1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
|
implementation module refmark
import StdEnv
import syntax, Heap, typesupport, check, overloading, unitype, utilities //, RWSDebug
(===>) infix 1
(===>) a b :== a // ---> b
NotASelector :== -1
:: RMState =
{ rms_var_heap :: !.VarHeap
, rms_let_vars :: ![FreeVar]
}
class refMark expr :: ![[FreeVar]] !Int !(Optional [CountedFreeVar]) !expr !*RMState -> *RMState
// fullRefMark :: ![[FreeVar]] !Int !(Optional [CountedFreeVar]) !expr !*VarHeap -> RMState | refMark expr
fullRefMark free_vars sel def expr var_heap
# {rms_let_vars,rms_var_heap} = refMark free_vars sel def expr { rms_var_heap = var_heap, rms_let_vars = [] }
rms_var_heap = openLetVars rms_let_vars rms_var_heap
= addParRefMarksOfLets "fullRefMark" rms_let_vars ([], { rms_var_heap = rms_var_heap, rms_let_vars = [] })
partialRefMark :: ![[FreeVar]] !expr !*VarHeap -> (!RefMarkResult, *VarHeap) | refMark expr
partialRefMark free_vars expr var_heap
# var_heap = saveOccurrences free_vars var_heap
{rms_var_heap,rms_let_vars} = refMark free_vars NotASelector No expr { rms_var_heap = var_heap, rms_let_vars = [] }
rms_var_heap = openLetVars rms_let_vars rms_var_heap
(occurrences, rms_var_heap) = restoreOccurrences "partialRefMark" free_vars rms_var_heap
= ((occurrences, rms_let_vars), rms_var_heap)
instance refMark [a] | refMark a
where
refMark free_vars sel _ list rms
= foldSt (refMark free_vars sel No) list rms
collectAllSelections [] cum_sels
= cum_sels
collectAllSelections [{su_multiply,su_uniquely} : sels ] cum_sels
= collectAllSelections sels (su_uniquely ++ su_multiply ++ cum_sels)
contains x [] = False
contains x [y:ys] = x == y || contains x ys
saveOccurrences free_vars var_heap
= foldSt (foldSt save_occurrence) free_vars var_heap // (free_vars ===> ("saveOccurrences", free_vars)) var_heap
where
save_occurrence {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence old_occ=:{occ_ref_count,occ_previous}, var_heap) = readPtr fv_info_ptr var_heap
= var_heap <:= (fv_info_ptr, VI_Occurrence {old_occ & occ_ref_count = RC_Unused, occ_previous = [occ_ref_count : occ_previous] } )
===> ("save_occurrence", fv_name, fv_info_ptr, occ_ref_count, length occ_previous)
restoreOccurrences wher free_vars var_heap
= foldSt (foldSt (restore_occurrence wher)) (free_vars ===> ("restoreOccurrences", wher, free_vars)) ([], var_heap)
where
restore_occurrence wher fv=:{fv_name,fv_info_ptr} (occurrences, var_heap)
# (VI_Occurrence old_occ=:{occ_ref_count,occ_previous,occ_bind}, var_heap) = readPtr fv_info_ptr var_heap
(prev_ref_count, occ_previous) = case occ_previous of
[x : xs]
-> (x, xs)
_
-> abort ("restoreOccurrences" ---> (fv_name, fv_info_ptr, wher))
var_heap = var_heap <:= (fv_info_ptr, VI_Occurrence {old_occ & occ_ref_count = prev_ref_count, occ_previous = occ_previous })
= case occ_ref_count ===> ("restore_occurrence", fv_name, fv_info_ptr, (occ_ref_count, prev_ref_count, occ_previous)) of
RC_Unused
-> (occurrences, var_heap)
_
-> case occ_bind of
OB_OpenLet _ _
-> ([{cfv_var = fv, cfv_count = occ_ref_count, cfv_is_let = True} : occurrences ], var_heap)
_
-> ([{cfv_var = fv, cfv_count = occ_ref_count, cfv_is_let = False} : occurrences ], var_heap)
markPatternVariables sel list_of_used_pattern_vars var_heap
= foldSt (mark_pattern_variables sel) list_of_used_pattern_vars var_heap
where
mark_pattern_variables sel used_pattern_vars var_heap
| sel == NotASelector
= foldSt mark_variable used_pattern_vars var_heap
= mark_selected_variable sel used_pattern_vars var_heap
mark_selected_variable sel [] var_heap
= var_heap
mark_selected_variable sel [pv=:{pv_var, pv_arg_nr} : pvs ] var_heap
| sel == pv_arg_nr
= mark_variable pv var_heap
= mark_selected_variable sel pvs var_heap
mark_variable {pv_var={fv_name,fv_info_ptr}} var_heap
# (VI_Occurrence old_occ=:{occ_ref_count}, var_heap) = readPtr fv_info_ptr var_heap
= case occ_ref_count ===> ("mark_variable", fv_name) of
RC_Unused
# occ_ref_count = RC_Used {rcu_multiply = [], rcu_selectively = [], rcu_uniquely = [nilPtr]}
-> var_heap <:= (fv_info_ptr, VI_Occurrence {old_occ & occ_ref_count = occ_ref_count } )
RC_Used {rcu_multiply,rcu_uniquely,rcu_selectively}
# occ_ref_count = RC_Used { rcu_multiply = collectAllSelections rcu_selectively (rcu_uniquely ++ rcu_multiply),
rcu_selectively = [], rcu_uniquely = [] }
-> var_heap <:= (fv_info_ptr, VI_Occurrence {old_occ & occ_ref_count = occ_ref_count } )
refMarkOfVariable free_vars sel (VI_Occurrence var_occ) var=:{var_name, var_info_ptr, var_expr_ptr} rms=:{rms_var_heap}
# occ_ref_count = adjust_ref_count sel var_occ.occ_ref_count var_expr_ptr
rms_var_heap = markPatternVariables sel var_occ.occ_pattern_vars rms_var_heap
= ref_count_of_bindings free_vars var_name var_info_ptr occ_ref_count var_occ { rms & rms_var_heap = rms_var_heap }
===> ("refMarkOfVariable", var_name, var_occ.occ_ref_count, occ_ref_count)
where
adjust_ref_count sel RC_Unused var_expr_ptr
| sel == NotASelector
= RC_Used {rcu_multiply = [], rcu_selectively = [], rcu_uniquely = [var_expr_ptr] }
# sel_ref = { su_field = sel, su_multiply = [], su_uniquely = [var_expr_ptr] }
= RC_Used {rcu_multiply = [], rcu_selectively = [{ su_field = sel, su_multiply = [], su_uniquely = [var_expr_ptr] }],
rcu_uniquely = [] }
adjust_ref_count sel use=:(RC_Used {rcu_multiply,rcu_uniquely,rcu_selectively}) var_expr_ptr
| sel == NotASelector
# rcu_multiply = collectAllSelections rcu_selectively (rcu_uniquely ++ [var_expr_ptr : rcu_multiply])
= RC_Used {rcu_multiply = rcu_multiply, rcu_uniquely = [], rcu_selectively = []}
# rcu_selectively = add_selection var_expr_ptr sel rcu_selectively
rcu_multiply = rcu_uniquely ++ rcu_multiply
= RC_Used {rcu_multiply = rcu_multiply, rcu_uniquely = [], rcu_selectively = rcu_selectively }
add_selection var_expr_ptr sel []
= [ { su_field = sel, su_multiply = [], su_uniquely = [var_expr_ptr] } ]
add_selection var_expr_ptr sel sels=:[selection=:{ su_field,su_multiply,su_uniquely } : selections]
| sel == su_field
= [ { selection & su_multiply = su_multiply ++ [var_expr_ptr : su_uniquely], su_uniquely = [] } : selections ]
| sel < su_field
= [ { su_field = sel, su_multiply = [], su_uniquely = [var_expr_ptr] } : sels ]
= [ selection : add_selection var_expr_ptr sel selections ]
ref_count_of_bindings free_vars var_name var_info_ptr occ_ref_count var_occ=:{occ_bind = OB_OpenLet fv let_info} rms=:{rms_var_heap,rms_let_vars}
# rms_var_heap = rms_var_heap <:= (var_info_ptr, VI_Occurrence { var_occ & occ_ref_count = occ_ref_count, occ_bind = OB_LockedLet var_occ.occ_bind })
= { rms & rms_var_heap = rms_var_heap, rms_let_vars = [ fv : rms_let_vars ]}
// ===> ("ref_count_of_bindings (OB_OpenLet)", var_name)
ref_count_of_bindings free_vars var_name var_info_ptr occ_ref_count var_occ=:{occ_bind = OB_LockedLet _} rms=:{rms_var_heap}
= { rms & rms_var_heap = rms_var_heap <:= (var_info_ptr, VI_Occurrence { var_occ & occ_ref_count = occ_ref_count })}
// ===> ("ref_count_of_bindings (OB_LockedLet)", var_name)
ref_count_of_bindings free_vars var_name var_info_ptr occ_ref_count var_occ rms=:{rms_var_heap}
= { rms & rms_var_heap = rms_var_heap <:= (var_info_ptr, VI_Occurrence { var_occ & occ_ref_count = occ_ref_count })}
addParRefMarksOfLets call let_vars closed_vars_end_rms
= foldSt ref_mark_of_let let_vars closed_vars_end_rms
where
ref_mark_of_let fv=:{fv_name,fv_info_ptr} (closed_let_vars, rms=:{rms_var_heap})
# (VI_Occurrence var_occ, rms_var_heap) = readPtr fv_info_ptr rms_var_heap
rms = { rms & rms_var_heap = rms_var_heap }
= case var_occ.occ_bind of
OB_OpenLet _ (Yes (ref_counts, let_vars))
# rms_var_heap = rms.rms_var_heap <:= (fv_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet var_occ.occ_bind})
rms_var_heap = addParRefCounts call ref_counts rms_var_heap
-> addParRefMarksOfLets call let_vars ([fv : closed_let_vars], {rms & rms_var_heap = rms_var_heap})
// ===> ("addParRefMarksOfLets (OB_OpenLet Yes)", fv_name)
OB_OpenLet _ No
# rms_var_heap = rms.rms_var_heap <:= (fv_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet var_occ.occ_bind})
-> (closed_let_vars, { rms & rms_var_heap = rms_var_heap, rms_let_vars = [fv : rms.rms_let_vars]})
// ===> ("addParRefMarksOfLets (OB_OpenLet No)", fv_name)
OB_LockedLet _
-> (closed_let_vars, rms)
// ===> ("addParRefMarksOfLets (OB_LockedLet)", fv_name)
addParRefCounts call ref_counts var_heap
= foldSt (set_occurrence call) ref_counts var_heap
where
set_occurrence call {cfv_var = {fv_name,fv_info_ptr}, cfv_count} var_heap
# (VI_Occurrence occ=:{occ_ref_count}, var_heap) = readPtr fv_info_ptr var_heap
comb_ref_count = parCombineRefCount occ_ref_count cfv_count
= var_heap <:= (fv_info_ptr, VI_Occurrence { occ & occ_ref_count = comb_ref_count})
===> ("addParRefCounts", call, fv_name, fv_info_ptr, (cfv_count, occ_ref_count, comb_ref_count))
addSeqRefCounts ref_counts var_heap
= foldSt set_occurrence ref_counts var_heap
where
set_occurrence {cfv_var = {fv_name,fv_info_ptr}, cfv_count} var_heap
# (VI_Occurrence occ=:{occ_ref_count}, var_heap) = readPtr fv_info_ptr var_heap
comb_ref_count = seqCombineRefCount occ_ref_count cfv_count
= var_heap <:= (fv_info_ptr, VI_Occurrence { occ & occ_ref_count = comb_ref_count})
===> ("addSeqRefCounts", fv_name, cfv_count, occ_ref_count, comb_ref_count)
instance refMark BoundVar
where
refMark free_vars sel _ var rms=:{rms_var_heap}
# (var_occ, rms_var_heap) = readPtr var.var_info_ptr rms_var_heap
= refMarkOfVariable free_vars sel var_occ var { rms & rms_var_heap = rms_var_heap }
instance refMark Expression
where
refMark free_vars sel _ (Var var) rms
= refMark free_vars sel No var rms
refMark free_vars sel _ (App {app_args}) rms
= refMark free_vars NotASelector No app_args rms
refMark free_vars sel _ (fun @ args) rms
= refMark free_vars NotASelector No args (refMark free_vars NotASelector No fun rms)
refMark free_vars sel def (Let {let_strict_binds,let_lazy_binds,let_expr}) rms=:{rms_var_heap}
| isEmpty let_lazy_binds
# new_free_vars = [ [ lb_dst \\ {lb_dst} <- let_strict_binds ] : free_vars]
# (observing, rms_var_heap) = binds_are_observing let_strict_binds rms_var_heap
| observing
# rms_var_heap = saveOccurrences free_vars rms_var_heap
rms = refMark new_free_vars NotASelector No let_strict_binds { rms & rms_var_heap = rms_var_heap }
rms_var_heap = saveOccurrences new_free_vars rms.rms_var_heap
(_, {rms_var_heap,rms_let_vars}) = fullRefMark new_free_vars sel def let_expr rms_var_heap
// rms = refMark new_free_vars sel def let_expr { rms & rms_var_heap = rms_var_heap }
= { rms & rms_var_heap = let_combine free_vars rms_var_heap, rms_let_vars = rms_let_vars ++ rms.rms_let_vars }
===> ("refMark (Let (observing))", hd new_free_vars)
= refMark new_free_vars sel def let_expr (refMark new_free_vars NotASelector No let_strict_binds { rms & rms_var_heap = rms_var_heap } )
# all_binds = let_strict_binds ++ let_lazy_binds
local_let_vars = [ lb_dst \\ {lb_dst} <- all_binds ]
new_free_vars = [ local_let_vars : free_vars]
rms_var_heap = init_let_binds all_binds rms_var_heap
rms_var_heap = ref_mark_of_lets new_free_vars all_binds rms_var_heap
(_, {rms_var_heap,rms_let_vars}) = fullRefMark new_free_vars sel def let_expr rms_var_heap
= { rms & rms_var_heap = rms_var_heap, rms_let_vars = rms_let_vars ++ rms.rms_let_vars }
// = refMark new_free_vars sel def let_expr { rms & rms_var_heap = rms_var_heap }
where
binds_are_observing binds var_heap
= foldSt bind_is_observing binds (True, var_heap)
where
bind_is_observing {lb_dst={fv_info_ptr}} (observe, var_heap)
# (VI_Occurrence {occ_observing}, var_heap) = readPtr fv_info_ptr var_heap
= (occ_observing && observe, var_heap)
let_combine free_vars var_heap
= foldSt (foldSt let_combine_ref_count) free_vars var_heap
where
let_combine_ref_count {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence old_occ=:{occ_ref_count,occ_previous=[prev_ref_count, pre_pref_recount:occ_previouses]}, var_heap)
= readPtr fv_info_ptr var_heap
seq_comb_ref_count = seqCombineRefCount occ_ref_count prev_ref_count
comb_ref_count = parCombineRefCount seq_comb_ref_count pre_pref_recount
= (var_heap <:= (fv_info_ptr, VI_Occurrence { old_occ & occ_ref_count = comb_ref_count, occ_previous = occ_previouses }))
===> ("let_combine_ref_count", fv_name, (pre_pref_recount, prev_ref_count, occ_ref_count, seq_comb_ref_count, comb_ref_count))
init_let_binds let_binds var_heap
= foldSt bind_variable let_binds var_heap
where
bind_variable let_bind=:{lb_dst=fv=:{fv_info_ptr}} var_heap
# (VI_Occurrence occ, var_heap) = readPtr fv_info_ptr var_heap
= var_heap <:= (fv_info_ptr, VI_Occurrence { occ & occ_ref_count = RC_Unused, occ_bind = OB_OpenLet fv No })
ref_mark_of_lets free_vars let_binds rms_var_heap
= foldSt (ref_mark_of_let free_vars) let_binds rms_var_heap
ref_mark_of_let free_vars let_bind=:{lb_src, lb_dst=fv=:{fv_info_ptr}} rms_var_heap
# (VI_Occurrence occ, rms_var_heap) = readPtr fv_info_ptr rms_var_heap
rms_var_heap = rms_var_heap <:= (fv_info_ptr, VI_Occurrence { occ & occ_bind = OB_LockedLet occ.occ_bind })
(res, rms_var_heap) = partialRefMark free_vars lb_src rms_var_heap
rms_var_heap = rms_var_heap <:= (fv_info_ptr, VI_Occurrence { occ & occ_bind = OB_OpenLet fv (Yes res)})
= rms_var_heap ===> ("ref_mark_of_let", fv, res)
refMark free_vars sel def (Case ca) rms
= refMarkOfCase free_vars sel def ca rms
refMark free_vars sel _ (Selection _ expr selectors) rms
= refMark free_vars (field_number selectors) No expr rms
where
field_number [ RecordSelection _ field_nr : _ ]
= field_nr
field_number _
= NotASelector
refMark free_vars sel _ (Update expr1 selectors expr2) rms
# rms = refMark free_vars NotASelector No expr1 rms
rms = refMark free_vars NotASelector No selectors rms
= refMark free_vars NotASelector No expr2 rms
refMark free_vars sel _ (RecordUpdate cons_symbol expression expressions) rms
= ref_mark_of_record_expression free_vars expression expressions rms
where
ref_mark_of_record_expression free_vars (Var var) fields rms
= ref_mark_of_fields 0 free_vars fields var rms
ref_mark_of_record_expression free_vars expression fields rms
# rms = refMark free_vars NotASelector No expression rms
= foldSt (ref_mark_of_field free_vars) fields rms
ref_mark_of_fields field_nr free_vars [] var rms
= rms
ref_mark_of_fields field_nr free_vars [{bind_src = NoBind expr_ptr} : fields] var=:{var_info_ptr} rms=:{rms_var_heap}
# (var_occ, rms_var_heap) = readPtr var_info_ptr rms_var_heap
rms = refMarkOfVariable free_vars field_nr var_occ { var & var_expr_ptr = expr_ptr } { rms & rms_var_heap = rms_var_heap }
= ref_mark_of_fields (inc field_nr) free_vars fields var rms
ref_mark_of_fields field_nr free_vars [{bind_src} : fields] var rms
# rms = refMark free_vars NotASelector No bind_src rms
= ref_mark_of_fields (inc field_nr) free_vars fields var rms
ref_mark_of_field free_vars {bind_src} rms
= refMark free_vars NotASelector No bind_src rms
refMark free_vars sel _ (TupleSelect _ arg_nr expr) rms
= refMark free_vars arg_nr No expr rms
refMark free_vars sel _ (MatchExpr _ expr) rms
= refMark free_vars sel No expr rms
refMark free_vars sel _ EE rms
= rms
refMark _ _ _ _ rms
= rms
isUsed RC_Unused = False
isUsed _ = True
instance refMark LetBind
where
refMark free_vars sel _ {lb_src} rms
= refMark free_vars NotASelector No lb_src rms
instance refMark Selection
where
refMark free_vars _ _ (ArraySelection _ _ index_expr) rms
= refMark free_vars NotASelector No index_expr rms
refMark free_vars _ _ _ rms
= rms
collectPatternsVariables pattern_vars
= collect_used_vars pattern_vars 0 []
where
collect_used_vars [ fv=:{fv_count} : pattern_vars ] arg_nr collected_vars
| fv_count > 0
= collect_used_vars pattern_vars (inc arg_nr) [ {pv_var = fv, pv_arg_nr = arg_nr} : collected_vars ]
= collect_used_vars pattern_vars (inc arg_nr) collected_vars
collect_used_vars [] arg_nr collected_vars
= collected_vars
openLetVars let_vars var_heap
= foldSt open_let_vars let_vars var_heap
where
open_let_vars {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence var_occ, var_heap) = readPtr fv_info_ptr var_heap
= case var_occ.occ_bind of
OB_LockedLet occ_bind
-> var_heap <:= (fv_info_ptr, VI_Occurrence { var_occ & occ_bind = occ_bind })
// ===> ("openLetVars (OB_LockedLet)", fv_name)
_
-> abort "open_let_vars (refmark.icl))"
setUsedLetVars used_vars var_heap
= foldSt (foldSt set_used_let_var) used_vars var_heap
where
set_used_let_var {fv_info_ptr} var_heap
# (VI_Occurrence var_occ, var_heap) = readPtr fv_info_ptr var_heap
= case var_occ.occ_bind of
OB_OpenLet _ _
-> var_heap <:= (fv_info_ptr, VI_Occurrence { var_occ & occ_bind = OB_LockedLet var_occ.occ_bind })
_
-> var_heap
refMarkOfCase free_vars sel def {case_expr, case_guards=AlgebraicPatterns type patterns, case_explicit, case_default} rms
= refMarkOfAlgebraicOrOverloadedListCase free_vars sel def case_expr patterns case_explicit case_default rms
refMarkOfCase free_vars sel def {case_expr, case_guards=BasicPatterns type patterns,case_default,case_explicit} rms=:{rms_var_heap}
# (def, all_closed_let_vars, rms) = refMarkOfDefault case_explicit free_vars sel def case_expr case_default [] { rms & rms_var_heap = rms_var_heap }
(pattern_depth, all_closed_let_vars, rms) = foldSt (ref_mark_of_basic_pattern free_vars sel def case_expr) patterns (0, all_closed_let_vars, rms)
(let_vars_in_default, rms_var_heap) = addRefMarkOfDefault pattern_depth free_vars def rms.rms_var_heap
rms_var_heap = setUsedLetVars [let_vars_in_default : all_closed_let_vars] rms_var_heap
rms_var_heap = parCombine free_vars rms_var_heap
= { rms & rms_var_heap = rms_var_heap }
where
ref_mark_of_basic_pattern free_vars sel def case_expr {bp_expr} (pattern_depth, all_closed_let_vars, rms)
# (all_closed_let_vars, rms) = refMarkOfAlternative free_vars [] sel def case_expr bp_expr all_closed_let_vars rms
= (inc pattern_depth, all_closed_let_vars, rms)
refMarkOfCase free_vars sel def {case_expr, case_guards=OverloadedListPatterns type _ patterns, case_explicit, case_default} rms
= refMarkOfAlgebraicOrOverloadedListCase free_vars sel def case_expr patterns case_explicit case_default rms
refMarkOfCase free_vars sel def {case_expr, case_guards=DynamicPatterns patterns,case_default,case_explicit} rms=:{rms_var_heap}
# (def, all_closed_let_vars, rms) = refMarkOfDefault case_explicit free_vars sel def case_expr case_default [] { rms & rms_var_heap = rms_var_heap }
(pattern_depth, used_lets, rms) = foldSt (ref_mark_of_dynamic_pattern free_vars sel def case_expr) patterns (0, all_closed_let_vars, rms)
(let_vars_in_default, rms_var_heap) = addRefMarkOfDefault pattern_depth free_vars def rms.rms_var_heap
rms_var_heap = setUsedLetVars [let_vars_in_default : all_closed_let_vars] rms_var_heap
rms_var_heap = parCombine free_vars rms_var_heap
= { rms & rms_var_heap = rms_var_heap }
where
ref_mark_of_dynamic_pattern free_vars sel def case_expr {dp_var, dp_rhs} (pattern_depth, all_closed_let_vars, rms=:{rms_var_heap})
# used_pattern_vars = collectPatternsVariables [dp_var]
new_free_vars = [ pv_var \\ {pv_var} <- used_pattern_vars ]
(all_closed_let_vars, rms) = refMarkOfAlternative free_vars new_free_vars sel def case_expr dp_rhs all_closed_let_vars rms
= (inc pattern_depth, all_closed_let_vars, rms)
refMarkOfAlgebraicOrOverloadedListCase free_vars sel def (Var var=:{var_name,var_info_ptr,var_expr_ptr}) alternatives case_explicit case_default rms
# (def, all_closed_let_vars, rms) = ref_mark_of_default case_explicit free_vars sel def var case_default [] rms
(pattern_depth, all_closed_let_vars, rms) = foldSt (ref_mark_of_algebraic_pattern free_vars sel var def) alternatives (0, all_closed_let_vars, rms)
(let_vars_in_default, rms_var_heap) = addRefMarkOfDefault pattern_depth free_vars def rms.rms_var_heap
rms_var_heap = setUsedLetVars [let_vars_in_default : all_closed_let_vars] rms_var_heap
rms_var_heap = parCombine free_vars rms_var_heap
= { rms & rms_var_heap = rms_var_heap }
where
ref_mark_of_default case_explicit free_vars sel def var (Yes expr) all_closed_let_vars rms=:{rms_var_heap, rms_let_vars}
# rms_var_heap = saveOccurrences free_vars rms_var_heap
(closed_lets, rms) = fullRefMark free_vars sel No expr rms_var_heap
(closed_lets, rms) = ref_mark_of_variable_pattern True var (closed_lets, rms)
rms_var_heap = openLetVars closed_lets rms.rms_var_heap
(occurrences, rms_var_heap) = restoreOccurrences "ref_mark_of_default" free_vars rms_var_heap
= (Yes occurrences, [closed_lets:all_closed_let_vars], { rms & rms_var_heap = rms_var_heap, rms_let_vars = rms.rms_let_vars ++ rms_let_vars })
===> ("ref_mark_of_default", occurrences, closed_lets)
ref_mark_of_default case_explicit free_vars sel def var No all_closed_let_vars rms
| case_explicit
= (No, all_closed_let_vars, rms)
= (def, all_closed_let_vars, rms)
ref_mark_of_algebraic_pattern free_vars sel var def {ap_vars,ap_expr} (pattern_depth, all_closed_let_vars, rms=:{rms_var_heap})
# rms_var_heap = saveOccurrences free_vars rms_var_heap
used_pattern_vars = collectPatternsVariables ap_vars
rms_var_heap = bind_pattern_variable var used_pattern_vars rms_var_heap
free_vars = [ [ pv_var \\ {pv_var} <- used_pattern_vars ] : free_vars ]
(closed_let_vars, rms) = fullRefMark free_vars sel def ap_expr rms_var_heap
rms_var_heap = restore_binding_of_pattern_variable var used_pattern_vars rms.rms_var_heap
(closed_let_vars, rms) = ref_mark_of_variable_pattern (isEmpty used_pattern_vars) var (closed_let_vars, { rms & rms_var_heap = rms_var_heap })
rms_var_heap = openLetVars closed_let_vars rms.rms_var_heap
= (inc pattern_depth, [closed_let_vars:all_closed_let_vars], { rms & rms_var_heap = rms_var_heap })
bind_pattern_variable _ [] var_heap
= var_heap
bind_pattern_variable {var_info_ptr} used_pattern_vars var_heap
# (VI_Occurrence var_occ, var_heap) = readPtr var_info_ptr var_heap
= var_heap <:= (var_info_ptr, VI_Occurrence { var_occ & occ_pattern_vars = [ used_pattern_vars : var_occ.occ_pattern_vars ] })
restore_binding_of_pattern_variable _ [] var_heap
= var_heap
restore_binding_of_pattern_variable {var_info_ptr} used_pattern_vars var_heap
# (VI_Occurrence var_occ, var_heap) = readPtr var_info_ptr var_heap
= var_heap <:= (var_info_ptr, VI_Occurrence { var_occ & occ_pattern_vars = tl var_occ.occ_pattern_vars })
ref_mark_of_variable_pattern do_seq_combine {var_name,var_info_ptr,var_expr_ptr} (closed_lets, rms=:{rms_var_heap})
# (VI_Occurrence var_occ_in_alts, rms_var_heap) = readPtr var_info_ptr rms_var_heap
(var_occ_in_alts, rms_var_heap) = adjust_ref_count_of_variable_pattern var_occ_in_alts var_info_ptr var_expr_ptr rms_var_heap
= add_let_variable do_seq_combine var_info_ptr var_occ_in_alts (closed_lets, { rms & rms_var_heap = rms_var_heap })
where
adjust_ref_count_of_variable_pattern var_occ_in_alts=:{occ_ref_count = RC_Unused} var_info_ptr var_expr_ptr var_heap
# var_occ_in_alts = { var_occ_in_alts & occ_ref_count = RC_Used { rcu_multiply = [], rcu_uniquely = [var_expr_ptr], rcu_selectively = []}}
= (var_occ_in_alts, var_heap <:= (var_info_ptr, VI_Occurrence var_occ_in_alts))
adjust_ref_count_of_variable_pattern var_occ_in_alts=:{occ_ref_count = RC_Used rcu} var_info_ptr var_expr_ptr var_heap
# var_occ_in_alts = { var_occ_in_alts & occ_ref_count = RC_Used { rcu & rcu_uniquely = [var_expr_ptr : rcu.rcu_uniquely] }}
= (var_occ_in_alts, var_heap <:= (var_info_ptr, VI_Occurrence var_occ_in_alts))
add_let_variable do_seq_combine var_info_ptr var_occ=:{occ_bind = ob =: OB_OpenLet fv (Yes (ref_counts,let_vars))} (closed_lets, rms=:{rms_var_heap})
# rms_var_heap = rms_var_heap <:= (var_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet ob})
| do_seq_combine
# rms_var_heap = addSeqRefCounts ref_counts rms_var_heap
= addSeqRefMarksOfLets let_vars ([fv : closed_lets], { rms & rms_var_heap = rms_var_heap })
# rms_var_heap = addParRefCounts "add_let_variable 1" ref_counts rms_var_heap
= addParRefMarksOfLets "add_let_variable 2" let_vars ([fv : closed_lets], { rms & rms_var_heap = rms_var_heap })
add_let_variable do_seq_combine var_info_ptr var_occ=:{occ_bind = ob =: OB_OpenLet fv No} (closed_lets, rms=:{rms_var_heap,rms_let_vars})
# rms_var_heap = rms_var_heap <:= (var_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet ob})
= (closed_lets, {rms_var_heap = rms_var_heap, rms_let_vars = [fv : rms_let_vars]})
add_let_variable do_seq_combine var_info_ptr v_ closed_lets_and_rms
= closed_lets_and_rms
refMarkOfAlgebraicOrOverloadedListCase free_vars sel def case_expr alternatives case_explicit case_default rms=:{rms_var_heap}
// # (case_expr_res, rms_var_heap) = partialRefMark free_vars case_expr rms_var_heap
# (def, all_closed_let_vars, rms) = refMarkOfDefault case_explicit free_vars sel def case_expr case_default [] { rms & rms_var_heap = rms_var_heap }
(pattern_depth, all_closed_let_vars, rms) = foldSt (ref_mark_of_algebraic_pattern free_vars sel def case_expr) alternatives (0, all_closed_let_vars, rms)
(let_vars_in_default, rms_var_heap) = addRefMarkOfDefault pattern_depth free_vars def rms.rms_var_heap
rms_var_heap = setUsedLetVars [let_vars_in_default : all_closed_let_vars] rms_var_heap
rms_var_heap = parCombine free_vars rms_var_heap
= { rms & rms_var_heap = rms_var_heap }
where
ref_mark_of_algebraic_pattern free_vars sel def case_expr {ap_vars,ap_expr} (pattern_depth, all_closed_let_vars, rms)
# used_pattern_vars = collectPatternsVariables ap_vars
new_free_vars = [ pv_var \\ {pv_var} <- used_pattern_vars ]
(all_closed_let_vars, rms) = refMarkOfAlternative free_vars new_free_vars sel def case_expr ap_expr all_closed_let_vars rms
= (inc pattern_depth, all_closed_let_vars, rms)
refMarkOfDefault case_explicit free_vars sel def case_expr (Yes expr) all_closed_let_vars rms
# (all_closed_let_vars, rms) = refMarkOfAlternative free_vars [] sel def case_expr expr all_closed_let_vars rms
(occurrences, rms_var_heap) = restoreOccurrences "refMarkOfDefault" free_vars rms.rms_var_heap
= (Yes occurrences, all_closed_let_vars, { rms & rms_var_heap = rms_var_heap })
===> ("refMarkOfDefault", occurrences)
refMarkOfDefault case_explicit free_vars sel def case_expr No all_closed_let_vars rms
| case_explicit
= (No, all_closed_let_vars, rms)
= (def, all_closed_let_vars, rms)
refMarkOfAlternative free_vars pattern_vars sel def case_expr alt_expr all_closed_let_vars rms=:{rms_var_heap,rms_let_vars}
# rms_var_heap = saveOccurrences [pattern_vars : free_vars] rms_var_heap
(closed_let_vars_in_alt, alt_rms) = fullRefMark [pattern_vars : free_vars] sel def alt_expr rms_var_heap
rms_var_heap = saveOccurrences free_vars alt_rms.rms_var_heap
(closed_let_vars_in_expr, case_rms) = fullRefMark free_vars sel def case_expr rms_var_heap
rms_var_heap = combine_pattern_and_alternative free_vars pattern_vars case_rms.rms_var_heap
rms_var_heap = openLetVars closed_let_vars_in_alt rms_var_heap
rms_var_heap = openLetVars closed_let_vars_in_expr rms_var_heap
= ([ closed_let_vars_in_alt , closed_let_vars_in_expr : all_closed_let_vars ],
{ case_rms & rms_var_heap = rms_var_heap, rms_let_vars = case_rms.rms_let_vars ++ alt_rms.rms_let_vars ++ rms_let_vars })
where
combine_pattern_and_alternative free_vars [] var_heap
= seqCombine free_vars var_heap
combine_pattern_and_alternative free_vars _ var_heap
= parCombine free_vars var_heap
addSeqRefMarksOfLets let_vars closed_vars_end_rms
= foldSt ref_mark_of_let let_vars closed_vars_end_rms
where
ref_mark_of_let fv=:{fv_name,fv_info_ptr} (closed_let_vars, rms=:{rms_var_heap})
# (VI_Occurrence var_occ, rms_var_heap) = readPtr fv_info_ptr rms_var_heap
rms = { rms & rms_var_heap = rms_var_heap }
= case var_occ.occ_bind of
OB_OpenLet _ (Yes (ref_counts, let_vars))
# rms_var_heap = rms.rms_var_heap <:= (fv_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet var_occ.occ_bind})
rms_var_heap = addSeqRefCounts ref_counts rms_var_heap
-> addSeqRefMarksOfLets let_vars ([fv : closed_let_vars], {rms & rms_var_heap = rms_var_heap})
// ===> ("addSeqRefMarksOfLets (OB_OpenLet Yes)", fv_name)
OB_OpenLet fv No
# rms_var_heap = rms.rms_var_heap <:= (fv_info_ptr, VI_Occurrence {var_occ & occ_bind = OB_LockedLet var_occ.occ_bind})
-> (closed_let_vars, { rms & rms_var_heap = rms_var_heap, rms_let_vars = [fv : rms.rms_let_vars]})
// ===> ("addSeqRefMarksOfLets (OB_OpenLet No)", fv_name)
OB_LockedLet _
-> (closed_let_vars, rms)
// ===> ("addSeqRefMarksOfLets (OB_LockedLet)", fv_name)
addRefMarkOfDefault :: !Int ![[FreeVar]] !(Optional [CountedFreeVar]) !*VarHeap -> *(![FreeVar], !*VarHeap)
addRefMarkOfDefault pattern_depth free_vars (Yes occurrences) var_heap
# var_heap = saveOccurrences free_vars var_heap
# (open_let_vars, var_heap) = foldSt set_occurrence occurrences ([], var_heap)
= (open_let_vars, altCombine (inc pattern_depth) free_vars var_heap)
where
set_occurrence {cfv_var=fv=:{fv_name,fv_info_ptr}, cfv_count, cfv_is_let} (open_let_vars, var_heap)
# (VI_Occurrence old_occ, var_heap) = readPtr fv_info_ptr var_heap
= (cond_add cfv_is_let fv open_let_vars, var_heap <:= (fv_info_ptr, VI_Occurrence {old_occ & occ_ref_count = cfv_count } ))
===> ("set_occurrence", fv_name, cfv_count)
where
cond_add cond var vars
| cond
= [ var : vars]
= vars
addRefMarkOfDefault pattern_depth free_vars No var_heap
= ([], altCombine pattern_depth free_vars var_heap)
parCombine free_vars var_heap
= foldSt (foldSt par_combine) free_vars (var_heap===> ("parCombine", free_vars))
where
par_combine {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence old_occ, var_heap) = readPtr fv_info_ptr var_heap
= case old_occ.occ_previous of
[glob_ref_count : occ_previous]
# comb_ref_count = parCombineRefCount old_occ.occ_ref_count glob_ref_count
-> var_heap <:= (fv_info_ptr, VI_Occurrence { old_occ & occ_ref_count = comb_ref_count , occ_previous = occ_previous })
===> ("par_combine", fv_name, old_occ.occ_ref_count, glob_ref_count, comb_ref_count)
_
-> abort ("inconsistent reference count administration" ===> fv_name)
seqCombine free_vars var_heap
= foldSt (foldSt seq_combine) free_vars (var_heap===> ("seqCombine", free_vars))
where
seq_combine {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence pattern_occ, var_heap) = readPtr fv_info_ptr var_heap
= case pattern_occ.occ_previous of
[alt_ref_count : occ_previous]
# comb_ref_count = seqCombineRefCount alt_ref_count pattern_occ.occ_ref_count
-> var_heap <:= (fv_info_ptr, VI_Occurrence { pattern_occ & occ_ref_count = comb_ref_count , occ_previous = occ_previous })
===> ("seq_combine", fv_name, pattern_occ.occ_ref_count, alt_ref_count, comb_ref_count)
_
-> abort ("inconsistent reference count administration" ===> fv_name)
altCombine depth free_vars var_heap
= foldSt (foldSt (alt_combine depth)) free_vars (var_heap ===> ("altCombine", free_vars))
where
alt_combine depth {fv_name,fv_info_ptr} var_heap
# (VI_Occurrence old_occ=:{occ_ref_count,occ_previous}, var_heap) = readPtr fv_info_ptr var_heap
(occ_ref_count, occ_previous) = alt_combine_ref_counts occ_ref_count occ_previous ((dec depth) ===> ("alt_combine", fv_name, occ_ref_count, length occ_previous, depth))
= var_heap <:= (fv_info_ptr, VI_Occurrence { old_occ & occ_ref_count = occ_ref_count , occ_previous = occ_previous })
alt_combine_ref_counts comb_ref_count ref_counts 0
= (comb_ref_count, ref_counts)
alt_combine_ref_counts comb_ref_count [occ_ref_count:occ_previous] depth
# new_comb_ref_count = alt_combine_ref_count comb_ref_count occ_ref_count
= alt_combine_ref_counts new_comb_ref_count occ_previous (dec depth)
===> ("alt_combine_ref_count", comb_ref_count, occ_ref_count, new_comb_ref_count)
alt_combine_ref_count RC_Unused ref_count
= ref_count
alt_combine_ref_count ref_count RC_Unused
= ref_count
alt_combine_ref_count (RC_Used {rcu_multiply,rcu_selectively,rcu_uniquely}) (RC_Used ref_count2)
= RC_Used { rcu_uniquely = rcu_uniquely ++ ref_count2.rcu_uniquely, rcu_multiply = rcu_multiply ++ ref_count2.rcu_multiply,
rcu_selectively = alt_combine_of_selections rcu_selectively ref_count2.rcu_selectively}
where
alt_combine_of_selections [] sels
= sels
alt_combine_of_selections sels []
= sels
alt_combine_of_selections sl1=:[sel1=:{ su_field, su_multiply, su_uniquely } : sels1] sl2=:[sel2 : sels2]
| su_field == sel2.su_field
# sel1 = { sel1 & su_multiply = sel2.su_multiply ++ su_multiply, su_uniquely = sel2.su_uniquely ++ su_uniquely }
= [ sel1 : alt_combine_of_selections sels1 sels2 ]
| su_field < sel2.su_field
= [sel1 : alt_combine_of_selections sels1 sl2 ]
= [sel2 : alt_combine_of_selections sl1 sels2 ]
parCombineRefCount RC_Unused ref_count
= ref_count
parCombineRefCount ref_count RC_Unused
= ref_count
parCombineRefCount (RC_Used {rcu_multiply,rcu_selectively,rcu_uniquely}) (RC_Used ref_count2)
# rcu_multiply = ref_count2.rcu_uniquely ++ ref_count2.rcu_multiply ++ rcu_uniquely ++ rcu_multiply
| isEmpty rcu_multiply
= RC_Used { rcu_multiply = [], rcu_uniquely = [], rcu_selectively = par_combine_selections rcu_selectively ref_count2.rcu_selectively }
# rcu_multiply = collectAllSelections ref_count2.rcu_selectively (collectAllSelections rcu_selectively rcu_multiply)
= RC_Used { rcu_multiply = rcu_multiply, rcu_uniquely = [], rcu_selectively = [] }
where
par_combine_selections [] sels
= sels
par_combine_selections sels []
= sels
par_combine_selections sl1=:[sel1=:{ su_field, su_multiply, su_uniquely } : sels1] sl2=:[sel2 : sels2]
| su_field == sel2.su_field
# sel1 = { sel1 & su_multiply = sel2.su_multiply ++ su_multiply ++ sel2.su_uniquely ++ su_uniquely, su_uniquely = [] }
= [ sel1 : par_combine_selections sels1 sels2 ]
| su_field < sel2.su_field
= [sel1 : par_combine_selections sels1 sl2 ]
= [sel2 : par_combine_selections sl1 sels2 ]
seqCombineRefCount RC_Unused ref_count
= ref_count
seqCombineRefCount ref_count RC_Unused
= ref_count
seqCombineRefCount (RC_Used sec_ref) (RC_Used prim_ref)
# rcu_multiply = prim_ref.rcu_uniquely ++ prim_ref.rcu_multiply ++ sec_ref.rcu_multiply
| isEmpty rcu_multiply
| isEmpty sec_ref.rcu_uniquely /* so sec_ref contains selections only */
# rcu_selectively = seq_combine_selections sec_ref.rcu_selectively prim_ref.rcu_selectively /* rcu_selectively can't be empty */
= RC_Used { rcu_uniquely = [], rcu_multiply = [], rcu_selectively = rcu_selectively }
# prim_selections = make_primary_selections_on_unique prim_ref.rcu_selectively
rcu_selectively = seq_combine_selections sec_ref.rcu_selectively prim_selections
= RC_Used { sec_ref & rcu_selectively = rcu_selectively }
= RC_Used { sec_ref & rcu_multiply = collectAllSelections prim_ref.rcu_selectively rcu_multiply }
where
seq_combine_selections [] sels
= sels
seq_combine_selections sels []
= sels
seq_combine_selections sl1=:[sel1=:{ su_field, su_multiply, su_uniquely } : sels1] sl2=:[sel2 : sels2]
| su_field == sel2.su_field
# sel1 = { sel1 & su_multiply = sel2.su_multiply ++ sel2.su_uniquely ++ su_multiply }
= [ sel1 : seq_combine_selections sels1 sels2 ]
| su_field < sel2.su_field
= [sel1 : seq_combine_selections sels1 sl2 ]
= [sel2 : seq_combine_selections sl1 sels2 ]
make_primary_selections_on_unique [sel=:{su_multiply, su_uniquely } : sels]
= [ { sel & su_multiply = su_uniquely ++ su_multiply, su_uniquely = [] } : make_primary_selections_on_unique sels ]
make_primary_selections_on_unique []
= []
emptyOccurrence observing =
{ occ_ref_count = RC_Unused
, occ_previous = []
, occ_observing = observing
, occ_bind = OB_Empty
, occ_pattern_vars = []
}
emptyObservingOccurrence =: VI_Occurrence (emptyOccurrence True)
emptyNonObservingOccurrence =: VI_Occurrence (emptyOccurrence False)
makeSharedReferencesNonUnique :: ![Int] !u:{# FunDef} !*Coercions !w:{! Type} !v:TypeDefInfos !*VarHeap !*ExpressionHeap !*ErrorAdmin
-> (!u:{# FunDef}, !*Coercions, !w:{! Type}, !v:TypeDefInfos, !*VarHeap, !*ExpressionHeap, !*ErrorAdmin)
makeSharedReferencesNonUnique [] fun_defs coercion_env subst type_def_infos var_heap expr_heap error
= (fun_defs, coercion_env, subst, type_def_infos, var_heap, expr_heap, error)
makeSharedReferencesNonUnique [fun : funs] fun_defs coercion_env subst type_def_infos var_heap expr_heap error
# (fun_def, fun_defs) = fun_defs![fun]
# (coercion_env, subst, type_def_infos, var_heap, expr_heap, error)
= make_shared_references_of_funcion_non_unique fun_def coercion_env subst type_def_infos var_heap expr_heap error
= makeSharedReferencesNonUnique funs fun_defs coercion_env subst type_def_infos var_heap expr_heap error
where
make_shared_references_of_funcion_non_unique {fun_symb, fun_pos, fun_body = TransformedBody {tb_args,tb_rhs},fun_info={fi_local_vars}}
coercion_env subst type_def_infos var_heap expr_heap error
# variables = tb_args ++ fi_local_vars
(subst, type_def_infos, var_heap, expr_heap) = clear_occurrences variables subst type_def_infos var_heap expr_heap
(_, {rms_var_heap}) = fullRefMark [tb_args] NotASelector No /* tb_rhs var_heap */ (tb_rhs ===> ("makeSharedReferencesNonUnique", fun_symb, tb_rhs)) var_heap
position = newPosition fun_symb fun_pos
(coercion_env, var_heap, expr_heap, error) = make_shared_vars_non_unique variables coercion_env rms_var_heap expr_heap
(setErrorAdmin position error)
= (coercion_env, subst, type_def_infos, var_heap, expr_heap, error)
where
clear_occurrences vars subst type_def_infos var_heap expr_heap
= foldSt initial_occurrence vars (subst, type_def_infos, var_heap, expr_heap)
where
initial_occurrence {fv_name,fv_info_ptr} (subst, type_def_infos, var_heap, expr_heap)
# (var_info, var_heap) = readPtr fv_info_ptr var_heap
| has_observing_base_type var_info type_def_infos subst
= (subst, type_def_infos, var_heap <:= (fv_info_ptr, emptyObservingOccurrence), expr_heap)
= (subst, type_def_infos, var_heap <:= (fv_info_ptr, emptyNonObservingOccurrence), expr_heap)
has_observing_base_type (VI_Type {at_type} _) type_def_infos subst
= has_observing_type at_type type_def_infos subst
has_observing_base_type (VI_FAType _ {at_type} _) type_def_infos subst
= has_observing_type at_type type_def_infos subst
has_observing_base_type _ type_def_infos subst
= abort "has_observing_base_type (refmark.icl)"
make_shared_vars_non_unique vars coercion_env var_heap expr_heap error
= foldl make_shared_var_non_unique (coercion_env, var_heap, expr_heap, error) vars
make_shared_var_non_unique (coercion_env, var_heap, expr_heap, error) fv=:{fv_name,fv_info_ptr}
# (VI_Occurrence occ, var_heap) = readPtr fv_info_ptr var_heap
= case occ.occ_ref_count of
RC_Used {rcu_multiply,rcu_selectively}
# (coercion_env, expr_heap, error) = make_shared_occurrences_non_unique fv rcu_multiply (coercion_env, expr_heap, error)
(coercion_env, expr_heap, error) = foldSt (make_selection_non_unique fv) rcu_selectively (coercion_env, expr_heap, error)
-> (coercion_env, var_heap, expr_heap, error)
_
-> (coercion_env, var_heap, expr_heap, error)
// ===> ("make_shared_var_non_unique", fv_name)
make_shared_occurrences_non_unique fv multiply (coercion_env, expr_heap, error)
= foldSt (make_shared_occurrence_non_unique fv) multiply (coercion_env, expr_heap, error)
make_shared_occurrence_non_unique free_var var_expr_ptr (coercion_env, expr_heap, error)
| isNilPtr var_expr_ptr
= (coercion_env, expr_heap, error)
# (expr_info, expr_heap) = readPtr var_expr_ptr expr_heap
= case expr_info of
EI_Attribute sa_attr_nr
# (succ, coercion_env) = tryToMakeNonUnique sa_attr_nr coercion_env
| succ
===> ("make_shared_occurrence_non_unique", free_var, var_expr_ptr, sa_attr_nr)
-> (coercion_env, expr_heap, error)
-> (coercion_env, expr_heap, uniquenessError (CP_Expression (FreeVar free_var)) " demanded attribute cannot be offered by shared object" error)
_
-> abort ("make_shared_occurrence_non_unique" ===> ((free_var, var_expr_ptr) )) // <<- expr_info))
make_selection_non_unique fv {su_multiply} cee
= make_shared_occurrences_non_unique fv su_multiply cee
/*
has_observing_type type_def_infos TE
= True
has_observing_type type_def_infos (TB basic_type)
= True
*/
has_observing_type (TB basic_type) type_def_infos subst
= True
has_observing_type (TempV var_number) type_def_infos subst
= case subst.[var_number] of
TE
-> True
subst_type
-> has_observing_type subst_type type_def_infos subst
has_observing_type (TA {type_index = {glob_object,glob_module}} type_args) type_def_infos subst
# {tdi_properties} = type_def_infos.[glob_module].[glob_object]
= foldSt (\ {at_type} ok -> ok && has_observing_type at_type type_def_infos subst) type_args (tdi_properties bitand cIsHyperStrict <> 0)
has_observing_type (TAS {type_index = {glob_object,glob_module}} type_args _) type_def_infos subst
# {tdi_properties} = type_def_infos.[glob_module].[glob_object]
= foldSt (\ {at_type} ok -> ok && has_observing_type at_type type_def_infos subst) type_args (tdi_properties bitand cIsHyperStrict <> 0)
has_observing_type type type_def_infos subst
= False
instance <<< ReferenceCount
where
(<<<) file RC_Unused = file
(<<<) file (RC_Used {rcu_multiply,rcu_uniquely,rcu_selectively}) = file <<< '\n' <<< "M:" <<< rcu_multiply <<< " U:" <<< rcu_uniquely <<< " S:" <<< rcu_selectively
instance <<< SelectiveUse
where
(<<<) file {su_field,su_multiply,su_uniquely} = file <<< su_field <<< " M:" <<< su_multiply <<< " U:" <<< su_uniquely
instance <<< (Ptr v)
where
(<<<) file ptr = file <<< '[' <<< ptrToInt ptr <<< ']'
instance <<< CountedFreeVar
where
(<<<) file {cfv_var,cfv_count} = file <<< cfv_var <<< ':' <<< cfv_count
|