type_var)
-> type_var_heap -!-> ("TVI_FreshTypeVar",root_type_var)
transformFunctionApplication fun_def instances cc=:{cc_size, cc_args, cc_linear_bits} app=:{app_symb,app_args} extra_args ro ti
# (app_symb, app_args, extra_args) = complete_application app_symb fun_def.fun_arity app_args extra_args
| cc_size > 0
# (producers, new_args, ti) = determineProducers fun_def.fun_info.fi_is_macro_fun cc_linear_bits cc_args app_args
0 (createArray cc_size PR_Empty) ti
| containsProducer cc_size producers
# (is_new, fun_def_ptr, instances, ti_fun_heap) = tryToFindInstance producers instances ti.ti_fun_heap
| is_new
# (fun_index, fun_arity, ti) = generateFunction fun_def cc producers fun_def_ptr ro.ro_imported_funs
(update_instance_info app_symb.symb_kind instances { ti & ti_fun_heap = ti_fun_heap })
app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr fun_index, symb_arity = length new_args}
(app_symb, app_args, extra_args) = complete_application app_symb fun_arity new_args extra_args
= (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti)
# (FI_Function {gf_fun_index, gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap
app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr gf_fun_index, symb_arity = length new_args}
(app_symb, app_args, extra_args) = complete_application app_symb gf_fun_def.fun_arity new_args extra_args
= (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, {ti & ti_fun_heap = ti_fun_heap })
= (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti)
= (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti)
where
update_instance_info (SK_Function {glob_object}) instances ti=:{ti_instances}
= { ti & ti_instances = { ti_instances & [glob_object] = instances } }
update_instance_info (SK_GeneratedFunction fun_def_ptr _) instances ti=:{ti_fun_heap}
# (FI_Function fun_info, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap
= { ti & ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function { fun_info & gf_instance_info = instances })}
complete_application symb form_arity args []
= (symb, args, [])
complete_application symb=:{symb_arity} form_arity args extra_args
# arity_diff = min (form_arity - symb_arity) (length extra_args)
= ({ symb & symb_arity = symb_arity + arity_diff }, args ++ take arity_diff extra_args, drop arity_diff extra_args)
build_application app []
= App app
build_application app extra_args
= App app @ extra_args
transformApplication :: !App ![Expression] !ReadOnlyTI !*TransformInfo -> *(!Expression,!*TransformInfo)
transformApplication app=:{app_symb=symb=:{symb_kind = SK_Function {glob_module, glob_object},symb_arity}, app_args} extra_args
ro ti=:{ti_cons_args,ti_instances,ti_fun_defs}
| glob_module == cIclModIndex
| glob_object < size ti_cons_args
#! cons_class = ti_cons_args.[glob_object]
instances = ti_instances.[glob_object]
fun_def = ti_fun_defs.[glob_object]
= transformFunctionApplication fun_def instances cons_class app extra_args ro ti
// It seems as if we have an array function
| isEmpty extra_args
= (App app, ti)
= (App { app & app_symb = { symb & symb_arity = symb_arity + length extra_args}, app_args = app_args ++ extra_args}, ti)
// This function is imported
| isEmpty extra_args
= (App app, ti)
# ar_diff = ro.ro_imported_funs.[glob_module].[glob_object].ft_arity - symb_arity
nr_of_extra_args = length extra_args
| nr_of_extra_args <= ar_diff
= (App {app & app_args = app_args ++ extra_args, app_symb = { symb & symb_arity = symb_arity + nr_of_extra_args }}, ti)
= (App {app & app_args = app_args ++ take ar_diff extra_args, app_symb = { symb & symb_arity = symb_arity + ar_diff }} @
drop ar_diff extra_args, ti)
// XXX linear_bits field has to be added for generated functions
transformApplication app=:{app_symb={symb_kind = SK_GeneratedFunction fun_def_ptr fun_index}} extra_args ro ti=:{ti_fun_heap}
# (FI_Function {gf_fun_def,gf_instance_info,gf_cons_args}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap
= transformFunctionApplication gf_fun_def gf_instance_info gf_cons_args app extra_args ro { ti & ti_fun_heap = ti_fun_heap }
transformApplication app [] ro ti
= (App app, ti)
transformApplication app extra_args ro ti
= (App app @ extra_args, ti)
transformSelection opt_type [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti
= transform_selections selectors (app_args !! field_index) ti
where
transform_selections [] expr ti
= (expr, ti)
transform_selections [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti
= transform_selections selectors (app_args !! field_index) ti
transform_selections selectors expr ti
= (Selection No expr selectors, ti)
transformSelection opt_type selectors expr ti
= (Selection opt_type expr selectors, ti)
// XXX store linear_bits and cc_args together ?
determineProducers :: !Bool ![Bool] ![Int] ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer},![Expression],!*TransformInfo)
determineProducers _ _ _ [] _ producers ti
= (producers, [], ti)
determineProducers is_applied_to_macro_fun [linear_bit : linear_bits] [ cons_arg : cons_args ] [ arg : args ] prod_index producers ti
| cons_arg == cActive
# (producers, new_args, ti) = determineProducers is_applied_to_macro_fun linear_bits cons_args args (inc prod_index) producers ti
= determine_producer is_applied_to_macro_fun linear_bit arg new_args prod_index producers ti
# (producers, new_args, ti) = determineProducers is_applied_to_macro_fun linear_bits cons_args args prod_index producers ti
= (producers, [arg : new_args], ti)
where
determine_producer is_applied_to_macro_fun linear_bit arg=:(App app=:{app_info_ptr}) new_args prod_index producers ti
| isNilPtr app_info_ptr
= determineProducer is_applied_to_macro_fun linear_bit app EI_Empty new_args prod_index producers ti
// XXX XXX was = (producers, [arg : new_args], ti)
# (app_info, ti_symbol_heap) = readPtr app_info_ptr ti.ti_symbol_heap
= determineProducer is_applied_to_macro_fun linear_bit app app_info new_args prod_index producers { ti & ti_symbol_heap = ti_symbol_heap }
determine_producer _ _ arg new_args prod_index producers ti
= (producers, [arg : new_args], ti)
determineProducer :: !Bool !Bool !App !ExprInfo ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer}, ![Expression], !*TransformInfo)
// XXX check for linear_bit also in case of a constructor ?
determineProducer _ _ app=:{app_symb = symb=:{symb_kind = SK_Constructor _}, app_args} (EI_ClassTypes types) new_args prod_index producers ti
# (app_args, (new_vars, ti_var_heap)) = renewVariables app_args ([], ti.ti_var_heap)
(new_args, ti_var_heap) = mapAppendSt retrieve_old_var new_vars new_args ti_var_heap
= ({ producers & [prod_index] = PR_Class { app & app_args = app_args } new_vars types}, new_args, { ti & ti_var_heap = ti_var_heap })
where
retrieve_old_var {var_info_ptr} var_heap
#! var_info = sreadPtr var_info_ptr var_heap
# (VI_Forward var) = var_info
= (Var var, writePtr var_info_ptr VI_Empty (writePtr var.var_info_ptr VI_Empty var_heap))
// XXX /*
determineProducer is_applied_to_macro_fun linear_bit app=:{app_symb = symb=:{symb_kind = SK_Function { glob_module, glob_object }}, app_args} _
new_args prod_index producers ti
| glob_module <> cIclModIndex
= (producers, [App app : new_args ], ti)
# (fun_def, ti_fun_defs) = (ti.ti_fun_defs)![glob_object]
ti = { ti & ti_fun_defs=ti_fun_defs }
# is_curried = fun_def.fun_arity<>length app_args
is_good_producer = (implies is_curried is_applied_to_macro_fun) && (implies (not is_curried) (linear_bit && do_fusion))
| is_good_producer
// curried applications may be fused with non linear consumers in functions local to a macro
= ({ producers & [prod_index] = PR_Function symb glob_object (length app_args)}, app_args ++ new_args, ti)
= (producers, [App app : new_args ], ti)
determineProducer is_applied_to_macro_fun linear_bit app=:{app_symb = symb=:{ symb_kind = SK_GeneratedFunction fun_ptr fun_index}, app_args} _
new_args prod_index producers ti
# (FI_Function {gf_fun_def}, ti_fun_heap) = readPtr fun_ptr ti.ti_fun_heap
ti = { ti & ti_fun_heap=ti_fun_heap }
# is_curried = gf_fun_def.fun_arity<>length app_args
is_good_producer = (implies is_curried is_applied_to_macro_fun) && (implies (not is_curried) (linear_bit && do_fusion))
| is_good_producer
// curried applications may be fused with non linear consumers in functions local to a macro
= case gf_fun_def.fun_body of
Expanding _ -> (producers, [App app : new_args ], ti)
_ -> ({ producers & [prod_index] = PR_GeneratedFunction symb fun_index (length app_args)}, app_args ++ new_args, ti)
= (producers, [App app : new_args ], ti)
/* MW..
| linear_bit
# (FI_Function {gf_fun_def}, ti_fun_heap) = readPtr fun_ptr ti_fun_heap
ti = { ti & ti_fun_heap=ti_fun_heap }
= case gf_fun_def.fun_body of
Expanding -> (producers, [App app : new_args ], ti)
// ..MW
_ -> ({ producers & [prod_index] = PR_GeneratedFunction symb fun_index (length app_args)}, app_args ++ new_args, ti)
= (producers, [App app : new_args ], ti)
*/
// XXX determineProducer {app_symb = symb=:{symb_kind = SK_Constructor glob_index}, app_args} new_args prod_index producers ti
// = ({ producers & [prod_index] = PR_Constructor symb app_args}, new_args, ti)
// XXX */
determineProducer _ _ app _ new_args _ producers ti
= (producers, [App app : new_args ], ti)
/*
verify_class_members [ App {app_symb, app_args} : mems]
= verify_class_members app_args && verify_class_members mems
verify_class_members [ _ : mems]
= False
verify_class_members []
= True
verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions}
| fun_nr < size ti_fun_defs
#! fd = ti_fun_defs.[fun_nr]
= (True, ti)
= (verify_new_function fun_nr act_arity ti_new_functions, ti)
where
verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions]
| fun_nr == fun_index
= True
= verify_new_function fun_nr act_arity new_functions
verify_new_function fun_nr _ []
= False
/*
verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions}
| fun_nr < size ti_fun_defs
#! fd = ti_fun_defs.[fun_nr]
= (fd.fun_arity > act_arity, ti)
= (verify_new_function fun_nr act_arity ti_new_functions, ti)
where
verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions]
| fun_nr == fun_index
= fun_arity > act_arity
= verify_new_function fun_nr act_arity new_functions
verify_new_function fun_nr _ []
= False ---> fun_nr
*/
*/
containsProducer prod_index producers
| prod_index == 0
= False
#! prod_index = dec prod_index
= is_a_producer producers.[prod_index] || containsProducer prod_index producers
where
is_a_producer PR_Empty = False
is_a_producer _ = True
class renewVariables a :: !a !(![BoundVar], !*VarHeap) -> (!a, !(![BoundVar], !*VarHeap))
instance renewVariables Expression
where
renewVariables (Var var=:{var_info_ptr}) (new_vars, var_heap)
#! var_info = sreadPtr var_info_ptr var_heap
= case var_info of
VI_Forward new_var
-> (Var { var & var_info_ptr = new_var.var_info_ptr }, (new_vars, var_heap))
_
# (new_info_ptr, var_heap) = newPtr (VI_Forward var) var_heap
new_var = { var & var_info_ptr = new_info_ptr }
var_heap = writePtr var_info_ptr (VI_Forward new_var) var_heap
-> (Var new_var, ([new_var : new_vars], var_heap))
renewVariables (App app=:{app_args}) state
# (app_args, state) = renewVariables app_args state
= (App { app & app_args = app_args }, state)
renewVariables expr state
= (expr, state)
instance renewVariables [a] | renewVariables a
where
renewVariables l state = mapSt renewVariables l state
:: ImportedConstructors :== [Global Index]
transformGroups :: !CleanupInfo !*{! Group} !*{#FunDef} !{!.ConsClasses} !{# CommonDefs} !{# {# FunType} } !*VarHeap !*TypeHeaps !*ExpressionHeap
-> (!*{! Group}, !*{#FunDef}, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap)
transformGroups cleanup_info groups fun_defs cons_args common_defs imported_funs var_heap type_heaps symbol_heap
#! (nr_of_funs, fun_defs) = usize fun_defs
# imported_types = {com_type_defs \\ {com_type_defs} <-: common_defs }
(groups, imported_types, collected_imports, ti)
= transform_groups 0 groups common_defs imported_funs imported_types []
{ti_fun_defs = fun_defs, ti_instances = createArray nr_of_funs II_Empty,
ti_cons_args = cons_args, ti_new_functions = [], ti_fun_heap = newHeap, ti_var_heap = var_heap,
ti_symbol_heap = symbol_heap, ti_type_heaps = type_heaps, ti_next_fun_nr = nr_of_funs, ti_cleanup_info = cleanup_info,
ti_recursion_introduced = False }
{ti_fun_defs,ti_new_functions,ti_var_heap,ti_symbol_heap,ti_fun_heap,ti_next_fun_nr,ti_type_heaps,ti_cleanup_info} = ti
(groups, new_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap)
= foldSt (add_new_function_to_group common_defs ti_fun_heap) ti_new_functions
(groups, [], imported_types, collected_imports, ti_type_heaps, ti_var_heap)
# ti_symbol_heap = foldSt cleanup ti_cleanup_info ti_symbol_heap
= ( groups, { fundef \\ fundef <- [ fundef \\ fundef <-: ti_fun_defs ] ++ new_fun_defs }, imported_types, collected_imports,
ti_var_heap, ti_type_heaps, ti_symbol_heap)
where
transform_groups group_nr groups common_defs imported_funs imported_types collected_imports ti
| group_nr < size groups
#! group = groups.[group_nr]
# {group_members} = group
# (ti_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) = foldSt (convert_function_type common_defs) group_members
(ti.ti_fun_defs, imported_types, collected_imports, ti.ti_type_heaps, ti.ti_var_heap)
= transform_groups (inc group_nr) groups common_defs imported_funs imported_types collected_imports
(foldSt (transform_function imported_funs) group_members
{ ti & ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_var_heap = ti_var_heap })
= (groups, imported_types, collected_imports, ti)
transform_function imported_funs fun ti=:{ti_fun_defs}
#! fun_def = ti_fun_defs.[fun]
# {fun_body = TransformedBody tb} = fun_def
ro = { ro_imported_funs = imported_funs
, ro_is_root_case = case tb of {{tb_rhs=Case _} -> True; _ -> False}
, ro_fun = fun_def_to_symb_ident fun fun_def
, ro_fun_args = tb.tb_args
}
(fun_rhs, ti) = transform tb.tb_rhs ro ti
= { ti & ti_fun_defs = {ti.ti_fun_defs & [fun] = { fun_def & fun_body = TransformedBody { tb & tb_rhs = fun_rhs }}}}
where
fun_def_to_symb_ident fun_index {fun_symb,fun_arity}
= { symb_name=fun_symb, symb_kind=SK_Function {glob_object=fun_index, glob_module=cIclModIndex } , symb_arity=fun_arity }
add_new_function_to_group :: !{# CommonDefs} !FunctionHeap !FunctionInfoPtr !(!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
-> (!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
add_new_function_to_group common_defs ti_fun_heap fun_ptr (groups, fun_defs, imported_types, collected_imports, type_heaps, var_heap)
# (FI_Function {gf_fun_def,gf_fun_index}) = sreadPtr fun_ptr ti_fun_heap
group_index = gf_fun_def.fun_info.fi_group_index
# (Yes ft=:{st_args,st_result}) = gf_fun_def.fun_type
((st_result,st_args), {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs (st_result,st_args)
{ ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps = type_heaps, ets_var_heap = var_heap }
#! group = groups.[group_index]
= ({ groups & [group_index] = { group & group_members = [gf_fun_index : group.group_members]} },
[ { gf_fun_def & fun_type = Yes { ft & st_result = st_result, st_args = st_args }} : fun_defs],
ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap)
convert_function_type common_defs fun_index (fun_defs, imported_types, collected_imports, type_heaps, var_heap)
# (fun_def=:{fun_type = Yes fun_type}, fun_defs) = fun_defs![fun_index]
(fun_type, imported_types, collected_imports, type_heaps, var_heap)
= convertSymbolType common_defs fun_type imported_types collected_imports type_heaps var_heap
= ({ fun_defs & [fun_index] = { fun_def & fun_type = Yes fun_type }}, imported_types, collected_imports, type_heaps, var_heap)
cleanup expr_info_ptr symbol_heap
# (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap
= case expr_info of
EI_Extended _ expr_info -> writePtr expr_info_ptr expr_info symbol_heap
_ -> symbol_heap
add_extended_expr_info expr_info_ptr extension expr_info_heap
# (expr_info, expr_info_heap) = readPtr expr_info_ptr expr_info_heap
= case expr_info of
EI_Extended extensions ei
-> expr_info_heap <:= (expr_info_ptr, EI_Extended [extension:extensions] ei)
ei -> expr_info_heap <:= (expr_info_ptr, EI_Extended [extension] ei)
convertSymbolType :: !{# CommonDefs} !SymbolType !*{#{# CheckedTypeDef}} !ImportedConstructors !*TypeHeaps !*VarHeap
-> (!SymbolType, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
convertSymbolType common_defs st imported_types collected_imports type_heaps var_heap
# (st, {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs st
{ ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps= type_heaps, ets_var_heap = var_heap }
= (st, ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap)
:: ExpandTypeState =
{ ets_type_defs :: !.{#{#CheckedTypeDef}}
, ets_collected_conses :: !ImportedConstructors
, ets_type_heaps :: !.TypeHeaps
, ets_var_heap :: !.VarHeap
}
class expandSynTypes a :: !{# CommonDefs} !a !*ExpandTypeState -> (!a, !*ExpandTypeState)
/*
class expandSynTypes a :: !a (!*{#{#CheckedTypeDef}}, !*TypeHeaps) -> (!a, (!*{#{#CheckedTypeDef}}, !*TypeHeaps))
*/
instance expandSynTypes SymbolType
where
expandSynTypes common_defs st=:{st_args,st_result,st_context} ets
# ((st_args,st_result), ets) = expandSynTypes common_defs (st_args,st_result) ets
# st_args = mapAppend (add_types_of_dictionary common_defs) st_context st_args
= ({st & st_args = st_args, st_result = st_result, st_arity = length st_args, st_context = [] }, ets)
where
add_types_of_dictionary common_defs {tc_class = {glob_module, glob_object={ds_index}}, tc_types}
# {class_arity, class_dictionary={ds_ident,ds_index}} = common_defs.[glob_module].com_class_defs.[ds_index]
dict_type_symb = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident class_arity
= { at_attribute = TA_Multi, at_annotation = AN_Strict, at_type = TA dict_type_symb (
map (\type -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = type }) tc_types) }
instance expandSynTypes Type
where
expandSynTypes common_defs (TA type_symb=:{type_index={glob_object,glob_module},type_name} types) ets=:{ets_type_defs}
# ({td_rhs,td_name,td_args},ets_type_defs) = ets_type_defs![glob_module].[glob_object]
ets = { ets & ets_type_defs = ets_type_defs }
= case td_rhs of
SynType rhs_type
# (type, ets_type_heaps) = substitute rhs_type.at_type (fold2St bind_var_and_attr td_args types ets.ets_type_heaps)
// ---> (td_name, td_args, rhs_type.at_type))
-> expandSynTypes common_defs type { ets & ets_type_heaps = ets_type_heaps }
_
# (types, ets) = expandSynTypes common_defs types ets
| glob_module == cIclModIndex
-> (TA type_symb types, ets)
-> (TA type_symb types, collect_imported_constructors common_defs glob_module td_rhs ets)
where
bind_var_and_attr { atv_attribute = TA_Var {av_info_ptr}, atv_variable = {tv_info_ptr} } {at_attribute,at_type} type_heaps=:{th_vars,th_attrs}
= { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type), th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr at_attribute) }
bind_var_and_attr { atv_variable = {tv_info_ptr}} {at_type} type_heaps=:{th_vars}
= { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type) }
collect_imported_constructors common_defs mod_index (RecordType {rt_constructor}) ets=:{ets_collected_conses,ets_var_heap}
# (ets_collected_conses, ets_var_heap)
= collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs rt_constructor (ets_collected_conses, ets_var_heap)
= { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap }
collect_imported_constructors common_defs mod_index (AlgType constructors) ets=:{ets_collected_conses,ets_var_heap}
# (ets_collected_conses, ets_var_heap)
= foldSt (collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs) constructors (ets_collected_conses, ets_var_heap)
= { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap }
collect_imported_constructors common_defs mod_index _ ets
= ets
collect_imported_constructor mod_index cons_defs {ds_index} (collected_conses, var_heap)
# {cons_type_ptr} = cons_defs.[ds_index]
(type_info, var_heap) = readPtr cons_type_ptr var_heap
| has_been_collected (sreadPtr cons_type_ptr var_heap)
= (collected_conses, var_heap)
= ([{ glob_module = mod_index, glob_object = ds_index } : collected_conses ], var_heap <:= (cons_type_ptr, VI_Used))
has_been_collected VI_Used = True
has_been_collected (VI_ExpandedType _) = True
has_been_collected _ = False
expandSynTypes common_defs (arg_type --> res_type) ets
# ((arg_type, res_type), ets) = expandSynTypes common_defs (arg_type, res_type) ets
= (arg_type --> res_type, ets)
expandSynTypes common_defs (cons_var :@: types) ets
# (types, ets) = expandSynTypes common_defs types ets
= (cons_var :@: types, ets)
expandSynTypes common_defs type ets
= (type, ets)
instance expandSynTypes [a] | expandSynTypes a
where
expandSynTypes common_defs list ets
= mapSt (expandSynTypes common_defs) list ets
instance expandSynTypes (a,b) | expandSynTypes a & expandSynTypes b
where
expandSynTypes common_defs tuple ets
= app2St (expandSynTypes common_defs, expandSynTypes common_defs) tuple ets
instance expandSynTypes AType
where
expandSynTypes common_defs atype=:{at_type} ets
# (at_type, ets) = expandSynTypes common_defs at_type ets
= ({ atype & at_type = at_type }, ets)
:: FreeVarInfo =
{ fvi_var_heap :: !.VarHeap
, fvi_expr_heap :: !.ExpressionHeap
, fvi_variables :: ![VarId]
, fvi_expr_ptrs :: ![ExprInfoPtr]
}
class freeVariables expr :: !expr !*FreeVarInfo -> !*FreeVarInfo
instance freeVariables [a] | freeVariables a
where
freeVariables list fvi
= foldSt freeVariables list fvi
instance freeVariables (Bind a b) | freeVariables a
where
freeVariables {bind_src} fvi
= freeVariables bind_src fvi
instance freeVariables (Optional a) | freeVariables a
where
freeVariables (Yes x) fvi
= freeVariables x fvi
freeVariables No fvi
= fvi
removeLocalVariables local_variables all_variables global_variables var_heap
# var_heap = foldSt mark_local_var local_variables var_heap
= foldSt filter_local_var all_variables (global_variables, var_heap)
where
mark_local_var {fv_info_ptr} var_heap
= var_heap <:= (fv_info_ptr, VI_LocalVar)
filter_local_var v=:{v_info_ptr} (global_vars, var_heap)
# (var_info, var_heap) = readPtr v_info_ptr var_heap
= case var_info of
VI_LocalVar
-> (global_vars, var_heap)
_
-> ([ v : global_vars ], var_heap)
instance freeVariables BoundVar
where
freeVariables {var_name, var_info_ptr} fvi=:{fvi_var_heap, fvi_variables}
# (var_info, fvi_var_heap) = readPtr var_info_ptr fvi_var_heap
(fvi_variables, fvi_var_heap) = adjust_var_info var_name var_info_ptr var_info fvi_variables fvi_var_heap
= {fvi & fvi_variables = fvi_variables, fvi_var_heap = fvi_var_heap }
where
adjust_var_info _ _ (VI_UsedVar _) fvi_variables fvi_var_heap
= (fvi_variables, fvi_var_heap)
adjust_var_info var_name var_info_ptr _ fvi_variables fvi_var_heap
= ([{v_name = var_name, v_info_ptr = var_info_ptr} : fvi_variables ], writePtr var_info_ptr (VI_UsedVar var_name) fvi_var_heap)
instance freeVariables Expression
where
freeVariables (Var var) fvi
= freeVariables var fvi
freeVariables (App {app_args}) fvi
= freeVariables app_args fvi
freeVariables (fun @ args) fvi
= freeVariables args (freeVariables fun fvi)
freeVariables (Let {let_binds,let_expr,let_info_ptr}) fvi=:{fvi_variables = global_variables}
# (removed_variables, fvi_var_heap) = removeVariables global_variables fvi.fvi_var_heap
fvi = freeVariables let_binds { fvi & fvi_variables = [], fvi_var_heap = fvi_var_heap }
{fvi_expr_heap, fvi_variables, fvi_var_heap, fvi_expr_ptrs} = freeVariables let_expr fvi
(fvi_variables, fvi_var_heap) = removeLocalVariables [bind_dst \\ {bind_dst} <- let_binds] fvi_variables [] fvi_var_heap
(unbound_variables, fvi_var_heap) = determineGlobalVariables fvi_variables fvi_var_heap
(fvi_variables, fvi_var_heap) = restoreVariables removed_variables fvi_variables fvi_var_heap
(let_info, fvi_expr_heap) = readPtr let_info_ptr fvi_expr_heap
= { fvi & fvi_variables = fvi_variables
, fvi_var_heap = fvi_var_heap
, fvi_expr_heap = fvi_expr_heap // XXX<:= (let_info_ptr, EI_FreeVariables unbound_variables let_info)
, fvi_expr_ptrs = [let_info_ptr : fvi_expr_ptrs]
}
freeVariables (Case kees) fvi
= freeVariablesOfCase kees fvi
freeVariables (Selection _ expr selectors) fvi
= freeVariables expr fvi
freeVariables (Update expr1 selectors expr2) fvi
= freeVariables expr2 (freeVariables expr1 fvi)
freeVariables (RecordUpdate cons_symbol expression expressions) fvi
= free_variables_of_record_expression expression expressions fvi
where
free_variables_of_record_expression (Var var) fields fvi
= free_variables_of_fields fields var fvi
free_variables_of_record_expression expression fields fvi
# fvi = freeVariables expression fvi
= freeVariables fields fvi
free_variables_of_fields [] var fvi
= fvi
free_variables_of_fields [{bind_src = EE} : fields] var fvi
# fvi = freeVariables var fvi
= free_variables_of_fields fields var fvi
free_variables_of_fields [{bind_src} : fields] var fvi
# fvi = freeVariables bind_src fvi
= free_variables_of_fields fields var fvi
freeVariables (TupleSelect _ arg_nr expr) fvi
= freeVariables expr fvi
freeVariables (MatchExpr _ _ expr) fvi
= freeVariables expr fvi
freeVariables EE fvi
= fvi
freeVariables _ fvi
= fvi
removeVariables global_variables var_heap
= foldSt remove_variable global_variables ([], var_heap)
where
remove_variable v=:{v_info_ptr} (removed_variables, var_heap)
# (VI_UsedVar used_var, var_heap) = readPtr v_info_ptr var_heap
= ([(v, used_var) : removed_variables], var_heap <:= (v_info_ptr, VI_Empty))
restoreVariables removed_variables global_variables var_heap
= foldSt restore_variable removed_variables (global_variables, var_heap)
where
restore_variable (v=:{v_info_ptr}, var_id) (restored_variables, var_heap)
# (var_info, var_heap) = readPtr v_info_ptr var_heap
= case var_info of
VI_UsedVar _
-> (restored_variables, var_heap)
_
-> ([ v : restored_variables ], var_heap <:= (v_info_ptr, VI_UsedVar var_id))
// XXX doet deze funktie iets ?
determineGlobalVariables global_variables var_heap
= foldSt determine_global_variable global_variables ([], var_heap)
where
determine_global_variable {v_info_ptr} (global_variables, var_heap)
# (VI_UsedVar v_name, var_heap) = readPtr v_info_ptr var_heap
= ([{v_name = v_name, v_info_ptr = v_info_ptr} : global_variables], var_heap)
freeVariablesOfCase {case_expr,case_guards,case_default, case_info_ptr} fvi=:{fvi_variables, fvi_var_heap}
# (removed_variables, fvi_var_heap) = removeVariables fvi_variables fvi_var_heap
fvi = free_variables_of_guards case_guards { fvi & fvi_variables = [], fvi_var_heap = fvi_var_heap }
{fvi_expr_heap, fvi_variables, fvi_var_heap, fvi_expr_ptrs} = freeVariables case_default fvi
(unbound_variables, fvi_var_heap) = determineGlobalVariables fvi_variables fvi_var_heap
(fvi_variables, fvi_var_heap) = restoreVariables removed_variables fvi_variables fvi_var_heap
(case_info, fvi_expr_heap) = readPtr case_info_ptr fvi_expr_heap
= freeVariables case_expr { fvi & fvi_variables = fvi_variables, fvi_var_heap = fvi_var_heap,
fvi_expr_heap = app_EEI_ActiveCase (\aci -> { aci & aci_free_vars=Yes unbound_variables }) case_info_ptr fvi_expr_heap,
fvi_expr_ptrs = [case_info_ptr : fvi_expr_ptrs] }
where
free_variables_of_guards (AlgebraicPatterns _ alg_patterns) fvi
= foldSt free_variables_of_alg_pattern alg_patterns fvi
where
free_variables_of_alg_pattern {ap_vars, ap_expr} fvi=:{fvi_variables}
# fvi = freeVariables ap_expr { fvi & fvi_variables = [] }
(fvi_variables, fvi_var_heap) = removeLocalVariables ap_vars fvi.fvi_variables fvi_variables fvi.fvi_var_heap
= { fvi & fvi_var_heap = fvi_var_heap, fvi_variables = fvi_variables }
free_variables_of_guards (BasicPatterns _ basic_patterns) fvi
= foldSt free_variables_of_basic_pattern basic_patterns fvi
where
free_variables_of_basic_pattern {bp_expr} fvi
= freeVariables bp_expr fvi
free_variables_of_guards (DynamicPatterns dynamic_patterns) fvi
= foldSt free_variables_of_dynamic_pattern dynamic_patterns fvi
where
free_variables_of_dynamic_pattern {dp_var, dp_rhs} fvi=:{fvi_variables}
# fvi = freeVariables dp_rhs { fvi & fvi_variables = [] }
(fvi_variables, fvi_var_heap) = removeLocalVariables [dp_var] fvi.fvi_variables fvi_variables fvi.fvi_var_heap
= { fvi & fvi_var_heap = fvi_var_heap, fvi_variables = fvi_variables }
app_EEI_ActiveCase transformer expr_info_ptr expr_heap
# (expr_info, expr_heap) = readPtr expr_info_ptr expr_heap
= case expr_info of
(EI_Extended extensions original_expr_info)
-> lookup_and_perform transformer [] extensions original_expr_info expr_info_ptr expr_heap
_ -> expr_heap
where
lookup_and_perform _ _ [] _ _ expr_heap
= expr_heap
lookup_and_perform transformer accu [EEI_ActiveCase aci:extensions] original_expr_info expr_info_ptr expr_heap
= writePtr expr_info_ptr (EI_Extended (reverse accu++[EEI_ActiveCase (transformer aci)]++extensions) original_expr_info) expr_heap
lookup_and_perform transformer accu [extension:extensions] original_expr_info expr_info_ptr expr_heap
= lookup_and_perform transformer [extension:accu] extensions original_expr_info expr_info_ptr expr_heap
/*
instance <<< InstanceInfo
where
(<<<) file (II_Node prods _ left right) = file <<< left <<< prods <<< right
(<<<) file II_Empty = file
*/
instance <<< Producer
where
(<<<) file (PR_Function symbol index _)
= file <<< "F" <<< symbol.symb_name
(<<<) file (PR_GeneratedFunction symbol index _)
= file <<< "G" <<< symbol.symb_name <<< index
(<<<) file PR_Empty = file <<< 'E'
(<<<) file _ = file
instance <<< FunCall
where
(<<<) file {fc_index} = file <<< fc_index
instance <<< ConsClasses
where
(<<<) file {cc_args,cc_linear_bits} = file <<< cc_args <<< cc_linear_bits
|