1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
|
implementation module checkFunctionBodies
import StdEnv, compare_types
import syntax, typesupport, parse, checksupport, utilities, checktypes, transform, predef
import explicitimports, comparedefimp
from check import checkFunctions,checkDclMacros
cIsInExpressionList :== True
cIsNotInExpressionList :== False
cEndWithUpdate :== True
cEndWithSelection :== False
cCaseExplicit :== True
cCaseNotExplicit :== False
:: Dynamics :== [ExprInfoPtr]
:: ExpressionState =
{ es_expr_heap :: !.ExpressionHeap
, es_var_heap :: !.VarHeap
, es_type_heaps :: !.TypeHeaps
, es_generic_heap :: !.GenericHeap
, es_calls :: ![FunCall]
, es_dynamics :: ![ExprInfoPtr]
, es_fun_defs :: !.{# FunDef}
}
:: ExpressionInput =
{ ei_expr_level :: !Level
, ei_fun_index :: !FunctionOrMacroIndex
, ei_fun_level :: !Level
, ei_mod_index :: !Index
, ei_local_functions_index_offset :: !Int
}
:: PatternState =
{ ps_var_heap :: !.VarHeap
, ps_fun_defs :: !.{#FunDef}
}
:: PatternInput =
{ pi_def_level :: !Int
, pi_mod_index :: !Index
, pi_is_node_pattern :: !Bool
}
:: ArrayPattern =
{ ap_opt_var :: !Optional (Bind Ident VarInfoPtr)
, ap_array_var :: !FreeVar
, ap_selections :: ![Bind FreeVar [ParsedExpr]]
}
:: UnfoldMacroState =
{ ums_var_heap :: !.VarHeap
, ums_modules :: !.{# DclModule}
, ums_cons_defs :: !.{# ConsDef}
, ums_error :: !.ErrorAdmin
}
:: RecordKind = RK_Constructor | RK_Update
get_unboxed_list_indices_and_decons_u_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState);
get_unboxed_list_indices_and_decons_u_ident cs=:{cs_predef_symbols,cs_x}
# (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def
# (cons_u_index,cs_predef_symbols)=cs_predef_symbols![PD_cons_u].pds_def
# (nil_u_index,cs_predef_symbols)=cs_predef_symbols![PD_nil_u].pds_def
# (decons_u_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons_u]
# decons_u_index=decons_u_symbol.pds_def
# cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists}
= (stdStrictLists_index,cons_u_index,decons_u_index,nil_u_index,predefined_idents.[PD_decons_u],cs)
make_unboxed_list type_symbol expr_heap cs
# (stdStrictLists_index,cons_u_index,decons_u_index,nil_u_index,decons_u_ident,cs) = get_unboxed_list_indices_and_decons_u_ident cs
# unboxed_list=UnboxedList type_symbol stdStrictLists_index decons_u_index nil_u_index
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_u_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_u_index,glob_module=stdStrictLists_index}}
# decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr}
= (unboxed_list,decons_expr,expr_heap,cs)
get_unboxed_tail_strict_list_indices_and_decons_uts_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState);
get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs=:{cs_predef_symbols,cs_x}
# (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def
# (cons_uts_index,cs_predef_symbols)=cs_predef_symbols![PD_cons_uts].pds_def
# (nil_uts_index,cs_predef_symbols)=cs_predef_symbols![PD_nil_uts].pds_def
# (decons_uts_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons_uts]
# decons_uts_index=decons_uts_symbol.pds_def
# cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists}
= (stdStrictLists_index,cons_uts_index,decons_uts_index,nil_uts_index,predefined_idents.[PD_decons_uts],cs)
make_unboxed_tail_strict_list type_symbol expr_heap cs
# (stdStrictLists_index,cons_uts_index,decons_uts_index,nil_uts_index,decons_uts_ident,cs) = get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs
# unboxed_list=UnboxedTailStrictList type_symbol stdStrictLists_index decons_uts_index nil_uts_index
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_uts_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_uts_index,glob_module=stdStrictLists_index}}
# decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr}
= (unboxed_list,decons_expr,expr_heap,cs)
get_overloaded_list_indices_and_decons_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState);
get_overloaded_list_indices_and_decons_ident cs=:{cs_predef_symbols,cs_x}
# (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def
# (cons_index,cs_predef_symbols)=cs_predef_symbols![PD_cons].pds_def
# (nil_index,cs_predef_symbols)=cs_predef_symbols![PD_nil].pds_def
# (decons_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons]
# decons_index=decons_symbol.pds_def
# cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists}
= (stdStrictLists_index,cons_index,decons_index,nil_index,predefined_idents.[PD_decons],cs)
make_overloaded_list type_symbol expr_heap cs
# (stdStrictLists_index,cons_index,decons_index,nil_index,decons_ident,cs) = get_overloaded_list_indices_and_decons_ident cs
# overloaded_list=OverloadedList type_symbol stdStrictLists_index decons_index nil_index
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_index,glob_module=stdStrictLists_index}}
# decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr}
= (overloaded_list,decons_expr,expr_heap,cs)
make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs
| cons_symbol.glob_module==cPredefinedModuleIndex
# pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex
| pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol
# (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs
= (OverloadedListPatterns unboxed_list decons_expr alg_patterns,expr_heap,cs)
| pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol
# (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs
= (OverloadedListPatterns unboxed_tail_strict_list decons_expr alg_patterns,expr_heap,cs)
| pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol
# (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs
= (OverloadedListPatterns overloaded_list decons_expr alg_patterns,expr_heap,cs)
= (AlgebraicPatterns global_type_index alg_patterns,expr_heap,cs)
= (AlgebraicPatterns global_type_index alg_patterns,expr_heap,cs)
checkFunctionBodies :: !FunctionBody !Ident !.ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState
-> (!FunctionBody, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState)
checkFunctionBodies (ParsedBody [{pb_args,pb_rhs={rhs_alts,rhs_locals}, pb_position} : bodies]) function_ident_for_errors e_input=:{ei_expr_level,ei_mod_index}
e_state=:{es_var_heap, es_fun_defs} e_info cs
# (aux_patterns, (var_env, array_patterns), {ps_var_heap,ps_fun_defs}, e_info, cs)
= check_patterns pb_args {pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False} ([], [])
{ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs
(rhs_expr, free_vars, e_state, e_info, cs)
= checkRhs [] rhs_alts rhs_locals e_input { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs } e_info cs
(expr_with_array_selections, free_vars, e_state=:{es_var_heap,es_dynamics=dynamics_in_rhs}, e_info, cs)
= addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
cs = { cs & cs_symbol_table = cs_symbol_table }
(cb_args, es_var_heap) = mapSt determine_function_arg aux_patterns es_var_heap
(rhss, free_vars, e_state=:{es_dynamics,es_expr_heap,es_var_heap}, e_info, cs)
= check_function_bodies free_vars cb_args bodies e_input { e_state & es_dynamics = [], es_var_heap = es_var_heap } e_info cs
(rhs, position, es_var_heap, es_expr_heap, dynamics_in_patterns, cs)
= transform_patterns_into_cases aux_patterns cb_args expr_with_array_selections pb_position es_var_heap es_expr_heap
dynamics_in_rhs cs
= (CheckedBody { cb_args = cb_args, cb_rhs = [{ ca_rhs = rhs, ca_position = position } : rhss] }, free_vars,
{ e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs)
where
check_patterns [pattern : patterns] p_input accus var_store e_info cs
# (aux_pat, accus, var_store, e_info, cs) = checkPattern pattern No p_input accus var_store e_info cs
(aux_pats, accus, var_store, e_info, cs) = check_patterns patterns p_input accus var_store e_info cs
= ([aux_pat : aux_pats], accus, var_store, e_info, cs)
check_patterns [] p_input accus var_store e_info cs
= ([], accus, var_store, e_info, cs)
determine_function_arg (AP_Variable name var_info (Yes {bind_src, bind_dst})) var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Variable name var_info No) var_store
= ({ fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Algebraic _ _ _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Basic _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_NewType _ _ _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Dynamic _ _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg _ var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable No var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
check_function_bodies free_vars fun_args [{pb_args,pb_rhs={rhs_alts,rhs_locals},pb_position} : bodies]
e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap,es_fun_defs} e_info cs
# cs = pushErrorAdmin (newPosition function_ident_for_errors pb_position) cs
# (aux_patterns, (var_env, array_patterns), {ps_var_heap,ps_fun_defs}, e_info, cs)
= check_patterns pb_args { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], [])
{ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs} e_info cs
# cs = popErrorAdmin cs
e_state = { e_state & es_var_heap = ps_var_heap,es_fun_defs = ps_fun_defs}
(rhs_expr, free_vars, e_state, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs
(rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs)
= addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
(rhs_exprs, free_vars, e_state=:{es_dynamics,es_expr_heap,es_var_heap}, e_info, cs)
= check_function_bodies free_vars fun_args bodies e_input { e_state & es_dynamics = [] } e_info { cs & cs_symbol_table = cs_symbol_table }
(rhs_expr, position, es_var_heap, es_expr_heap, dynamics_in_patterns, cs)
= transform_patterns_into_cases aux_patterns fun_args rhs_expr pb_position
es_var_heap es_expr_heap dynamics_in_rhs cs
= ([{ ca_rhs = rhs_expr, ca_position = position } : rhs_exprs], free_vars,
{ e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap,
es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs)
check_function_bodies free_vars fun_args [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
transform_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (patterns_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= transform_succeeding_patterns_into_cases patterns fun_args result_expr pattern_position
var_store expr_heap opt_dynamics cs
= transform_pattern_into_cases pattern fun_arg patterns_expr pattern_position var_store expr_heap opt_dynamics cs
where
transform_succeeding_patterns_into_cases [] _ result_expr pattern_position var_store expr_heap opt_dynamics cs
= (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
transform_succeeding_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (patterns_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= transform_succeeding_patterns_into_cases patterns fun_args result_expr pattern_position
var_store expr_heap opt_dynamics cs
= transform_pattern_into_cases pattern fun_arg patterns_expr pattern_position var_store expr_heap opt_dynamics cs
transform_patterns_into_cases [] _ result_expr pattern_position var_store expr_heap opt_dynamics cs
= (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases :: !AuxiliaryPattern !FreeVar !Expression !Position !*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState
-> (!Expression, !Position, !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState)
transform_pattern_into_cases (AP_Variable name var_info opt_var) fun_arg=:{fv_info_ptr,fv_ident} result_expr pattern_position
var_store expr_heap opt_dynamics cs
= case opt_var of
Yes {bind_src, bind_dst}
| bind_dst == fv_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict_binds = [], let_lazy_binds= [
{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr },
lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos }],
let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos },
pattern_position, var_store, expr_heap, opt_dynamics, cs)
# (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap
(var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict_binds = [], let_lazy_binds= [
{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 },
lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos },
{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 },
lb_dst = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos }],
let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos },
pattern_position, var_store, expr_heap, opt_dynamics, cs)
No
| var_info == fv_info_ptr
-> (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict_binds = [], let_lazy_binds=
[{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr },
lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos }],
let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos },
pattern_position, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Algebraic cons_symbol global_type_index args opt_var) fun_arg result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPatterns args result_expr pattern_position var_store expr_heap opt_dynamics cs
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
# alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pattern_position }]
# (case_guards,expr_heap,cs) = make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs
= (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No,
case_explicit = cCaseNotExplicit,
case_info_ptr = case_expr_ptr, case_default_pos = NoPos },
NoPos, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Basic basic_val opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs
# (basic_type, cs) = typeOfBasicValue basic_val cs
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr, bp_position = pattern_position }]
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No,
case_explicit = cCaseNotExplicit,
case_info_ptr = case_expr_ptr, case_default_pos = NoPos },
NoPos, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_NewType cons_symbol type_index arg opt_var) fun_arg result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPattern arg result_expr pattern_position var_store expr_heap opt_dynamics cs
type_symbol = {gi_module = cons_symbol.glob_module, gi_index = type_index}
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
# alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pattern_position }]
# case_guards = NewTypePatterns type_symbol alg_patterns
= (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No,
case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr, case_default_pos = NoPos },
NoPos, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Dynamic pattern type opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs
(type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr,
dp_type_code = TCE_Empty, dp_position = pattern_position }]
= (buildTypeCase act_var type_case_patterns No type_case_info_ptr cCaseNotExplicit, NoPos, var_store, expr_heap, [dynamic_info_ptr], cs)
transform_pattern_into_cases (AP_WildCard _) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs
= (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases AP_Empty fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs
= (EE, pattern_position, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_variable :: !FreeVar !(Optional (Bind Ident VarInfoPtr)) !Expression !*ExpressionHeap
-> (!Expression, !Expression, !*ExpressionHeap)
transform_pattern_variable {fv_info_ptr,fv_ident} (Yes {bind_src,bind_dst}) result_expr expr_heap
| bind_dst == fv_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap)
# (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap
(var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 },
Let { let_strict_binds = [], let_lazy_binds =
[{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 },
lb_dst = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos }],
let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, expr_heap)
transform_pattern_variable {fv_info_ptr,fv_ident} No result_expr expr_heap
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap)
checkFunctionBodies GeneratedBody function_ident_for_errors e_input e_state e_info cs
= (GeneratedBody, [], e_state, e_info, cs)
//---> ("checkFunctionBodies: function to derive ", function_ident_for_errors)
checkFunctionBodies _ function_ident_for_errors e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap, es_fun_defs} e_info cs
= abort ("checkFunctionBodies " +++ toString function_ident_for_errors +++ "\n")
removeLocalsFromSymbolTable :: !Index !Level ![Ident] !LocalDefs !Int !*{#FunDef} !*{#*{#FunDef}} !*(Heap SymbolTableEntry)
-> (!.{#FunDef},!.{#.{#FunDef}},!.Heap SymbolTableEntry)
removeLocalsFromSymbolTable module_index level loc_vars (CollectedLocalDefs {loc_functions,loc_in_icl_module}) local_functions_index_offset fun_defs macro_defs symbol_table
# loc_functions={ir_from=loc_functions.ir_from+local_functions_index_offset,ir_to=loc_functions.ir_to+local_functions_index_offset}
# symbol_table=removeLocalIdentsFromSymbolTable level loc_vars symbol_table
| loc_in_icl_module
# (fun_defs,symbol_table) = removeLocalFunctionsFromSymbolTable level loc_functions fun_defs symbol_table
= (fun_defs,macro_defs,symbol_table)
# (macro_defs,symbol_table) = removeLocalDclMacrosFromSymbolTable level module_index loc_functions macro_defs symbol_table
= (fun_defs,macro_defs,symbol_table)
:: LetBinds :== [([LetBind],[LetBind])]
checkRhs :: [FreeVar] OptGuardedAlts LocalDefs ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
checkRhs free_vars rhs_alts rhs_locals e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs
# ei_expr_level = inc ei_expr_level
(loc_defs, (var_env, array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index rhs_locals ei_local_functions_index_offset e_state e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index ei_expr_level rhs_locals ei_local_functions_index_offset e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps, hp_generic_heap = e_state.es_generic_heap } cs
(rhs_expr, _, free_vars, e_state, e_info, cs)
= check_opt_guarded_alts free_vars rhs_alts { e_input & ei_expr_level = ei_expr_level }
{ e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expr_heap = heaps.hp_expression_heap,
es_type_heaps = heaps.hp_type_heaps,es_generic_heap=heaps.hp_generic_heap } e_info cs
(expr, free_vars, e_state, e_info, cs)
= addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs
(es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level var_env rhs_locals ei_local_functions_index_offset e_state.es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table
= (expr, free_vars, { e_state & es_fun_defs = es_fun_defs}, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table })
where
check_opt_guarded_alts free_vars (GuardedAlts guarded_alts default_expr) e_input e_state e_info cs
# (let_vars_list, rev_guarded_exprs, last_expr_level, free_vars, e_state, e_info, cs)
= check_guarded_expressions free_vars guarded_alts [] [] e_input e_state e_info cs
(default_expr, default_expr_position, free_vars, e_state, e_info, cs)
= check_default_expr free_vars default_expr { e_input & ei_expr_level = last_expr_level } e_state e_info cs
cs = { cs & cs_symbol_table = remove_seq_let_vars e_input.ei_expr_level let_vars_list cs.cs_symbol_table }
(result_expr, result_expr_position , es_expr_heap) = convert_guards_to_cases rev_guarded_exprs default_expr default_expr_position e_state.es_expr_heap
= (result_expr, result_expr_position, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs)
check_opt_guarded_alts free_vars (UnGuardedExpr unguarded_expr) e_input e_state e_info cs
= check_unguarded_expression free_vars unguarded_expr e_input e_state e_info cs
check_default_expr free_vars (Yes default_expr) e_input e_state e_info cs
# (expr, expr_position, free_vars, e_state, e_info, cs) = check_unguarded_expression free_vars default_expr e_input e_state e_info cs
= (Yes expr, expr_position, free_vars, e_state, e_info, cs)
check_default_expr free_vars No e_input e_state e_info cs
= (No, NoPos, free_vars, e_state, e_info, cs)
convert_guards_to_cases [guard_expr] result_expr result_expr_position es_expr_heap
= convert_guard_to_case guard_expr result_expr result_expr_position es_expr_heap
convert_guards_to_cases [guard_expr : rev_guarded_exprs] result_expr result_expr_position es_expr_heap
# (result_expr, result_expr_position, es_expr_heap) = convert_guard_to_case guard_expr result_expr result_expr_position es_expr_heap
= convert_guards_to_cases rev_guarded_exprs (Yes result_expr) result_expr_position es_expr_heap
convert_guard_to_case (let_binds, guard, expr, expr_position, guard_ident) result_expr result_expr_position es_expr_heap
# (case_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap
basic_pattern = {bp_value = (BVB True), bp_expr = expr, bp_position = expr_position }
case_expr = Case {case_expr = guard, case_guards = BasicPatterns BT_Bool [basic_pattern],
case_default = result_expr, case_default_pos = result_expr_position,
case_ident = Yes guard_ident, case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr }
= build_sequential_lets let_binds case_expr NoPos es_expr_heap
check_guarded_expressions :: [FreeVar] [GuardedExpr] [[Ident]] [(LetBinds,Expression,Expression,Position,Ident)] ExpressionInput *ExpressionState *ExpressionInfo *CheckState
-> *([[Ident]],[(LetBinds,Expression,Expression,Position,Ident)],Int,[FreeVar], *ExpressionState,*ExpressionInfo,*CheckState)
check_guarded_expressions free_vars [gexpr : gexprs] let_vars_list rev_guarded_exprs e_input e_state e_info cs
# (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs)
= check_guarded_expression free_vars gexpr let_vars_list rev_guarded_exprs e_input e_state e_info cs
= check_guarded_expressions free_vars gexprs let_vars_list rev_guarded_exprs { e_input & ei_expr_level = ei_expr_level } e_state e_info cs
check_guarded_expressions free_vars [] let_vars_list rev_guarded_exprs {ei_expr_level} e_state e_info cs
= (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs)
check_guarded_expression free_vars {alt_nodes,alt_guard,alt_expr,alt_ident,alt_position}
let_vars_list rev_guarded_exprs e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (let_binds, let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars alt_nodes let_vars_list
{ e_input & ei_expr_level = inc ei_expr_level } e_state e_info cs
e_input = { e_input & ei_expr_level = ei_expr_level }
cs = pushErrorAdmin2 "guard" alt_position cs
(guard, free_vars, e_state, e_info, cs) = checkExpression free_vars alt_guard e_input e_state e_info cs
cs = popErrorAdmin cs
(expr, expr_position, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars alt_expr e_input e_state e_info cs
= (let_vars_list, [(let_binds, guard, expr, expr_position, alt_ident) : rev_guarded_exprs], ei_expr_level, free_vars, e_state, e_info, cs )
check_unguarded_expression :: [FreeVar] ExprWithLocalDefs ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,!Position,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
check_unguarded_expression free_vars {ewl_nodes,ewl_expr,ewl_locals,ewl_position} e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs
# this_expr_level = inc ei_expr_level
(loc_defs, (var_env, array_patterns), e_state, e_info, cs)
= checkLhssOfLocalDefs this_expr_level ei_mod_index ewl_locals ei_local_functions_index_offset e_state e_info cs
(binds, let_vars_list, rhs_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars ewl_nodes [] { e_input & ei_expr_level = this_expr_level } e_state e_info cs
cs = pushErrorAdmin2 "" ewl_position cs
(expr, free_vars, e_state, e_info, cs) = checkExpression free_vars ewl_expr { e_input & ei_expr_level = rhs_expr_level } e_state e_info cs
cs = popErrorAdmin cs
(expr, free_vars, e_state, e_info, cs)
= addArraySelections array_patterns expr free_vars e_input e_state e_info cs
cs = { cs & cs_symbol_table = remove_seq_let_vars rhs_expr_level let_vars_list cs.cs_symbol_table }
(seq_let_expr, expr_position, es_expr_heap) = build_sequential_lets binds expr ewl_position e_state.es_expr_heap
(expr, free_vars, e_state, e_info, cs)
= checkRhssAndTransformLocalDefs free_vars loc_defs seq_let_expr e_input { e_state & es_expr_heap = es_expr_heap} e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index rhs_expr_level ewl_locals ei_local_functions_index_offset e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps,hp_generic_heap=e_state.es_generic_heap } cs
(es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index this_expr_level var_env ewl_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table
= (expr, expr_position, free_vars, {e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap,
es_expr_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps, es_generic_heap=heaps.hp_generic_heap},
{e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table} )
remove_seq_let_vars level [] symbol_table
= symbol_table
remove_seq_let_vars level [let_vars : let_vars_list] symbol_table
= remove_seq_let_vars (dec level) let_vars_list (removeLocalIdentsFromSymbolTable level let_vars symbol_table)
check_sequential_lets :: [FreeVar] [NodeDefWithLocals] u:[[Ident]] !ExpressionInput *ExpressionState *ExpressionInfo *CheckState
-> *(!LetBinds,!u:[[Ident]],!Int,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
check_sequential_lets free_vars [seq_let:seq_lets] let_vars_list e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# ei_expr_level = inc ei_expr_level
e_input = { e_input & ei_expr_level = ei_expr_level }
(src_expr, pattern_expr, (let_vars, array_patterns), free_vars, e_state, e_info, cs)
= check_sequential_let free_vars seq_let e_input e_state e_info cs
(binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs)
= check_sequential_lets free_vars seq_lets [let_vars : let_vars_list] e_input e_state e_info cs
| seq_let.ndwl_strict
# (lazy_let_binds,strict_let_bind,es_var_heap, es_expr_heap, e_info, cs)
= transfromPatternIntoStrictBind ei_mod_index ei_expr_level pattern_expr src_expr seq_let.ndwl_position
e_state.es_var_heap e_state.es_expr_heap e_info cs
e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }
(strict_array_pattern_binds, lazy_array_pattern_binds, free_vars, e_state, e_info, cs)
= buildArraySelections e_input array_patterns free_vars e_state e_info cs
all_binds = [ (strict_let_bind,lazy_let_binds), (strict_array_pattern_binds, lazy_array_pattern_binds) : binds]
= (all_binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs)
# (let_binds, es_var_heap, es_expr_heap, e_info, cs)
= transfromPatternIntoBind ei_mod_index ei_expr_level pattern_expr src_expr seq_let.ndwl_position
e_state.es_var_heap e_state.es_expr_heap e_info cs
e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }
(strict_array_pattern_binds, lazy_array_pattern_binds, free_vars, e_state, e_info, cs)
= buildArraySelections e_input array_patterns free_vars e_state e_info cs
all_binds = [([],let_binds), (strict_array_pattern_binds, lazy_array_pattern_binds) : binds]
= (all_binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs)
check_sequential_lets free_vars [] let_vars_list e_input=:{ei_expr_level} e_state e_info cs
= ([], let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs)
check_sequential_let :: [FreeVar] NodeDefWithLocals ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,!AuxiliaryPattern,!(![Ident],![ArrayPattern]),![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
check_sequential_let free_vars {ndwl_def={bind_src,bind_dst},ndwl_locals, ndwl_position} e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs
# cs = pushErrorAdmin (newPosition {id_name="node definition", id_info=nilPtr} ndwl_position) cs
(loc_defs, (loc_env, loc_array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index ndwl_locals ei_local_functions_index_offset e_state e_info cs
(src_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs
(src_expr, free_vars, e_state, e_info, cs)
= addArraySelections loc_array_patterns src_expr free_vars e_input e_state e_info cs
(src_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs src_expr e_input e_state e_info cs
(es_fun_defs, e_info, {hp_var_heap,hp_expression_heap,hp_type_heaps,hp_generic_heap}, cs)
= checkLocalFunctions ei_mod_index ei_expr_level ndwl_locals ei_local_functions_index_offset e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps,hp_generic_heap=e_state.es_generic_heap} cs
(es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level loc_env ndwl_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table
(pattern, accus, {ps_fun_defs,ps_var_heap}, e_info, cs)
= checkPattern bind_dst No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = True } ([], [])
{ps_var_heap = hp_var_heap,ps_fun_defs = es_fun_defs } {e_info & ef_macro_defs=macro_defs} { cs & cs_symbol_table = cs_symbol_table }
e_state = { e_state & es_var_heap = ps_var_heap, es_expr_heap = hp_expression_heap, es_type_heaps = hp_type_heaps,es_generic_heap=hp_generic_heap,es_fun_defs = ps_fun_defs }
= (src_expr, pattern, accus, free_vars, e_state, e_info, popErrorAdmin cs)
build_sequential_lets :: !LetBinds !Expression !Position !*ExpressionHeap -> (!Expression, !Position, !*ExpressionHeap)
build_sequential_lets [] expr let_expr_position expr_heap
= (expr, let_expr_position, expr_heap)
build_sequential_lets [(strict_binds, lazy_binds) : seq_lets] expr let_expr_position expr_heap
# (let_expr, let_expr_position, expr_heap) = build_sequential_lets seq_lets expr let_expr_position expr_heap
(let_expr, expr_heap) = buildLetExpression strict_binds lazy_binds let_expr let_expr_position expr_heap
= ( let_expr, if (isEmpty strict_binds && isEmpty lazy_binds) let_expr_position NoPos, expr_heap)
checkLocalFunctions :: !Index !Level !LocalDefs !Int !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState
-> (!.{#FunDef},!.ExpressionInfo,!.Heaps,!.CheckState);
checkLocalFunctions mod_index level (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_in_icl_module}) local_functions_index_offset fun_defs e_info heaps cs
# ir_from=ir_from+local_functions_index_offset
# ir_to=ir_to+local_functions_index_offset
| loc_in_icl_module
= checkFunctions mod_index level ir_from ir_to local_functions_index_offset fun_defs e_info heaps cs
# (e_info,heaps,cs) = checkDclMacros mod_index level ir_from ir_to e_info heaps cs
= (fun_defs,e_info,heaps,cs)
checkExpression :: ![FreeVar] !ParsedExpr !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState
-> *(!Expression, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState);
checkExpression free_vars (PE_List exprs) e_input e_state e_info cs
# (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs
(expr, e_state, cs_error) = build_expression exprs e_state cs.cs_error
= (expr, free_vars, e_state, e_info, { cs & cs_error = cs_error })
where
check_expressions free_vars [expr : exprs] e_input e_state e_info cs
# (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs
= case expr of
PE_Ident id
# (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsInExpressionList free_vars id e_input e_state e_info cs
-> ([expr : exprs], free_vars, e_state, e_info, cs)
PE_QualifiedIdent module_id ident_name
# (expr, free_vars, e_state, e_info, cs) = checkQualifiedIdentExpression free_vars module_id ident_name cIsInExpressionList e_input e_state e_info cs
-> ([expr : exprs], free_vars, e_state, e_info, cs)
_
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
-> ([expr : exprs], free_vars, e_state, e_info, cs)
check_expressions free_vars [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
first_argument_of_infix_operator_missing
= "first argument of infix operator missing"
build_expression [Constant symb _ (Prio _ _) , _: _] e_state cs_error
= (EE, e_state, checkError symb.symb_ident first_argument_of_infix_operator_missing cs_error)
build_expression [Constant symb arity _] e_state cs_error
= buildApplicationWithoutArguments symb e_state cs_error
build_expression [expr] e_state cs_error
= (expr, e_state, cs_error)
build_expression [expr : exprs] e_state cs_error
# (opt_opr, left, e_state, cs_error) = split_at_operator [expr] exprs e_state cs_error
(left_expr, e_state, cs_error) = combine_expressions left [] 0 e_state cs_error
= case opt_opr of
Yes (symb, arity, prio, right)
-> case right of
[Constant symb _ (Prio _ _):_]
-> (EE, e_state, checkError symb.symb_ident first_argument_of_infix_operator_missing cs_error)
_
-> build_operator_expression [] left_expr (symb, arity, prio) right e_state cs_error
No
-> (left_expr, e_state, cs_error)
where
split_at_operator left [Constant symb arity NoPrio : exprs] e_state cs_error
# (appl_exp, e_state, cs_error) = buildApplicationWithoutArguments symb e_state cs_error
= split_at_operator [appl_exp : left] exprs e_state cs_error
split_at_operator left [Constant symb arity (Prio _ _)] e_state cs_error
= (No, left, e_state, checkError symb.symb_ident "second argument of infix operator missing" cs_error)
split_at_operator left [Constant symb arity prio] e_state cs_error
# (appl_exp, e_state, cs_error) = buildApplicationWithoutArguments symb e_state cs_error
= (No, [appl_exp : left], e_state, cs_error)
split_at_operator left [expr=:(Constant symb arity prio) : exprs] e_state cs_error
= (Yes (symb, arity, prio, exprs), left, e_state, cs_error)
split_at_operator left [expr : exprs] e_state cs_error
= split_at_operator [expr : left] exprs e_state cs_error
split_at_operator exp [] e_state cs_error
= (No, exp, e_state, cs_error)
combine_expressions [first_expr] args arity e_state cs_error
= case first_expr of
Constant symb form_arity _
-> buildApplication symb form_arity arity args e_state cs_error
_
| arity == 0
-> (first_expr, e_state, cs_error)
-> (first_expr @ args, e_state, cs_error)
combine_expressions [rev_arg : rev_args] args arity e_state cs_error
= combine_expressions rev_args [rev_arg : args] (inc arity) e_state cs_error
build_operator_expression left_appls left1 (symb1, arity1, prio1) [re : res] e_state cs_error
# (opt_opr, left2, e_state, cs_error) = split_at_operator [re] res e_state cs_error
= case opt_opr of
Yes (symb2, arity2, prio2, right)
# optional_prio = determinePriority prio1 prio2
-> case optional_prio of
Yes priority
| priority
# (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
(new_left, e_state, cs_error) = buildApplication symb1 arity1 2 [left1,middle_exp] e_state cs_error
(left_appls, new_left, e_state, cs_error) = build_left_operand left_appls prio2 new_left e_state cs_error
-> build_operator_expression left_appls new_left (symb2, arity2, prio2) right e_state cs_error
# (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
-> build_operator_expression [(symb1, arity1, prio1, left1) : left_appls]
middle_exp (symb2, arity2, prio2) right e_state cs_error
No
-> (EE, e_state, checkError symb1.symb_ident "conflicting priorities" cs_error)
No
# (right, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
(result_expr, e_state, cs_error) = buildApplication symb1 arity1 2 [left1,right] e_state cs_error
-> build_final_expression left_appls result_expr e_state cs_error
build_left_operand [] _ result_expr e_state cs_error
= ([], result_expr, e_state, cs_error)
build_left_operand la=:[(symb, arity, priol, left) : left_appls] prior result_expr e_state cs_error
# optional_prio = determinePriority priol prior
= case optional_prio of
Yes priority
| priority
# (result_expr, e_state, cs_error) = buildApplication symb arity 2 [left,result_expr] e_state cs_error
-> build_left_operand left_appls prior result_expr e_state cs_error
-> (la, result_expr, e_state, cs_error)
No
-> (la, EE, e_state, checkError symb.symb_ident "conflicting priorities" cs_error)
build_final_expression [] result_expr e_state cs_error
= (result_expr, e_state, cs_error)
build_final_expression [(symb, arity, _, left) : left_appls] result_expr e_state cs_error
# (result_expr, e_state, cs_error) = buildApplication symb arity 2 [left,result_expr] e_state cs_error
= build_final_expression left_appls result_expr e_state cs_error
checkExpression free_vars (PE_Let strict let_locals expr) e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs
# ei_expr_level = inc ei_expr_level
(loc_defs, (var_env, array_patterns), e_state, e_info, cs)
= checkLhssOfLocalDefs ei_expr_level ei_mod_index let_locals ei_local_functions_index_offset e_state e_info cs
e_input = { e_input & ei_expr_level = ei_expr_level }
(let_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs)
= addArraySelections array_patterns let_expr free_vars e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index ei_expr_level let_locals ei_local_functions_index_offset e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps, hp_generic_heap = e_state.es_generic_heap } cs
(es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level var_env let_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table
= (expr, free_vars,
{ e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expr_heap = heaps.hp_expression_heap,
es_type_heaps = heaps.hp_type_heaps,es_generic_heap = heaps.hp_generic_heap },
{e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table })
checkExpression free_vars (PE_Case case_ident expr alts) e_input e_state e_info cs
# (pattern_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(guards, _, pattern_variables, defaul, free_vars, e_state, e_info, cs)
= check_case_alts free_vars alts [] case_ident.id_name e_input e_state e_info cs
(pattern_expr, binds, es_expr_heap) = bind_pattern_variables pattern_variables pattern_expr e_state.es_expr_heap
(case_expr, es_var_heap, es_expr_heap) = build_and_share_case guards defaul pattern_expr case_ident cCaseExplicit e_state.es_var_heap es_expr_heap
(result_expr, es_expr_heap) = buildLetExpression [] binds case_expr NoPos es_expr_heap
= (result_expr, free_vars, { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }, e_info, cs)
where
check_case_alts free_vars [g] pattern_variables case_name e_input=:{ei_expr_level} e_state e_info cs
# e_input = { e_input & ei_expr_level = inc ei_expr_level }
= check_case_alt free_vars g NoPattern NoPattern pattern_variables No case_name e_input e_state e_info cs
check_case_alts free_vars [g : gs] pattern_variables case_name e_input=:{ei_expr_level} e_state e_info cs
# e_input = { e_input & ei_expr_level = inc ei_expr_level }
(gs, pattern_scheme, pattern_variables, defaul, free_vars, e_state, e_info, cs)
= check_case_alts free_vars gs pattern_variables case_name e_input e_state e_info cs
= check_case_alt free_vars g gs pattern_scheme pattern_variables defaul case_name e_input e_state e_info cs
check_case_alt :: [FreeVar] CaseAlt CasePatterns CasePatterns [(Bind Ident (Ptr VarInfo))] (Optional ((Optional FreeVar),Expression)) {#Char} ExpressionInput *ExpressionState *ExpressionInfo *CheckState
-> *(CasePatterns,CasePatterns,[(Bind Ident (Ptr VarInfo))],(Optional ((Optional FreeVar),Expression)),[FreeVar],*ExpressionState,*ExpressionInfo,*CheckState)
check_case_alt free_vars {calt_pattern,calt_rhs={rhs_alts,rhs_locals},calt_position} patterns pattern_scheme pattern_variables defaul case_name
e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_fun_defs,es_var_heap,es_dynamics=outer_dynamics} e_info cs
# (pattern, (var_env, array_patterns), {ps_fun_defs,ps_var_heap}, e_info, cs)
= checkPattern calt_pattern No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], [])
{ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs} e_info cs
e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs, es_dynamics = [] }
(rhs_expr, free_vars, e_state, e_info, cs)
= checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs
(expr_with_array_selections, free_vars, e_state=:{es_dynamics = dynamics_in_rhs, es_expr_heap, es_var_heap}, e_info, cs)
= addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
(guarded_expr, pattern_scheme, pattern_variables, defaul, es_var_heap, es_expr_heap, dynamics_in_patterns, cs)
= transform_pattern pattern patterns pattern_scheme pattern_variables defaul expr_with_array_selections case_name calt_position
es_var_heap es_expr_heap dynamics_in_rhs { cs & cs_symbol_table = cs_symbol_table }
e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap, es_dynamics = dynamics_in_patterns ++ outer_dynamics }
= (guarded_expr, pattern_scheme, pattern_variables, defaul, free_vars, e_state, e_info, cs)
bind_pattern_variables [] pattern_expr expr_heap
= (pattern_expr, [], expr_heap)
bind_pattern_variables [{bind_src,bind_dst} : variables] this_pattern_expr expr_heap
# free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(bound_var, expr_heap) = allocate_bound_var free_var expr_heap
(pattern_expr, binds, expr_heap) = bind_pattern_variables variables (Var bound_var) expr_heap
= (pattern_expr, [{lb_src = this_pattern_expr, lb_dst = free_var, lb_position = NoPos } : binds], expr_heap)
checkExpression free_vars (PE_Selection selector_kind expr [PS_Array index_expr]) e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
# (select_fun, selector_kind)
= case selector_kind of
ParsedNormalSelector
-> (PD_ArraySelectFun, NormalSelector)
ParsedUniqueSelector False
-> (PD_UnqArraySelectFun, UniqueSingleArraySelector/*NormalSelector*/)
ParsedUniqueSelector True
-> (PD_UnqArraySelectFun, UniqueSingleArraySelectorUniqueElementResult)
# (glob_select_symb, cs) = getPredefinedGlobalSymbol select_fun PD_StdArray STE_Member 2 cs
(selector, free_vars, e_state, e_info, cs) = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
= (Selection selector_kind expr [selector], free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Selection selector_kind expr selectors) e_input e_state e_info cs
# (selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithSelection free_vars selectors e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
= case selector_kind of
ParsedNormalSelector
-> (Selection NormalSelector expr selectors, free_vars, e_state, e_info, cs)
ParsedUniqueSelector unique_element
-> (Selection UniqueSelector expr selectors, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Update expr1 selectors expr2) e_input e_state e_info cs
# (expr1, free_vars, e_state, e_info, cs) = checkExpression free_vars expr1 e_input e_state e_info cs
(selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithUpdate free_vars selectors e_input e_state e_info cs
(expr2, free_vars, e_state, e_info, cs) = checkExpression free_vars expr2 e_input e_state e_info cs
= (Update expr1 selectors expr2, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Tuple exprs) e_input e_state e_info cs
# (exprs, arity, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs
({glob_object={ds_ident,ds_index},glob_module}, cs)
= getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs
= (App { app_symb = { symb_ident = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }},
app_args = exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs)
where
check_expression_list free_vars [] e_input e_state e_info cs
= ([], 0, free_vars, e_state, e_info, cs)
check_expression_list free_vars [expr : exprs] e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(exprs, length, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs
= ([expr : exprs], inc length, free_vars, e_state, e_info, cs)
checkExpression free_vars rec=:(PE_Record record opt_type fields) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (opt_record_and_fields, e_info, cs) = checkFields ei_mod_index fields opt_type e_info cs
= case opt_record_and_fields of
Yes (cons=:{glob_module, glob_object}, _, new_fields)
# {ds_ident,ds_index} = glob_object
rec_cons = { symb_ident = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module } }
-> case record of
PE_Empty
# (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Constructor e_input e_state e_info cs
-> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs)
_
# (rec_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars record e_input e_state e_info cs
# (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs
-> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs)
No
-> (EE, free_vars, e_state, e_info, cs)
where
remove_fields binds = [ bind_src \\ {bind_src} <- binds ]
check_field_exprs :: [FreeVar] [Bind ParsedExpr (Global FieldSymbol)] Int RecordKind ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> *(![.Bind Expression (Global FieldSymbol)],![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
check_field_exprs free_vars [] field_nr record_kind e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
check_field_exprs free_vars [field_expr : field_exprs] field_nr record_kind e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= check_field_expr free_vars field_expr field_nr record_kind e_input e_state e_info cs
(exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars field_exprs (inc field_nr) record_kind e_input e_state e_info cs
= ([expr : exprs], free_vars, e_state, e_info, cs)
check_field_expr :: [FreeVar] (Bind ParsedExpr (Global FieldSymbol)) Int RecordKind ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!.Bind Expression (Global FieldSymbol),![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState);
check_field_expr free_vars field=:{bind_src = PE_Empty, bind_dst={glob_object={fs_var,fs_ident,fs_index},glob_module}} field_nr record_kind e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= checkIdentExpression cIsNotInExpressionList free_vars fs_var e_input e_state e_info cs
= ({ field & bind_src = expr }, free_vars, e_state, e_info, cs)
check_field_expr free_vars field=:{bind_src = PE_WildCard, bind_dst={glob_object=fs_ident}} field_nr RK_Constructor e_input e_state e_info cs
= ({ field & bind_src = NoBind nilPtr }, free_vars, e_state, e_info, { cs & cs_error = checkError fs_ident "field not specified" cs.cs_error })
check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr RK_Update e_input e_state=:{es_expr_heap} e_info cs
# (bind_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap
= ({ field & bind_src = NoBind bind_expr_ptr }, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs)
check_field_expr free_vars field=:{bind_src} field_nr upd_record e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= checkExpression free_vars bind_src e_input e_state e_info cs
= ({ field & bind_src = expr }, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Dynamic expr opt_type) e_input e_state=:{es_dynamics=outer_dynamics} e_info cs
# (dyn_expr, free_vars, e_state=:{es_dynamics, es_expr_heap}, e_info, cs) = checkExpression free_vars expr e_input {e_state & es_dynamics = []} e_info cs
(dyn_info_ptr, es_expr_heap) = newPtr (EI_UnmarkedDynamic opt_type es_dynamics) es_expr_heap
= (DynamicExpr { dyn_expr = dyn_expr, dyn_opt_type = opt_type, dyn_info_ptr = dyn_info_ptr, dyn_type_code = TCE_Empty},
free_vars, { e_state & es_expr_heap = es_expr_heap, es_dynamics = [dyn_info_ptr : outer_dynamics]},
e_info, { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdDynamic })
checkExpression free_vars (PE_Basic basic_value) e_input e_state e_info cs
= (BasicExpr basic_value, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_ABC_Code code_sequence do_inline) e_input e_state e_info cs
= (ABCCodeExpr code_sequence do_inline, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Any_Code ins outs code_sequence) e_input e_state e_info cs
# (ins, (free_vars, e_state, e_info, cs)) = check_in_parameters e_input ins (free_vars, e_state, e_info, cs)
(new_outs, (e_state, cs)) = check_out_parameters e_input.ei_expr_level outs (e_state, cs)
cs_symbol_table = remove_out_parameters_from_symbol_table e_input.ei_expr_level outs cs.cs_symbol_table
= (AnyCodeExpr ins new_outs code_sequence, free_vars, e_state, e_info, { cs & cs_symbol_table = cs_symbol_table })
where
check_in_parameters e_input params fv_es_ei_cs
= mapSt (check_in_parameter e_input) params fv_es_ei_cs
check_in_parameter e_input { bind_src, bind_dst } (free_vars, e_state, e_info, cs)
# (id_expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars bind_dst e_input e_state e_info cs
= case id_expr of
Var var
-> ({ bind_dst = var, bind_src = bind_src }, (free_vars, e_state, e_info, cs))
_
-> ({ bind_dst = { var_ident = bind_dst, var_info_ptr = nilPtr, var_expr_ptr = nilPtr }, bind_src = bind_src }, (free_vars, e_state, e_info,
{ cs & cs_error = checkError bind_src "bound variable expected" cs.cs_error }))
check_out_parameters expr_level params es_cs
= mapSt (check_out_parameter expr_level) params es_cs
check_out_parameter expr_level bind=:{ bind_src, bind_dst } (e_state, cs)
| isLowerCaseName bind_dst.id_name
# (entry, cs_symbol_table) = readPtr bind_dst.id_info cs.cs_symbol_table
# (new_info_ptr, es_var_heap) = newPtr VI_Empty e_state.es_var_heap
cs = checkPatternVariable expr_level entry bind_dst new_info_ptr { cs & cs_symbol_table = cs_symbol_table }
= ( { bind & bind_dst = { fv_def_level = expr_level, fv_ident = bind_dst, fv_info_ptr = new_info_ptr, fv_count = 0 }},
( { e_state & es_var_heap = es_var_heap }, cs))
= ( { bind & bind_dst = { fv_def_level = expr_level, fv_ident = bind_dst, fv_info_ptr = nilPtr, fv_count = 0 }},
( e_state, { cs & cs_error = checkError bind_src "variable expected" cs.cs_error }))
remove_out_parameters_from_symbol_table expr_level idents symbol_table
= foldSt (\{bind_dst} -> removeIdentFromSymbolTable expr_level bind_dst) idents symbol_table
checkExpression free_vars (PE_Ident id) e_input e_state e_info cs
= checkIdentExpression cIsNotInExpressionList free_vars id e_input e_state e_info cs
checkExpression free_vars (PE_QualifiedIdent module_id ident_name) e_input e_state e_info cs
= checkQualifiedIdentExpression free_vars module_id ident_name cIsNotInExpressionList e_input e_state e_info cs
checkExpression free_vars (PE_Generic id=:{id_name,id_info} kind) e_input e_state e_info cs=:{cs_symbol_table}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
= check_generic_expr free_vars entry id kind e_input e_state e_info {cs & cs_symbol_table = cs_symbol_table}
where
check_generic_expr :: ![FreeVar] !SymbolTableEntry !Ident !TypeKind !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState
-> (!Expression, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState)
check_generic_expr free_vars entry=:{ste_kind=STE_Generic,ste_index} id kind e_input=:{ei_mod_index} e_state e_info cs
= check_it free_vars ei_mod_index ste_index id kind e_input e_state e_info cs
check_generic_expr free_vars entry=:{ste_kind=STE_Imported STE_Generic mod_index, ste_index} id kind e_input e_state e_info cs
= check_it free_vars mod_index ste_index id kind e_input e_state e_info cs
check_generic_expr free_vars entry=:{ste_kind=STE_Empty} id kind e_input e_state e_info cs=:{cs_error}
= (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "undefined generic" cs_error })
check_generic_expr free_vars entry id kind e_input e_state e_info cs=:{cs_error}
= (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "not a generic" cs_error })
check_it free_vars mod_index gen_index id kind e_input e_state=:{es_expr_heap} e_info cs
#! symb_kind = SK_Generic {glob_object = gen_index, glob_module = mod_index} kind
#! symbol = { symb_ident = id, symb_kind = symb_kind }
#! (new_info_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap
#! app = { app_symb = symbol, app_args = [], app_info_ptr = new_info_ptr }
#! e_state = { e_state & es_expr_heap = es_expr_heap }
#! cs = { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdGeneric }
= (App app, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_TypeSignature array_kind expr) e_input e_state e_info cs
# (expr,free_vars,e_state,e_info,cs) = checkExpression free_vars expr e_input e_state e_info cs
predef_array_index = case array_kind of
UnboxedArray -> PD_UnboxedArrayType
StrictArray -> PD_StrictArrayType
({pds_module,pds_def},cs) = cs!cs_predef_symbols.[predef_array_index]
#! strict_array_ident = predefined_idents.[predef_array_index]
# type_prop = { tsp_sign = BottomSignClass, tsp_propagation = NoPropClass, tsp_coercible = True }
strict_array_type_symb_ident = {type_ident=strict_array_ident,type_arity=1,type_index={glob_module=pds_module,glob_object=pds_def},type_prop=type_prop}
expr = TypeSignature (make_fresh_strict_array_type strict_array_type_symb_ident) expr
= (expr,free_vars,e_state,e_info,cs)
where
make_fresh_strict_array_type strict_array_type_symb_ident var_store attr_store
# element_type_var=TempV var_store
var_store=var_store+1
element_type_attr_var = TA_TempVar attr_store
attr_store=attr_store+1
array_type_attr_var = TA_TempVar attr_store
attr_store=attr_store+1
element_type = {at_attribute = element_type_attr_var, at_type = element_type_var}
strict_array_type = {at_attribute = array_type_attr_var, at_type = TA strict_array_type_symb_ident [element_type]}
= (strict_array_type,var_store,attr_store)
/*
# {th_vars,th_attrs}=e_state.es_type_heaps
# (element_type_var_ptr,th_vars) = newPtr TVI_Empty th_vars
# (element_type_attr_ptr,th_attrs) = newPtr AVI_Empty th_attrs
# (array_type_attr_ptr,th_attrs) = newPtr AVI_Empty th_attrs
# e_state = {e_state & es_type_heaps = {th_vars=th_vars,th_attrs=th_attrs}}
# element_type_var = {tv_ident = {id_name = "element_type_var", id_info = nilPtr}, tv_info_ptr = element_type_var_ptr}
# element_type_attr_var = {av_ident = {id_name = "element_type_attr", id_info = nilPtr},av_info_ptr = element_type_attr_ptr}
# array_type_attr_var = {av_ident = {id_name = "array_type_attr", id_info = nilPtr},av_info_ptr = array_type_attr_ptr}
# element_type = {at_attribute = TA_Var element_type_attr_var, at_type = TV element_type_var}
# strict_array_type = {at_attribute = TA_Var array_type_attr_var, at_type = TA strict_array_type_symb_ident [element_type]}
# expr = TypeSignature strict_array_type expr
*/
checkExpression free_vars (PE_Matches case_ident expr pattern position) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
{es_fun_defs,es_var_heap,es_expr_heap} = e_state
ps = {ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs}
(pattern, (_/*var_env*/, _/*array_patterns*/), {ps_fun_defs,ps_var_heap}, e_info, cs)
= checkPattern pattern No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], []) ps e_info cs
| is_single_constructor_pattern pattern
= case pattern of
AP_Algebraic cons_symbol global_type_index args _
# is_cons_expr = IsConstructor expr cons_symbol (length args) global_type_index case_ident position
e_state & es_fun_defs=ps_fun_defs, es_var_heap = ps_var_heap, es_expr_heap = es_expr_heap
-> (is_cons_expr, free_vars, e_state, e_info, cs)
# fail_expr = Yes (No,BasicExpr (BVB False))
true_expr = BasicExpr (BVB True)
(guarded_expr, pattern_scheme, _/*pattern_variables*/, defaul, es_var_heap, es_expr_heap, _/*dynamics_in_patterns*/, cs)
= transform_pattern pattern NoPattern NoPattern [] fail_expr true_expr case_ident.id_name position ps_var_heap es_expr_heap [] cs
(case_expr, es_var_heap, es_expr_heap)
= build_and_share_case guarded_expr defaul expr case_ident cCaseExplicit es_var_heap es_expr_heap
e_state & es_fun_defs=ps_fun_defs, es_var_heap = es_var_heap, es_expr_heap = es_expr_heap
= (case_expr, free_vars, e_state, e_info, cs)
where
is_single_constructor_pattern (AP_Algebraic cons_symbol _ args No)
| cons_symbol.glob_module==cPredefinedModuleIndex
# pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex
| pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol ||
pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol ||
pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol
= False
= all_wild_card_args args
= all_wild_card_args args
is_single_constructor_pattern _
= False
all_wild_card_args [AP_WildCard No : args]
= all_wild_card_args args
all_wild_card_args [_:_]
= False
all_wild_card_args []
= True
checkExpression free_vars expr e_input e_state e_info cs
= abort "checkExpression (checkFunctionBodies.icl)" // <<- expr
transform_pattern :: !AuxiliaryPattern !CasePatterns !CasePatterns !(Env Ident VarInfoPtr) !(Optional (!Optional FreeVar, !Expression)) !Expression
!String !Position !*VarHeap !*ExpressionHeap !Dynamics !*CheckState
-> (!CasePatterns, !CasePatterns, !Env Ident VarInfoPtr, !Optional (!Optional FreeVar,!Expression), !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState)
transform_pattern (AP_Algebraic cons_symbol global_type_index args opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs
# (var_args, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr pos var_store expr_heap opt_dynamics cs
pattern_variables = cons_optional opt_var pattern_variables
# pattern = { ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pos}
| cons_symbol.glob_module==cPredefinedModuleIndex
# pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex
| pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol
# (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs
= case pattern_scheme of
OverloadedListPatterns (UnboxedList _ _ _ _) _ _
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
-> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
OverloadedListPatterns (OverloadedList _ _ _ _) _ _
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_UnboxedConsSymbol PD_UnboxedNilSymbol cs
-> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], OverloadedListPatterns unboxed_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
NoPattern
-> (OverloadedListPatterns unboxed_list decons_expr [pattern], OverloadedListPatterns unboxed_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
| pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol
# (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs
= case pattern_scheme of
OverloadedListPatterns (UnboxedTailStrictList _ _ _ _) _ _
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
-> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
OverloadedListPatterns (OverloadedList _ _ _ _) _ _
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_UnboxedTailStrictConsSymbol PD_UnboxedTailStrictNilSymbol cs
-> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], OverloadedListPatterns unboxed_tail_strict_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
NoPattern
-> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern], OverloadedListPatterns unboxed_tail_strict_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
| pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol
= case pattern_scheme of
OverloadedListPatterns (OverloadedList _ _ _ _) _ _
# (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
-> (OverloadedListPatterns overloaded_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
OverloadedListPatterns (UnboxedList _ _ _ _) _ _
# (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_UnboxedConsSymbol PD_UnboxedNilSymbol cs
-> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
OverloadedListPatterns (UnboxedTailStrictList _ _ _ _) _ _
# (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_UnboxedTailStrictConsSymbol PD_UnboxedTailStrictNilSymbol cs
-> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
AlgebraicPatterns alg_type _
| alg_type.gi_module==cPredefinedModuleIndex
# index=alg_type.gi_index+FirstTypePredefinedSymbolIndex
| index==PD_ListType
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_ConsSymbol PD_NilSymbol cs
-> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_StrictListType
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_StrictConsSymbol PD_StrictNilSymbol cs
-> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_TailStrictListType
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_TailStrictConsSymbol PD_TailStrictNilSymbol cs
-> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_StrictTailStrictListType
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_StrictTailStrictConsSymbol PD_StrictTailStrictNilSymbol cs
-> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
NoPattern
# (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs
-> (OverloadedListPatterns overloaded_list decons_expr [pattern], OverloadedListPatterns overloaded_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
= case pattern_scheme of
AlgebraicPatterns alg_type _
| global_type_index == alg_type
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
-> (AlgebraicPatterns global_type_index [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error })
OverloadedListPatterns (OverloadedList _ _ _ _) _ _
| global_type_index.gi_module==cPredefinedModuleIndex
# index=global_type_index.gi_index+FirstTypePredefinedSymbolIndex
| index==PD_ListType
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_ConsSymbol PD_NilSymbol cs
-> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_StrictListType
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_StrictConsSymbol PD_StrictNilSymbol cs
-> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_TailStrictListType
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_TailStrictConsSymbol PD_TailStrictNilSymbol cs
-> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
| index==PD_StrictTailStrictListType
# alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns
# (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_StrictTailStrictConsSymbol PD_StrictTailStrictNilSymbol cs
-> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
NoPattern
-> (AlgebraicPatterns global_type_index [pattern], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
= case pattern_scheme of
AlgebraicPatterns alg_type _
| global_type_index == alg_type
# alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns
-> (AlgebraicPatterns global_type_index [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
# cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
NoPattern
-> (AlgebraicPatterns global_type_index [pattern], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
where
alg_patterns_of_AlgebraicPatterns_or_NoPattern (AlgebraicPatterns _ alg_patterns) = alg_patterns
alg_patterns_of_AlgebraicPatterns_or_NoPattern NoPattern = []
alg_patterns_of_OverloadedListPatterns_or_NoPattern (OverloadedListPatterns _ _ alg_patterns) = alg_patterns
alg_patterns_of_OverloadedListPatterns_or_NoPattern NoPattern = []
illegal_combination_of_patterns_error cons_symbol cs
= { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error }
replace_overloaded_symbols_in_patterns [] pd_cons_symbol pd_nil_symbol cs
= ([],cs)
replace_overloaded_symbols_in_patterns [pattern=:{ap_symbol={glob_module,glob_object}}:patterns] pd_cons_symbol pd_nil_symbol cs
# (pattern,cs) = replace_overloaded_symbol_in_pattern pattern pd_cons_symbol pd_nil_symbol cs
# (patterns,cs) = replace_overloaded_symbols_in_patterns patterns pd_cons_symbol pd_nil_symbol cs
= ([pattern:patterns],cs)
replace_overloaded_symbol_in_pattern pattern=:{ap_symbol={glob_module,glob_object}} pd_cons_symbol pd_nil_symbol cs
| glob_module==cPredefinedModuleIndex
# index=glob_object.ds_index+FirstConstructorPredefinedSymbolIndex
| index==PD_OverloadedConsSymbol
# ({pds_def},cs) = cs!cs_predef_symbols.[pd_cons_symbol]
# pds_ident = predefined_idents.[pd_cons_symbol]
# glob_object = {glob_object & ds_index=pds_def,ds_ident=pds_ident}
= ({pattern & ap_symbol.glob_object=glob_object},cs)
| index==PD_OverloadedNilSymbol
# ({pds_def},cs) = cs!cs_predef_symbols.[pd_nil_symbol]
# pds_ident = predefined_idents.[pd_nil_symbol]
# glob_object = {glob_object & ds_index=pds_def,ds_ident=pds_ident}
= ({pattern & ap_symbol.glob_object=glob_object},cs)
= abort "replace_overloaded_symbol_in_pattern"
transform_pattern (AP_Basic basic_val opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs
# pattern = { bp_value = basic_val, bp_expr = result_expr, bp_position = pos}
pattern_variables = cons_optional opt_var pattern_variables
(type_symbol, cs) = typeOfBasicValue basic_val cs
= case pattern_scheme of
BasicPatterns basic_type _
| type_symbol == basic_type
# basic_patterns = case patterns of
BasicPatterns _ basic_patterns
-> basic_patterns
NoPattern
-> []
-> (BasicPatterns basic_type [pattern : basic_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError basic_val "incompatible types of patterns" cs.cs_error })
NoPattern
-> (BasicPatterns type_symbol [pattern], BasicPatterns type_symbol [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError basic_val "illegal combination of patterns" cs.cs_error})
transform_pattern (AP_Dynamic pattern type opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr pos var_store expr_heap opt_dynamics cs
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
pattern = { dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr,
dp_type_code = TCE_Empty, dp_position = pos }
pattern_variables = cons_optional opt_var pattern_variables
= case pattern_scheme of
DynamicPatterns _
# dyn_patterns = case patterns of
DynamicPatterns dyn_patterns
-> dyn_patterns
NoPattern
-> []
-> (DynamicPatterns [pattern : dyn_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs)
NoPattern
-> (DynamicPatterns [pattern], DynamicPatterns [], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError "<dynamic pattern>" "illegal combination of patterns" cs.cs_error })
transform_pattern (AP_Variable name var_info opt_var) NoPattern pattern_scheme pattern_variables No result_expr _ pos var_store expr_heap opt_dynamics cs
= ( NoPattern, pattern_scheme, cons_optional opt_var pattern_variables,
Yes (Yes { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr),
var_store, expr_heap, opt_dynamics, cs)
transform_pattern (AP_Variable name var_info opt_var) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs
# free_var = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }
(new_bound_var, expr_heap) = allocate_bound_var free_var expr_heap
case_ident = { id_name = case_name, id_info = nilPtr }
(new_case, var_store, expr_heap) = build_and_share_case patterns defaul (Var new_bound_var) case_ident cCaseExplicit var_store expr_heap
new_defaul = insert_as_default result_expr new_case
= (NoPattern, pattern_scheme, (cons_optional opt_var pattern_variables), Yes (Yes free_var, new_defaul),
var_store, expr_heap, opt_dynamics, cs)
where
insert_as_default :: !Expression !Expression -> Expression
insert_as_default (Let lad=:{let_expr}) to_insert
= Let { lad & let_expr = insert_as_default let_expr to_insert }
insert_as_default (Case kees=:{case_default,case_explicit=False}) to_insert
= case case_default of
No -> Case { kees & case_default = Yes to_insert }
Yes defaul -> Case { kees & case_default = Yes (insert_as_default defaul to_insert)}
insert_as_default expr _ = expr // checkWarning "pattern won't match"
transform_pattern (AP_NewType cons_symbol type_index arg opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern arg result_expr pos var_store expr_heap opt_dynamics cs
type_symbol = {gi_module = cons_symbol.glob_module, gi_index = type_index}
pattern_variables = cons_optional opt_var pattern_variables
# pattern = { ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pos}
= case pattern_scheme of
NewTypePatterns alg_type _
| type_symbol == alg_type
# newtype_patterns = case patterns of
NewTypePatterns _ newtype_patterns -> newtype_patterns
NoPattern -> []
-> (NewTypePatterns type_symbol [pattern : newtype_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error })
NoPattern
-> (NewTypePatterns type_symbol [pattern], NewTypePatterns type_symbol [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs)
where
illegal_combination_of_patterns_error cons_symbol cs
= { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error }
transform_pattern (AP_WildCard (Yes opt_var)) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs
= transform_pattern (AP_Variable opt_var.bind_src opt_var.bind_dst No) patterns pattern_scheme pattern_variables defaul
result_expr case_name pos var_store expr_heap opt_dynamics cs
transform_pattern (AP_WildCard no) NoPattern pattern_scheme pattern_variables No result_expr _ pos var_store expr_heap opt_dynamics cs
= (NoPattern, pattern_scheme, pattern_variables, Yes (No, result_expr), var_store, expr_heap, opt_dynamics, cs)
transform_pattern (AP_WildCard _) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs
# (new_info_ptr, var_store) = newPtr VI_Empty var_store
= transform_pattern (AP_Variable (newVarId "wc") new_info_ptr No) patterns pattern_scheme pattern_variables defaul
result_expr case_name pos var_store expr_heap opt_dynamics cs
transform_pattern AP_Empty patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs
= (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
build_and_share_case patterns defaul expr case_ident explicit var_heap expr_heap
# (expr, expr_heap) = build_case patterns defaul expr case_ident explicit expr_heap
= share_case_expr expr var_heap expr_heap
where
build_case NoPattern defaul expr case_ident explicit expr_heap
= case defaul of
Yes (opt_var, result)
-> case opt_var of
Yes var
-> bind_default_variable expr var result expr_heap
No
-> (result, expr_heap)
No
-> (EE, expr_heap)
build_case (DynamicPatterns patterns) defaul expr case_ident explicit expr_heap
= case defaul of
Yes (opt_var, result)
-> case opt_var of
Yes var
# (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(bound_var, expr_heap) = allocate_bound_var var expr_heap
result = buildTypeCase (Var bound_var) patterns (Yes result) type_case_info_ptr cCaseExplicit
-> bind_default_variable expr var result expr_heap
No
# (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (buildTypeCase expr patterns (Yes result) type_case_info_ptr cCaseExplicit, expr_heap)
No
# (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (buildTypeCase expr patterns No type_case_info_ptr cCaseExplicit, expr_heap)
build_case patterns (Yes (opt_var,result)) expr case_ident explicit expr_heap
= case opt_var of
Yes var
# (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(bound_var, expr_heap) = allocate_bound_var var expr_heap
result = Case {case_expr = Var bound_var, case_guards = patterns, case_default = Yes result,
case_ident = Yes case_ident, case_info_ptr = case_expr_ptr,
case_explicit = explicit,
case_default_pos = NoPos }
-> bind_default_variable expr var result expr_heap
No
# (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Case {case_expr = expr, case_guards = patterns, case_default = Yes result,
case_explicit = explicit,
case_ident = Yes case_ident, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, expr_heap)
build_case patterns No expr case_ident explicit expr_heap
# (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Case {case_expr = expr, case_guards = patterns, case_default = No, case_ident = Yes case_ident,
case_explicit = explicit,
case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, expr_heap)
// make sure that the case_expr is a variable, because that's needed for merging
// the alternatives in cases (in transform.icl)
// FIXME: this should be represented in the syntax tree: change case_expr to
// case_var :: BoundVar in Case
share_case_expr (Let lad=:{let_expr}) var_heap expr_heap
# (let_expr, var_heap, expr_heap) = share_case_expr let_expr var_heap expr_heap
= (Let {lad & let_expr = let_expr}, var_heap, expr_heap)
share_case_expr expr=:(Case {case_expr=Var var_ptr}) var_heap expr_heap
= (expr, var_heap, expr_heap)
share_case_expr (Case kees=:{case_expr}) var_heap expr_heap
# (free_var, var_heap) = allocate_free_var { id_name = "_case_var", id_info = nilPtr } var_heap
(bound_var, expr_heap) = allocate_bound_var free_var expr_heap
(case_expression, expr_heap) = bind_default_variable case_expr free_var (Case {kees & case_expr = Var bound_var}) expr_heap
= (case_expression, var_heap, expr_heap)
share_case_expr expr var_heap expr_heap
= (expr, var_heap, expr_heap)
bind_default_variable lb_src lb_dst result_expr expr_heap
# (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Let {let_strict_binds = [], let_lazy_binds = [{ lb_src = lb_src, lb_dst = lb_dst, lb_position = NoPos }],
let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, expr_heap)
cons_optional (Yes var) variables
= [ var : variables ]
cons_optional No variables
= variables
checkIdentExpression :: !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!Expression, ![FreeVar], !*ExpressionState,!u:ExpressionInfo,!*CheckState)
checkIdentExpression is_expr_list free_vars id=:{id_info} e_input e_state e_info cs=:{cs_symbol_table}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
= check_id_expression entry is_expr_list free_vars id e_input e_state e_info { cs & cs_symbol_table = cs_symbol_table }
where
check_id_expression :: !SymbolTableEntry !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!Expression, ![FreeVar], !*ExpressionState,!u:ExpressionInfo,!*CheckState)
check_id_expression {ste_kind = STE_Empty} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error,cs_predef_symbols,cs_x}
# local_predefined_idents = predefined_idents
# from_ident = local_predefined_idents.[PD_From]
from_then_ident = local_predefined_idents.[PD_FromThen]
from_to_ident = local_predefined_idents.[PD_FromTo]
from_then_to_ident = local_predefined_idents.[PD_FromThenTo]
| id==from_ident || id==from_then_ident || id==from_to_ident || id==from_then_to_ident
= (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cStdEnumImportMissing})
// instead of giving an error message remember that StdEnum should have been imported.
// Error will be given in function check_needed_modules_are_imported
| id==local_predefined_idents.[PD_FromS] || id==local_predefined_idents.[PD_FromTS] || id==local_predefined_idents.[PD_FromSTS]
|| id==local_predefined_idents.[PD_FromU] || id==local_predefined_idents.[PD_FromUTS] || id==local_predefined_idents.[PD_FromO]
|| id==local_predefined_idents.[PD_FromThenS] || id==local_predefined_idents.[PD_FromThenTS] || id==local_predefined_idents.[PD_FromThenSTS]
|| id==local_predefined_idents.[PD_FromThenU] || id==local_predefined_idents.[PD_FromThenUTS] || id==local_predefined_idents.[PD_FromThenO]
|| id==local_predefined_idents.[PD_FromToS] || id==local_predefined_idents.[PD_FromToTS] || id==local_predefined_idents.[PD_FromToSTS]
|| id==local_predefined_idents.[PD_FromToU] || id==local_predefined_idents.[PD_FromToUTS] || id==local_predefined_idents.[PD_FromToO]
|| id==local_predefined_idents.[PD_FromThenToS] || id==local_predefined_idents.[PD_FromThenToTS] || id==local_predefined_idents.[PD_FromThenToSTS]
|| id==local_predefined_idents.[PD_FromThenToU] || id==local_predefined_idents.[PD_FromThenToUTS] || id==local_predefined_idents.[PD_FromThenToO]
= (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cNeedStdStrictLists})
# createArray_ident = local_predefined_idents.[PD__CreateArrayFun]
uselect_ident = local_predefined_idents.[PD_UnqArraySelectFun]
update_ident = local_predefined_idents.[PD_ArrayUpdateFun]
usize_ident = local_predefined_idents.[PD_UnqArraySizeFun]
| id==createArray_ident || id==uselect_ident || id==update_ident || id==usize_ident
= (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cStdArrayImportMissing})
// instead of giving an error message remember that StdArray should have been be imported.
// Error will be given in function check_needed_modules_are_imported
| id==local_predefined_idents.[PD_cons] || id==local_predefined_idents.[PD_decons]
|| id==local_predefined_idents.[PD_cons_u] || id==local_predefined_idents.[PD_decons_u]
|| id==local_predefined_idents.[PD_cons_uts] || id==local_predefined_idents.[PD_decons_uts]
|| id==local_predefined_idents.[PD_nil] || id==local_predefined_idents.[PD_nil_u] || id==local_predefined_idents.[PD_nil_uts]
= (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cNeedStdStrictLists})
// instead report that StdStrictLists should be imported in function check_needed_modules_are_imported
= (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "undefined" cs_error })
check_id_expression {ste_kind = STE_Variable info_ptr,ste_def_level} is_expr_list free_vars id e_input=:{ei_fun_level} e_state=:{es_expr_heap} e_info cs
| ste_def_level < ei_fun_level
# free_var = { fv_def_level = ste_def_level, fv_ident = id, fv_info_ptr = info_ptr, fv_count = 0 }
(free_var_added, free_vars) = newFreeVariable free_var free_vars
= (FreeVar free_var, free_vars, e_state, e_info, cs)
#! (var_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap
= (Var {var_ident = id, var_info_ptr = info_ptr, var_expr_ptr = var_expr_ptr}, free_vars,
{e_state & es_expr_heap = es_expr_heap}, e_info, cs)
check_id_expression {ste_kind = STE_Generic} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error}
= (EE, free_vars, e_state, e_info,
{ cs & cs_error = checkError id "generic: missing kind argument" cs_error})
check_id_expression {ste_kind = STE_Imported STE_Generic _} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error}
= (EE, free_vars, e_state, e_info,
{ cs & cs_error = checkError id "generic: missing kind argument" cs_error})
check_id_expression entry is_expr_list free_vars id=:{id_info} e_input e_state e_info cs
# (symb_kind, arity, priority, e_state, e_info, cs) = determine_info_of_symbol entry id_info e_input e_state e_info cs
symbol = { symb_ident = id, symb_kind = symb_kind }
| is_expr_list
= (Constant symbol arity priority, free_vars, e_state, e_info, cs)
= case symb_kind of
SK_Constructor _
# app_expr = App {app_symb = symbol, app_args = [], app_info_ptr = nilPtr}
-> (app_expr, free_vars, e_state, e_info, cs)
SK_OverloadedConstructor cons_index
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
app_expr = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = [], app_info_ptr = new_info_ptr}
-> (app_expr, free_vars, {e_state & es_expr_heap = es_expr_heap}, e_info, cs)
SK_NewTypeConstructor _
# cs = { cs & cs_error = checkError id "argument missing (for newtype constructor)" cs.cs_error}
# app_expr = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr }
-> (app_expr, free_vars, e_state, e_info, cs)
_
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
# app_expr = App { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr }
-> (app_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs)
determine_info_of_symbol :: !SymbolTableEntry !SymbolPtr !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!SymbKind, !Int, !Priority, !*ExpressionState, !u:ExpressionInfo,!*CheckState)
determine_info_of_symbol entry=:{ste_kind=STE_FunctionOrMacro calls,ste_index,ste_def_level} symb_info
e_input=:{ei_fun_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table,cs_x}
# (fun_def,e_state) = e_state!es_fun_defs.[ste_index]
# {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=fun_def
# index = { glob_object = ste_index, glob_module = cs_x.x_main_dcl_module_n }
# symbol_kind = convert_DefOrImpFunKind_to_icl_SymbKind fun_kind index fi_properties
| is_called_before ei_fun_index calls
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_FunctionOrMacro [ ei_fun_index : calls ]})}
# e_state = { e_state & es_calls = [FunCall ste_index ste_def_level : es_calls ]}
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
determine_info_of_symbol entry=:{ste_kind=STE_DclMacroOrLocalMacroFunction calls,ste_index,ste_def_level} symb_info
e_input=:{ei_fun_index, ei_mod_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table}
# (macro_def,e_info) = e_info!ef_macro_defs.[ei_mod_index,ste_index]
# {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def
# index = { glob_object = ste_index, glob_module = ei_mod_index }
# symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties
| is_called_before ei_fun_index calls
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]})}
# e_state = { e_state & es_calls = [MacroCall ei_mod_index ste_index ste_def_level : es_calls ]}
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
determine_info_of_symbol entry=:{ste_kind=STE_Imported (STE_DclMacroOrLocalMacroFunction calls) macro_mod_index,ste_index,ste_def_level} symb_info
e_input=:{ei_fun_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table}
# (macro_def,e_info) = e_info!ef_macro_defs.[macro_mod_index,ste_index]
# {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def
# index = { glob_object = ste_index, glob_module = macro_mod_index }
# symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties
| is_called_before ei_fun_index calls
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_Imported (STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]) macro_mod_index})}
# e_state = { e_state & es_calls = [MacroCall macro_mod_index ste_index ste_def_level : es_calls ]}
= (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs)
determine_info_of_symbol entry=:{ste_kind=STE_Imported STE_DclFunction mod_index,ste_index} symb_index e_input e_state=:{es_calls} e_info=:{ef_is_macro_fun} cs
# ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_functions.[ste_index]
# kind = SK_Function { glob_object = ste_index, glob_module = mod_index }
| not ef_is_macro_fun
= (kind, st_arity, ft_priority, e_state, e_info, cs)
| dcl_fun_is_called_before ste_index mod_index es_calls
= (kind, st_arity, ft_priority, e_state, e_info , cs)
# e_state = { e_state & es_calls = [DclFunCall mod_index ste_index : es_calls ]}
= (kind, st_arity, ft_priority, e_state, e_info, cs)
determine_info_of_symbol entry=:{ste_kind=STE_Imported kind mod_index,ste_index} symb_index e_input e_state e_info=:{ef_modules} cs
# (mod_def, ef_modules) = ef_modules![mod_index]
# (kind, arity, priority) = ste_kind_to_symbol_kind kind ste_index mod_index mod_def
= (kind, arity, priority, e_state, { e_info & ef_modules = ef_modules }, cs)
where
ste_kind_to_symbol_kind :: !STE_Kind !Index !Index !DclModule -> (!SymbKind, !Int, !Priority);
ste_kind_to_symbol_kind STE_Member def_index mod_index {dcl_common={com_member_defs}}
# {me_type={st_arity},me_priority} = com_member_defs.[def_index]
= (SK_OverloadedFunction { glob_object = def_index, glob_module = mod_index }, st_arity, me_priority)
ste_kind_to_symbol_kind STE_Constructor def_index mod_index {dcl_common={com_cons_defs}}
# {cons_type={st_arity,st_args,st_context},cons_priority,cons_number} = com_cons_defs.[def_index]
| cons_number <> -2
| isEmpty st_context && no_TFAC_argument st_args
= (SK_Constructor {glob_object = def_index, glob_module = mod_index}, st_arity, cons_priority)
= (SK_OverloadedConstructor {glob_object = def_index, glob_module = mod_index}, st_arity, cons_priority)
= (SK_NewTypeConstructor {gi_index = def_index, gi_module = mod_index}, st_arity, cons_priority)
determine_info_of_symbol {ste_kind=STE_Member, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_member_defs} cs
# ({me_type={st_arity},me_priority}, ef_member_defs) = ef_member_defs![ste_index]
= (SK_OverloadedFunction { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, me_priority,
e_state, { e_info & ef_member_defs = ef_member_defs }, cs)
determine_info_of_symbol {ste_kind=STE_Constructor, ste_index} _ e_input=:{ei_mod_index} e_state e_info cs
# ({cons_type={st_arity,st_args,st_context},cons_priority,cons_number}, e_info) = e_info!ef_cons_defs.[ste_index]
| cons_number <> -2
| isEmpty st_context && no_TFAC_argument st_args
= (SK_Constructor {glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs)
= (SK_OverloadedConstructor {glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs)
= (SK_NewTypeConstructor {gi_index = ste_index, gi_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs)
determine_info_of_symbol {ste_kind=STE_DclFunction, ste_index} _ e_input=:{ei_mod_index} e_state=:{es_calls} e_info=:{ef_is_macro_fun} cs
# ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[ei_mod_index].dcl_functions.[ste_index]
# kind = SK_Function { glob_object = ste_index, glob_module = ei_mod_index }
| not ef_is_macro_fun
= (kind, st_arity, ft_priority, e_state, e_info, cs)
| dcl_fun_is_called_before ste_index ei_mod_index es_calls
= (kind, st_arity, ft_priority, e_state, e_info, cs)
# e_state = { e_state & es_calls = [DclFunCall ei_mod_index ste_index : es_calls ]}
= (kind, st_arity, ft_priority, e_state, e_info, cs)
convert_DefOrImpFunKind_to_icl_SymbKind FK_Macro index fi_properties
= SK_IclMacro index.glob_object;
convert_DefOrImpFunKind_to_icl_SymbKind _ index fi_properties
| fi_properties bitand FI_IsMacroFun <> 0
= SK_LocalMacroFunction index.glob_object
= SK_Function index
no_TFAC_argument [{at_type=TFAC _ _ _}:_] = False
no_TFAC_argument [_:args] = no_TFAC_argument args
no_TFAC_argument [] = True
checkQualifiedIdentExpression free_vars module_id ident_name is_expr_list e_input=:{ei_fun_index,ei_mod_index} e_state e_info cs
# (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id ident_name ExpressionNameSpaceN cs
| not found
= (EE, free_vars, e_state, e_info, cs)
= case decl_kind of
STE_Imported STE_DclFunction mod_index
# ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_functions.[decl_index]
# kind = SK_Function { glob_object = decl_index, glob_module = mod_index }
# symbol = { symb_ident = decl_ident, symb_kind = kind }
# (app_expr, e_state) = build_application_or_constant_for_function symbol st_arity ft_priority e_state
| not e_info.ef_is_macro_fun || dcl_fun_is_called_before decl_index mod_index e_state.es_calls
-> (app_expr, free_vars, e_state, e_info, cs)
# e_state = { e_state & es_calls = [DclFunCall mod_index decl_index : e_state.es_calls ]}
-> (app_expr, free_vars, e_state, e_info, cs)
STE_Imported STE_Constructor mod_index
# ({cons_type={st_arity,st_context},cons_priority,cons_number}, e_info) = e_info!ef_modules.[mod_index].dcl_common.com_cons_defs.[decl_index]
| cons_number <> -2
# kind = SK_Constructor { glob_object = decl_index, glob_module = mod_index }
symbol = { symb_ident = decl_ident, symb_kind = kind }
| isEmpty st_context
# (app_expr,e_state) = build_application_or_constant_for_function symbol st_arity cons_priority e_state
-> (app_expr, free_vars, e_state, e_info, cs)
# app_expr = build_application_or_constant_for_constructor symbol st_arity cons_priority
-> (app_expr, free_vars, e_state, e_info, cs)
# kind = SK_NewTypeConstructor { gi_index = decl_index, gi_module = mod_index }
# symbol = { symb_ident = decl_ident, symb_kind = kind }
# app_expr = build_application_or_constant_for_constructor symbol st_arity cons_priority
-> (app_expr, free_vars, e_state, e_info, cs)
STE_Imported STE_Member mod_index
# ({me_type={st_arity},me_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_common.com_member_defs.[decl_index]
# kind = SK_OverloadedFunction { glob_object = decl_index, glob_module = mod_index }
# symbol = { symb_ident = decl_ident, symb_kind = kind }
# (app_expr, e_state) = build_application_or_constant_for_function symbol st_arity me_priority e_state
-> (app_expr, free_vars, e_state, e_info, cs)
STE_Imported (STE_DclMacroOrLocalMacroFunction _) mod_index
# (macro_def,e_info) = e_info!ef_macro_defs.[mod_index,decl_index]
# {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def
# index = { glob_object = decl_index, glob_module = mod_index }
# symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties
# (e_state,cs) = add_call e_state decl_ident.id_info cs
with
add_call e_state=:{es_calls} symbol_table_ptr cs
# (entry=:{ste_kind,ste_index,ste_def_level},cs_symbol_table) = readPtr symbol_table_ptr cs.cs_symbol_table
# cs = {cs & cs_symbol_table=cs_symbol_table}
= case ste_kind of
/* also imported unqualified */
STE_Imported (STE_DclMacroOrLocalMacroFunction calls) ste_mod_index
| ste_index==decl_index && ste_mod_index==mod_index
| is_called_before ei_fun_index calls
-> (e_state,cs)
# entry = {entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]}
# cs = {cs & cs_symbol_table = writePtr symbol_table_ptr entry cs.cs_symbol_table}
-> ({e_state & es_calls = [MacroCall ste_mod_index ste_index ste_def_level : es_calls ]},cs)
/* also imported unqualified */
STE_DclMacroOrLocalMacroFunction calls
| ste_index==decl_index && mod_index==ei_mod_index
| is_called_before ei_fun_index calls
-> (e_state,cs)
# entry = {entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]}
# cs = {cs & cs_symbol_table = writePtr symbol_table_ptr entry cs.cs_symbol_table}
-> ({e_state & es_calls = [MacroCall ei_mod_index ste_index ste_def_level : es_calls ]},cs)
_
| macro_is_called_before decl_index mod_index es_calls
-> (e_state,cs)
-> ({ e_state & es_calls = [MacroCall mod_index decl_index (-1) : es_calls ]},cs)
macro_is_called_before decl_index mod_index []
= False
macro_is_called_before decl_index mod_index [MacroCall macro_mod_index macro_index level:calls]
= (decl_index==macro_index && mod_index==macro_mod_index && level==(-1)) || macro_is_called_before decl_index mod_index calls
macro_is_called_before decl_index mod_index [_:calls]
= macro_is_called_before decl_index mod_index calls
# symbol = { symb_ident = decl_ident, symb_kind = symbol_kind }
# (app_expr, e_state) = build_application_or_constant_for_function symbol fun_arity fun_priority e_state
-> (app_expr, free_vars, e_state, e_info, cs)
_
-> (EE, free_vars, e_state, e_info, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++ident_name) "not imported" cs.cs_error })
where
build_application_or_constant_for_function symbol arity priority e_state
| is_expr_list
= (Constant symbol arity priority, e_state)
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
# app = { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr }
= (App app, { e_state & es_expr_heap = es_expr_heap })
build_application_or_constant_for_constructor symbol arity priority
| is_expr_list
= Constant symbol arity priority
= App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr }
convert_DefOrImpFunKind_to_dcl_SymbKind FK_Macro index fi_properties
= SK_DclMacro index;
convert_DefOrImpFunKind_to_dcl_SymbKind _ index fi_properties
| fi_properties bitand FI_IsMacroFun <> 0
= SK_LocalDclMacroFunction index
= SK_Function index
is_called_before caller_index []
= False
is_called_before caller_index [called_index : calls]
= caller_index == called_index || is_called_before caller_index calls
dcl_fun_is_called_before ste_index mod_index []
= False
dcl_fun_is_called_before ste_index mod_index [DclFunCall dcl_fun_mod_index dcl_fun_index:calls]
= (ste_index==dcl_fun_index && mod_index==dcl_fun_mod_index) || dcl_fun_is_called_before ste_index mod_index calls
dcl_fun_is_called_before ste_index mod_index [_:calls]
= dcl_fun_is_called_before ste_index mod_index calls
checkPattern :: !ParsedExpr !(Optional (Bind Ident VarInfoPtr)) !PatternInput !(![Ident], ![ArrayPattern]) !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, !(![Ident], ![ArrayPattern]), !*PatternState, !*ExpressionInfo, !*CheckState)
checkPattern (PE_List [exp]) opt_var p_input accus ps e_info cs=:{cs_symbol_table}
= case exp of
PE_Ident ident
-> checkIdentPattern cIsNotInExpressionList ident opt_var p_input accus ps e_info cs
PE_QualifiedIdent module_id ident_name
-> checkQualifiedIdentPattern cIsNotInExpressionList module_id ident_name opt_var p_input accus ps e_info cs
_
-> checkPattern exp opt_var p_input accus ps e_info cs
checkPattern (PE_List [exp1, exp2 : exps]) opt_var p_input accus ps e_info cs
# (exp_pat, accus, ps, e_info, cs) = check_pattern exp1 p_input accus ps e_info cs
= check_patterns [exp_pat] exp2 exps opt_var p_input accus ps e_info cs
where
check_patterns left middle [] opt_var p_input=:{pi_mod_index} accus ps e_info cs
# (mid_pat, accus, ps, e_info, cs) = checkPattern middle No p_input accus ps e_info cs
(pat, ps, e_info, cs) = combine_patterns pi_mod_index opt_var [mid_pat : left] [] 0 ps e_info cs
= (pat, accus, ps, e_info, cs)
check_patterns left middle [right:rest] opt_var p_input=:{pi_mod_index} accus ps e_info cs
# (mid_pat, accus, ps, e_info, cs) = check_pattern middle p_input accus ps e_info cs
= case mid_pat of
AP_Constant kind constant=:{glob_object={ds_arity,ds_ident}} prio
| ds_arity == 0
# (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind constant [] No ps e_info cs
-> check_patterns [pattern: left] right rest opt_var p_input accus ps e_info cs
| is_infix_constructor prio
# (left_arg, ps, e_info, cs) = combine_patterns pi_mod_index No left [] 0 ps e_info cs
(right_pat, accus, ps, e_info, cs) = check_pattern right p_input accus ps e_info cs
-> check_infix_pattern [] left_arg kind constant prio [right_pat] rest
opt_var p_input accus ps e_info cs
-> (AP_Empty, accus, ps, e_info,
{ cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error })
_
-> check_patterns [mid_pat : left] right rest opt_var p_input accus ps e_info cs
check_pattern (PE_Ident id) p_input accus ps e_info cs
= checkIdentPattern cIsInExpressionList id No p_input accus ps e_info cs
check_pattern (PE_QualifiedIdent module_id ident_name) p_input accus ps e_info cs
= checkQualifiedIdentPattern cIsInExpressionList module_id ident_name No p_input accus ps e_info cs
check_pattern expr p_input accus ps e_info cs
= checkPattern expr No p_input accus ps e_info cs
check_infix_pattern left_args left kind cons prio middle [] opt_var p_input=:{pi_mod_index} accus ps e_info cs
# (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,middle_pat] opt_var ps e_info cs
(pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs
= (pattern, accus, ps, e_info, cs)
check_infix_pattern left_args left kind cons prio middle [right] opt_var p_input=:{pi_mod_index} accus ps e_info cs
# (right_pat, accus, ps, e_info, cs) = checkPattern right No p_input accus ps e_info cs
(right_arg, ps, e_info, cs) = combine_patterns pi_mod_index No [right_pat : middle] [] 0 ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,right_arg] opt_var ps e_info cs
(pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs
= (pattern, accus, ps, e_info, cs)
check_infix_pattern left_args left kind1 cons1 prio1 middle [inf_cons, arg : rest] opt_var p_input=:{pi_mod_index} accus ps e_info cs
# (inf_cons_pat, accus, ps, e_info, cs) = check_pattern inf_cons p_input accus ps e_info cs
= case inf_cons_pat of
AP_Constant kind2 cons2=:{glob_object={ds_ident,ds_arity}} prio2
| ds_arity == 0
# (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs
(pattern2, ps, e_info, cs) = buildPattern pi_mod_index kind2 cons2 [] No ps e_info cs
(pattern1, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,middle_pat] No ps e_info cs
(pattern1, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern1 ps e_info cs
-> check_patterns [pattern2,pattern1] arg rest opt_var p_input accus ps e_info cs
| is_infix_constructor prio2
# optional_prio = determinePriority prio1 prio2
-> case optional_prio of
Yes priority
# (arg_pat, accus, ps, e_info, cs) = check_pattern arg p_input accus ps e_info cs
| priority
# (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,middle_pat] No ps e_info cs
(left_args, pattern, ps, e_info, cs) = build_left_pattern pi_mod_index left_args prio2 pattern ps e_info cs
-> check_infix_pattern left_args pattern kind2 cons2 prio2 [arg_pat] rest opt_var p_input accus ps e_info cs
# (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs
-> check_infix_pattern [(kind1, cons1, prio1, left) : left_args]
middle_pat kind2 cons2 prio2 [arg_pat] rest No p_input accus ps e_info cs
No
-> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ds_ident "conflicting priorities" cs.cs_error })
-> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error })
_
-> check_infix_pattern left_args left kind1 cons1 prio1 [inf_cons_pat : middle] [arg : rest] opt_var p_input accus ps e_info cs
is_infix_constructor (Prio _ _) = True
is_infix_constructor _ = False
build_left_pattern mod_index [] _ result_pattern ps e_info cs
= ([], result_pattern, ps, e_info, cs)
build_left_pattern mod_index la=:[(kind, cons, priol, left) : left_args] prior result_pattern ps e_info cs
# optional_prio = determinePriority priol prior
= case optional_prio of
Yes priority
| priority
# (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs
-> build_left_pattern mod_index left_args prior result_pattern ps e_info cs
-> (la, result_pattern, ps, e_info, cs)
No
-> (la, result_pattern, ps, e_info,{ cs & cs_error = checkError cons.glob_object.ds_ident "conflicting priorities" cs.cs_error })
build_final_pattern mod_index [] result_pattern ps e_info cs
= (result_pattern, ps, e_info, cs)
build_final_pattern mod_index [(kind, cons, priol, left) : left_appls] result_pattern ps e_info cs
# (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs
= build_final_pattern mod_index left_appls result_pattern ps e_info cs
combine_patterns mod_index opt_var [first_expr] args nr_of_args ps e_info cs
= case first_expr of
AP_Constant kind constant=:{glob_object={ds_ident,ds_arity}} _
| ds_arity == nr_of_args || (case kind of
APK_Macro _ -> True
_ -> False)
# (pattern, ps, e_info, cs) = buildPattern mod_index kind constant args opt_var ps e_info cs
-> (pattern, ps, e_info, cs)
-> (AP_Empty, ps, e_info, { cs & cs_error = checkError ds_ident "used with wrong arity" cs.cs_error})
_
| nr_of_args == 0
-> (first_expr, ps, e_info, cs)
-> (first_expr, ps, e_info, { cs & cs_error = checkError "<pattern>" "(curried) application not allowed " cs.cs_error })
combine_patterns mod_index opt_var [rev_arg : rev_args] args arity ps e_info cs
= combine_patterns mod_index opt_var rev_args [rev_arg : args] (inc arity) ps e_info cs
checkPattern (PE_DynamicPattern pattern type) opt_var p_input accus ps e_info cs
# (dyn_pat, accus, ps, e_info, cs) = checkPattern pattern No p_input accus ps e_info cs
= (AP_Dynamic dyn_pat type opt_var, accus, ps, e_info, { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdDynamic })
checkPattern (PE_Basic basic_value) opt_var p_input accus ps e_info cs
= (AP_Basic basic_value opt_var, accus, ps, e_info, cs)
checkPattern (PE_Tuple tuple_args) opt_var p_input accus ps e_info cs
# (patterns, arity, accus, ps, e_info, cs) = check_tuple_patterns tuple_args p_input accus ps e_info cs
(tuple_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs
# ({cons_type_index}, e_info) = e_info!ef_modules.[tuple_symbol.glob_module].dcl_common.com_cons_defs.[tuple_symbol.glob_object.ds_index]
# global_type_index = {gi_module = cPredefinedModuleIndex, gi_index = cons_type_index}
= (AP_Algebraic tuple_symbol global_type_index patterns opt_var, accus, ps, e_info, cs)
where
check_tuple_patterns [] p_input accus ps e_info cs
= ([], 0, accus, ps, e_info, cs)
check_tuple_patterns [expr : exprs] p_input accus ps e_info cs
# (pattern, accus, ps, e_info, cs) = checkPattern expr No p_input accus ps e_info cs
(patterns, length, accus, ps, e_info, cs) = check_tuple_patterns exprs p_input accus ps e_info cs
= ([pattern : patterns], inc length, accus, ps, e_info, cs)
checkPattern (PE_Record record opt_type fields) opt_var p_input=:{pi_mod_index, pi_is_node_pattern} accus=:(var_env, array_patterns) ps e_info cs
# (opt_record_and_fields, e_info, cs) = checkFields pi_mod_index fields opt_type e_info cs
= case opt_record_and_fields of
Yes (record_symbol, type_index, new_fields)
# (patterns, (var_env, array_patterns, ps, e_info, cs)) = mapSt (check_field_pattern p_input) new_fields (var_env, array_patterns, ps, e_info, cs)
(patterns, ps_var_heap) = bind_opt_record_variable opt_var pi_is_node_pattern patterns new_fields ps.ps_var_heap
global_type_index = {gi_module = record_symbol.glob_module, gi_index = type_index}
-> (AP_Algebraic record_symbol global_type_index patterns opt_var, (var_env, array_patterns), {ps & ps_var_heap = ps_var_heap}, e_info, cs)
No
-> (AP_Empty, accus, ps, e_info, cs)
where
check_field_pattern p_input=:{pi_def_level} {bind_src = PE_Empty, bind_dst = {glob_object={fs_var}}}
(var_env, array_patterns, ps, e_info, cs)
# (entry, cs_symbol_table) = readPtr fs_var.id_info cs.cs_symbol_table
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable pi_def_level entry fs_var new_info_ptr { cs & cs_symbol_table = cs_symbol_table }
= (AP_Variable fs_var new_info_ptr No, ([ fs_var : var_env ], array_patterns, { ps & ps_var_heap = ps_var_heap }, e_info, cs))
check_field_pattern p_input {bind_src = PE_WildCard, bind_dst={glob_object={fs_var}}} (var_env, array_patterns, ps, e_info, cs)
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
= (AP_WildCard (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), (var_env, array_patterns, { ps & ps_var_heap = ps_var_heap }, e_info, cs))
check_field_pattern p_input {bind_src,bind_dst} (var_env, array_patterns, ps, e_info, cs)
# (pattern, (var_env, array_patterns), ps, e_info, cs) = checkPattern bind_src No p_input (var_env, array_patterns) ps e_info cs
= (pattern, (var_env, array_patterns, ps, e_info, cs))
add_bound_variable (AP_Algebraic symbol index patterns No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Algebraic symbol index patterns (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable (AP_Basic bas_val No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Basic bas_val (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable (AP_NewType symbol index pattern No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_NewType symbol index pattern (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable (AP_Dynamic dynamic_pattern dynamic_type No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Dynamic dynamic_pattern dynamic_type (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable pattern _ ps_var_heap
= (pattern, ps_var_heap)
add_bound_variables [] _ var_heap
= ([] , var_heap)
add_bound_variables [ap : aps] [field : fields] var_heap
# (ap, var_heap) = add_bound_variable ap field var_heap
(aps, var_heap) = add_bound_variables aps fields var_heap
= ([ap : aps], var_heap)
bind_opt_record_variable (Yes {bind_dst}) False patterns fields var_heap
# (patterns, var_heap) = add_bound_variables patterns fields var_heap
= (patterns, var_heap <:= (bind_dst, VI_Record patterns))
bind_opt_record_variable no is_node_pattern patterns _ var_heap
= (patterns, var_heap)
checkPattern (PE_Bound bind) opt_var p_input accus ps e_info cs
= checkBoundPattern bind opt_var p_input accus ps e_info cs
checkPattern (PE_Ident id) opt_var p_input accus ps e_info cs
= checkIdentPattern cIsNotInExpressionList id opt_var p_input accus ps e_info cs
checkPattern (PE_QualifiedIdent module_id ident_name) opt_var p_input accus ps e_info cs
= checkQualifiedIdentPattern cIsNotInExpressionList module_id ident_name opt_var p_input accus ps e_info cs
checkPattern PE_WildCard opt_var p_input accus ps e_info cs
= (AP_WildCard No, accus, ps, e_info, cs)
checkPattern (PE_ArrayPattern selections) opt_var p_input (var_env, array_patterns) ps e_info cs
# (var_env, ap_selections, ps_var_heap, cs)
= foldSt (check_array_selection p_input.pi_def_level) selections (var_env, [], ps.ps_var_heap, cs)
array_var_ident = case opt_var of
Yes {bind_src}
-> bind_src
No
-> { id_name = "_a", id_info = nilPtr }
(array_var, ps_var_heap) = allocate_free_var array_var_ident ps_var_heap
= (AP_Variable array_var_ident array_var.fv_info_ptr No,
(var_env, [{ ap_opt_var = opt_var, ap_array_var = array_var, ap_selections = ap_selections } :array_patterns]),
{ ps & ps_var_heap = ps_var_heap }, e_info, cs)
where
check_array_selection def_level bind=:{bind_dst} states
= check_rhs def_level bind (foldSt check_index_expr bind_dst states)
check_index_expr (PE_Ident {id_name}) states
| isLowerCaseName id_name
= states
// further with next alternative
check_index_expr (PE_Basic (BVI _)) states
= states
check_index_expr (PE_Basic (BVInt _)) states
= states
check_index_expr _ (var_env, ap_selections, var_heap, cs)
= (var_env, ap_selections, var_heap, { cs & cs_error = checkError "variable or integer constant expected as index expression" "" cs.cs_error })
check_rhs def_level {bind_src=PE_Ident ident, bind_dst} (var_env, ap_selections, var_heap, cs)
| isLowerCaseName ident.id_name
# (entry,cs_symbol_table) = readPtr ident.id_info cs.cs_symbol_table
# (rhs_var, var_heap) = allocate_free_var ident var_heap
cs = checkPatternVariable def_level entry ident rhs_var.fv_info_ptr { cs & cs_symbol_table = cs_symbol_table }
= ([ident : var_env], [ { bind_src = rhs_var, bind_dst = bind_dst } : ap_selections], var_heap, cs)
// further with next alternative
check_rhs _ _ (var_env, ap_selections, var_heap, cs)
= (var_env, ap_selections, var_heap,
{ cs & cs_error = checkError "variable expected on right hand side of array pattern" "" cs.cs_error })
checkPattern expr opt_var p_input accus ps e_info cs
= abort "checkPattern: do not know how to handle pattern" ---> expr
checkMacroPatternConstructor macro=:{fun_ident,fun_arity,fun_kind,fun_priority} macro_mod_index mod_index is_dcl_macro is_expr_list ste_index ident opt_var ps e_info cs=:{cs_error}
| case fun_kind of FK_Macro->True; _ -> False
| is_expr_list
# macro_symbol = { glob_object = MakeDefinedSymbol fun_ident ste_index fun_arity, glob_module = macro_mod_index }
= (AP_Constant (APK_Macro is_dcl_macro) macro_symbol fun_priority, ps, e_info, cs)
| fun_arity == 0
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro macro mod_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
= (AP_Empty, ps, e_info, { cs & cs_error = checkError ident "not defined" cs_error })
= (AP_Empty, ps, e_info, { cs & cs_error = checkError fun_ident "not allowed in a pattern" cs_error })
checkQualifiedMacroPatternConstructor macro=:{fun_ident,fun_arity,fun_kind,fun_priority} macro_mod_index mod_index is_dcl_macro is_expr_list ste_index module_name ident_name opt_var ps e_info cs=:{cs_error}
| case fun_kind of FK_Macro->True; _ -> False
| is_expr_list
# macro_symbol = { glob_object = MakeDefinedSymbol fun_ident ste_index fun_arity, glob_module = macro_mod_index }
= (AP_Constant (APK_Macro is_dcl_macro) macro_symbol fun_priority, ps, e_info, cs)
| fun_arity == 0
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro macro mod_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
# name="'"+++module_name+++"'."+++ident_name
= (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not defined" cs_error })
# name="'"+++module_name+++"'."+++ident_name
= (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not allowed in a pattern" cs_error })
checkPatternConstructor :: !Index !Bool !SymbolTableEntry !Ident !(Optional (Bind Ident VarInfoPtr))
!*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, !*PatternState,!*ExpressionInfo,!*CheckState);
checkPatternConstructor _ _ {ste_kind = STE_Empty} ident _ ps e_info cs=:{cs_error}
= (AP_Empty, ps, e_info, { cs & cs_error = checkError ident "not defined" cs_error })
checkPatternConstructor mod_index is_expr_list {ste_kind = STE_FunctionOrMacro _,ste_index} ident opt_var ps e_info cs=:{cs_x}
# (macro,ps) = ps!ps_fun_defs.[ste_index]
= checkMacroPatternConstructor macro cs_x.x_main_dcl_module_n mod_index False is_expr_list ste_index ident opt_var ps e_info cs
checkPatternConstructor mod_index is_expr_list {ste_kind = STE_DclMacroOrLocalMacroFunction _,ste_index} ident opt_var ps e_info cs=:{cs_x}
# (macro,e_info) = e_info!ef_macro_defs.[mod_index,ste_index]
= checkMacroPatternConstructor macro mod_index mod_index True is_expr_list ste_index ident opt_var ps e_info cs
checkPatternConstructor mod_index is_expr_list {ste_kind = STE_Imported (STE_DclMacroOrLocalMacroFunction _) macro_module_index,ste_index} ident opt_var ps e_info cs
# (macro,e_info) = e_info!ef_macro_defs.[macro_module_index,ste_index]
= checkMacroPatternConstructor macro macro_module_index mod_index True is_expr_list ste_index ident opt_var ps e_info cs
checkPatternConstructor mod_index is_expr_list {ste_index, ste_kind} cons_ident opt_var ps
e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error}
# (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, cons_number, ef_cons_defs, ef_modules, cs_error)
= determine_pattern_symbol mod_index ste_index ste_kind cons_ident.id_name ef_cons_defs ef_modules cs_error
e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules }
cons_symbol = { glob_object = MakeDefinedSymbol cons_ident cons_index cons_arity, glob_module = cons_module }
| cons_number > -2
# global_type_index = {gi_module = cons_module, gi_index = cons_type_index}
| is_expr_list
= (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
| cons_arity == 0
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError cons_ident "constructor arguments are missing" cs_error
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs)
| cons_number == -2
| is_expr_list
= (AP_Constant (APK_NewTypeConstructor cons_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError cons_ident "constructor argument is missing" cs_error
= (AP_NewType cons_symbol cons_type_index AP_Empty opt_var, ps, e_info, cs)
// cons_number == -3
# (type_rhs,e_info)
= case ste_kind of
STE_Constructor
-> e_info!ef_type_defs.[cons_type_index].td_rhs
_
-> e_info!ef_modules.[cons_module].dcl_common.com_type_defs.[cons_type_index].td_rhs
# (AlgConses _ global_type_index) = type_rhs
| is_expr_list
= (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
| cons_arity == 0
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError cons_ident "constructor arguments are missing" cs_error
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs)
where
determine_pattern_symbol mod_index id_index STE_Constructor id_name cons_defs modules error
# ({cons_type={st_arity},cons_priority,cons_type_index,cons_number}, cons_defs) = cons_defs![id_index]
= (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) id_name cons_defs modules error
# ({dcl_common},modules) = modules![import_mod_index]
{cons_type={st_arity},cons_priority,cons_type_index,cons_number} = dcl_common.com_cons_defs.[id_index]
= (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index id_kind id_name cons_defs modules error
= (id_index, NoIndex, 0, NoPrio, NoIndex, NoIndex, cons_defs, modules, checkError id_name "constructor expected" error)
checkQualifiedPatternConstructor :: !STE_Kind !Index !Ident !{#Char} !{#Char} !Index !Bool !(Optional (Bind Ident VarInfoPtr)) !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, !*PatternState, !*ExpressionInfo, !*CheckState);
checkQualifiedPatternConstructor STE_Empty _ decl_ident module_name ident_name _ _ _ ps e_info cs=:{cs_error}
# name="'"+++module_name+++"'."+++ident_name
= (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not defined" cs_error })
checkQualifiedPatternConstructor (STE_FunctionOrMacro _) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs=:{cs_x}
# (macro,ps) = ps!ps_fun_defs.[ste_index]
= checkQualifiedMacroPatternConstructor macro cs_x.x_main_dcl_module_n mod_index False is_expr_list ste_index module_name ident_name opt_var ps e_info cs
checkQualifiedPatternConstructor (STE_DclMacroOrLocalMacroFunction _) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs=:{cs_x}
# (macro,e_info) = e_info!ef_macro_defs.[mod_index,ste_index]
= checkQualifiedMacroPatternConstructor macro mod_index mod_index True is_expr_list ste_index module_name ident_name opt_var ps e_info cs
checkQualifiedPatternConstructor (STE_Imported (STE_DclMacroOrLocalMacroFunction _) macro_module_index) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs
# (macro,e_info) = e_info!ef_macro_defs.[macro_module_index,ste_index]
= checkQualifiedMacroPatternConstructor macro macro_module_index mod_index True is_expr_list ste_index module_name ident_name opt_var ps e_info cs
checkQualifiedPatternConstructor ste_kind ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps
e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error}
# (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, cons_number, ef_cons_defs, ef_modules, cs_error)
= determine_pattern_symbol mod_index ste_index ste_kind module_name ident_name ef_cons_defs ef_modules cs_error
e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules }
cons_symbol = { glob_object = MakeDefinedSymbol decl_ident cons_index cons_arity, glob_module = cons_module }
| cons_number > -2
# global_type_index = {gi_module = cons_module, gi_index = cons_type_index}
| is_expr_list
= (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
| cons_arity == 0
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError ident_name "constructor arguments are missing" cs_error
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs)
| cons_number == -2
| is_expr_list
= (AP_Constant (APK_NewTypeConstructor cons_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError ident_name "constructor argument is missing" cs_error
= (AP_NewType cons_symbol cons_type_index AP_Empty opt_var, ps, e_info, cs)
// cons_number == -3
# (type_rhs,e_info)
= case ste_kind of
STE_Constructor
-> e_info!ef_type_defs.[cons_type_index].td_rhs
_
-> e_info!ef_modules.[cons_module].dcl_common.com_type_defs.[cons_type_index].td_rhs
# (AlgConses _ global_type_index) = type_rhs
| is_expr_list
= (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error})
| cons_arity == 0
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error})
# cs & cs_error = checkError ident_name "constructor arguments are missing" cs_error
= (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs)
where
determine_pattern_symbol mod_index id_index STE_Constructor module_name ident_name cons_defs modules error
# ({cons_type={st_arity},cons_priority,cons_type_index,cons_number}, cons_defs) = cons_defs![id_index]
= (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) module_name ident_name cons_defs modules error
# ({dcl_common},modules) = modules![import_mod_index]
{cons_type={st_arity},cons_priority,cons_type_index,cons_number} = dcl_common.com_cons_defs.[id_index]
= (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index id_kind module_name ident_name cons_defs modules error
= (id_index, NoIndex, 0, NoPrio, NoIndex, NoIndex, cons_defs, modules, checkError ("'"+++module_name+++"'."+++ident_name) "constructor expected" error)
checkBoundPattern {bind_src,bind_dst} opt_var p_input (var_env, array_patterns) ps e_info cs=:{cs_symbol_table}
| isLowerCaseName bind_dst.id_name
# (entry, cs_symbol_table) = readPtr bind_dst.id_info cs_symbol_table
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable p_input.pi_def_level entry bind_dst new_info_ptr { cs & cs_symbol_table = cs_symbol_table }
ps = { ps & ps_var_heap = ps_var_heap }
new_var_env = [ bind_dst : var_env ]
= case opt_var of
Yes bind
-> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input (new_var_env, array_patterns) ps
e_info { cs & cs_error = checkError bind.bind_src "pattern may be bound once only" cs.cs_error }
No
-> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input (new_var_env, array_patterns) ps e_info cs
= checkPattern bind_src opt_var p_input (var_env, array_patterns) ps e_info { cs & cs_error = checkError bind_dst "variable expected" cs.cs_error }
checkPatternVariable :: !Level !SymbolTableEntry !Ident !VarInfoPtr !*CheckState -> *CheckState
checkPatternVariable def_level entry=:{ste_def_level,ste_kind} ident=:{id_info} var_info cs=:{cs_symbol_table,cs_error}
| ste_kind == STE_Empty || def_level > ste_def_level
# entry = {ste_kind = STE_Variable var_info, ste_index = NoIndex, ste_def_level = def_level, ste_previous = entry }
= { cs & cs_symbol_table = cs_symbol_table <:= (id_info,entry)}
= { cs & cs_error = checkError ident "(pattern variable) already defined" cs_error }
checkIdentPattern :: !Bool !Ident !(Optional (Bind Ident VarInfoPtr)) !PatternInput !(![Ident], ![ArrayPattern]) !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, !(![Ident], ![ArrayPattern]), !*PatternState, !*ExpressionInfo, !*CheckState)
checkIdentPattern is_expr_list id=:{id_name,id_info} opt_var {pi_def_level, pi_mod_index} accus=:(var_env, array_patterns)
ps e_info cs=:{cs_symbol_table}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
| isLowerCaseName id_name
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable pi_def_level entry id new_info_ptr { cs & cs_symbol_table = cs_symbol_table }
= (AP_Variable id new_info_ptr opt_var, ([ id : var_env ], array_patterns), { ps & ps_var_heap = ps_var_heap}, e_info, cs)
# (pattern, ps, e_info, cs) = checkPatternConstructor pi_mod_index is_expr_list entry id opt_var ps e_info { cs & cs_symbol_table = cs_symbol_table }
= (pattern, accus, ps, e_info, cs)
checkQualifiedIdentPattern is_expr_list module_id ident_name opt_var {pi_mod_index} accus ps e_info cs
# (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id ident_name ExpressionNameSpaceN cs
| not found
= (AP_Empty, accus, ps, e_info, cs)
= case decl_kind of
STE_Imported _ _
# (pattern, ps, e_info, cs) = checkQualifiedPatternConstructor decl_kind decl_index decl_ident module_id.id_name ident_name pi_mod_index is_expr_list opt_var ps e_info cs
-> (pattern, accus, ps, e_info, cs)
_
-> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++ident_name) "not imported" cs.cs_error })
convertSubPatterns :: [AuxiliaryPattern] Expression Position *VarHeap *ExpressionHeap u:[ExprInfoPtr] *CheckState
-> *(!.[FreeVar],!Expression,!Position,!*VarHeap,!*ExpressionHeap,!u:[ExprInfoPtr],!*CheckState);
convertSubPatterns [] result_expr pattern_position var_store expr_heap opt_dynamics cs
= ([], result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
convertSubPatterns [pattern : patterns] result_expr pattern_position var_store expr_heap opt_dynamics cs
# (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPatterns patterns result_expr pattern_position var_store expr_heap opt_dynamics cs
(var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs
= ([var_arg : var_args], result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern :: AuxiliaryPattern Expression Position *VarHeap *ExpressionHeap u:[ExprInfoPtr] *CheckState
-> *(!FreeVar,!Expression,!Position,!*VarHeap,!*ExpressionHeap,!u:[ExprInfoPtr],!*CheckState);
convertSubPattern (AP_Variable name var_info (Yes {bind_src,bind_dst})) result_expr pattern_position var_store expr_heap opt_dynamics cs
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(let_expr, expr_heap) = buildLetExpression [] [{lb_src = Var bound_var,
lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 },
lb_position = NoPos }] result_expr NoPos expr_heap
= (free_var, let_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Variable name var_info No) result_expr pattern_position var_store expr_heap opt_dynamics cs
= ({ fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr, pattern_position,
var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Algebraic cons_symbol global_type_index args opt_var) result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPatterns args result_expr pattern_position var_store expr_heap opt_dynamics cs
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
# alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pattern_position }]
# (case_guards,expr_heap,cs) = make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr },
case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr,
case_explicit = cCaseNotExplicit,
case_default_pos = NoPos },
NoPos, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Basic basic_val opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs
# (basic_type, cs) = typeOfBasicValue basic_val cs
case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr, bp_position = pattern_position }]
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr },
case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr,
case_explicit = cCaseNotExplicit,
case_default_pos = NoPos},
NoPos, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_NewType cons_symbol type_index arg opt_var) result_expr pattern_position
var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPattern arg result_expr pattern_position var_store expr_heap opt_dynamics cs
type_symbol = { gi_module = cons_symbol.glob_module, gi_index = type_index }
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
# alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pattern_position }]
# case_guards = NewTypePatterns type_symbol alg_patterns
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr },
case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr,
case_explicit = cCaseNotExplicit,
case_default_pos = NoPos },
NoPos, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Dynamic pattern type opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs)
= convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr,
dp_type_code = TCE_Empty, dp_position = pattern_position }]
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
buildTypeCase (Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr })
type_case_patterns No type_case_info_ptr cCaseNotExplicit,
NoPos, var_store, expr_heap, [dynamic_info_ptr], cs)
convertSubPattern (AP_WildCard opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, result_expr, pattern_position,
var_store, expr_heap, opt_dynamics, cs)
convertSubPattern AP_Empty result_expr pattern_position var_store expr_heap opt_dynamics cs
= convertSubPattern (AP_WildCard No) EE pattern_position var_store expr_heap opt_dynamics cs
checkAndTransformPatternIntoBind free_vars [{nd_dst,nd_alts,nd_locals,nd_position} : local_defs] e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# cs = pushErrorAdmin (newPosition {id_name="node definition", id_info=nilPtr} nd_position) cs
# (bind_src, free_vars, e_state, e_info, cs) = checkRhs free_vars nd_alts nd_locals
{e_input & ei_expr_level = ei_expr_level + 1} e_state e_info cs
(binds_of_bind, es_var_heap, es_expr_heap, e_info, cs)
= transfromPatternIntoBind ei_mod_index ei_expr_level nd_dst bind_src nd_position
e_state.es_var_heap e_state.es_expr_heap e_info cs
e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }
(binds_of_local_defs, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars local_defs e_input e_state e_info cs
= (binds_of_bind ++ binds_of_local_defs, free_vars, e_state, e_info, popErrorAdmin cs)
checkAndTransformPatternIntoBind free_vars [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
transfromPatternIntoBind :: !Index !Level !AuxiliaryPattern !Expression !Position !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState
-> *(![LetBind], !*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState)
transfromPatternIntoBind mod_index def_level (AP_Variable name var_info (Yes {bind_src,bind_dst})) src_expr position var_store expr_heap e_info cs
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = {var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr}
free_var = {fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0}
bind1 = {lb_src = src_expr, lb_dst = free_var, lb_position = position}
bind2 = {lb_src = Var bound_var, lb_dst = {fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0}, lb_position = position}
= ([bind1,bind2], var_store, expr_heap, e_info, cs)
transfromPatternIntoBind mod_index def_level (AP_Variable name var_info No) src_expr position var_store expr_heap e_info cs
# bind = {lb_src = src_expr, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }, lb_position = position }
= ([bind], var_store, expr_heap, e_info, cs)
transfromPatternIntoBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} global_type_index args opt_var)
src_expr position var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs
# (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr position var_store expr_heap
| ds_arity == 0
= ([], var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident "constant not allowed in a node pattern" cs.cs_error})
# (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs
| is_tuple
# (tuple_var, tuple_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind position def_level var_store expr_heap
= transform_sub_patterns mod_index def_level args ds_cons 0 tuple_var tuple_bind position var_store expr_heap e_info cs
# ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index global_type_index ef_type_defs ef_modules
e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules }
= case td_rhs of
RecordType {rt_fields}
| size rt_fields == 1
-> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0
src_expr opt_var_bind position var_store expr_heap e_info cs
# (record_var, record_bind, var_store, expr_heap)
= bind_match_expr src_expr opt_var_bind position def_level var_store expr_heap
-> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0
record_var record_bind position var_store expr_heap e_info cs
_
| ds_arity == 1
# (binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr cons_symbol src_expr)
position var_store expr_heap e_info cs
-> (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs)
# (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs
# (src_expr,expr_heap,cs) = add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs
# (match_var, match_bind, var_store, expr_heap)
= bind_match_expr (MatchExpr cons_symbol src_expr) opt_var_bind position def_level var_store expr_heap
-> transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind
position var_store expr_heap e_info cs
transfromPatternIntoBind mod_index def_level (AP_NewType cons_symbol type_index arg opt_var) src_expr position var_store expr_heap e_info cs
# (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr position var_store expr_heap
# (binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level arg (MatchExpr {cons_symbol & glob_object.ds_arity = -2} src_expr) position var_store expr_heap e_info cs
= (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs)
transfromPatternIntoBind mod_index def_level (AP_WildCard _) src_expr _ var_store expr_heap e_info cs
= ([], var_store, expr_heap, e_info, cs)
transfromPatternIntoBind _ _ pattern src_expr _ var_store expr_heap e_info cs
= ([], var_store, expr_heap, e_info, { cs & cs_error = checkError "<pattern>" "illegal node pattern" cs.cs_error})
transfromPatternIntoStrictBind :: !Index !Level !AuxiliaryPattern !Expression !Position !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState
-> *(![LetBind],![LetBind],!*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState)
transfromPatternIntoStrictBind mod_index def_level (AP_Variable name var_info _) src_expr position var_store expr_heap e_info cs
# bind = {lb_src = src_expr, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }, lb_position = position }
= ([],[bind], var_store, expr_heap, e_info, cs)
transfromPatternIntoStrictBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} global_type_index args opt_var)
src_expr position var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs
# (src_expr, src_bind, var_store, expr_heap) = bind_opt_var_or_create_new_var opt_var src_expr position def_level var_store expr_heap
| ds_arity == 0
= ([],[],var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident "constant not allowed in a node pattern" cs.cs_error})
# (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs
| is_tuple
# (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns mod_index def_level args ds_cons 0 src_expr [] position var_store expr_heap e_info cs
= (lazy_binds,src_bind,var_store,expr_heap,e_info,cs)
# ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index global_type_index ef_type_defs ef_modules
e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules }
= case td_rhs of
RecordType {rt_fields}
# (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0
src_expr [] position var_store expr_heap e_info cs
-> (lazy_binds,src_bind,var_store,expr_heap,e_info,cs)
_
| ds_arity == 1
# (binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr cons_symbol src_expr)
position var_store expr_heap e_info cs
-> (binds,src_bind, var_store, expr_heap, e_info, cs)
# (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs
# (src_expr,expr_heap,cs) = add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs
# (match_var, match_bind, var_store, expr_heap)
= bind_match_expr (MatchExpr cons_symbol src_expr) [] position def_level var_store expr_heap
# (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind
position var_store expr_heap e_info cs
-> (lazy_binds,src_bind,var_store,expr_heap,e_info,cs)
transfromPatternIntoStrictBind mod_index def_level (AP_NewType cons_symbol type_index arg opt_var) src_expr position var_store expr_heap e_info cs
# (src_expr, src_bind, var_store, expr_heap) = bind_opt_var_or_create_new_var opt_var src_expr position def_level var_store expr_heap
# (binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level arg (MatchExpr {cons_symbol & glob_object.ds_arity = -2} src_expr) position var_store expr_heap e_info cs
= (binds,src_bind, var_store, expr_heap, e_info, cs)
transfromPatternIntoStrictBind mod_index def_level (AP_WildCard _) src_expr _ var_store expr_heap e_info cs
= ([],[],var_store, expr_heap, e_info, cs)
transfromPatternIntoStrictBind _ _ pattern src_expr _ var_store expr_heap e_info cs
= ([],[],var_store, expr_heap, e_info, { cs & cs_error = checkError "<pattern>" "illegal node pattern" cs.cs_error})
get_type_def mod_index global_type_index=:{gi_module,gi_index} ef_type_defs ef_modules
| mod_index == gi_module
# (type_def, ef_type_defs) = ef_type_defs![gi_index]
= (type_def, ef_type_defs, ef_modules)
# ({dcl_common}, ef_modules) = ef_modules![gi_module]
= (dcl_common.com_type_defs.[gi_index], ef_type_defs, ef_modules)
is_tuple_symbol cons_module cons_index cs
# (tuple_2_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs
= (tuple_2_symbol.glob_module == cons_module &&
tuple_2_symbol.glob_object.ds_index <= cons_index && cons_index <= tuple_2_symbol.glob_object.ds_index + 30, cs)
transform_sub_patterns mod_index def_level [pattern : patterns] tup_id tup_index arg_var all_binds position var_store expr_heap e_info cs
# (this_arg_var, expr_heap)
= adjust_match_expression arg_var expr_heap
match_expr
= TupleSelect tup_id tup_index this_arg_var
(binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level pattern match_expr position var_store expr_heap e_info cs
= transform_sub_patterns mod_index def_level patterns tup_id (inc tup_index) arg_var (binds ++ all_binds)
position var_store expr_heap e_info cs
transform_sub_patterns mod_index _ [] _ _ _ binds _ var_store expr_heap e_info cs
= (binds, var_store, expr_heap, e_info, cs)
transform_sub_patterns_of_record mod_index def_level [pattern : patterns] fields field_module field_index record_expr
all_binds position var_store expr_heap e_info cs
# {fs_ident, fs_index} = fields.[field_index]
selector = { glob_module = field_module, glob_object = MakeDefinedSymbol fs_ident fs_index 1}
(this_record_expr, expr_heap) = adjust_match_expression record_expr expr_heap
(binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level pattern (Selection NormalSelector this_record_expr [ RecordSelection selector field_index ])
position var_store expr_heap e_info cs
= transform_sub_patterns_of_record mod_index def_level patterns fields field_module (inc field_index) record_expr
(binds ++ all_binds) position var_store expr_heap e_info cs
transform_sub_patterns_of_record mod_index _ [] _ _ _ _ binds _ var_store expr_heap e_info cs
= (binds, var_store, expr_heap, e_info, cs)
bind_opt_var (Yes {bind_src,bind_dst}) src_expr position var_heap expr_heap
# free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
= (Var bound_var, [{lb_src = src_expr, lb_dst = free_var, lb_position = position}], var_heap <:= (bind_dst, VI_Empty), expr_heap)
bind_opt_var No src_expr _ var_heap expr_heap
= (src_expr, [], var_heap, expr_heap)
bind_opt_var_or_create_new_var (Yes {bind_src,bind_dst}) src_expr position def_level var_heap expr_heap
# free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
= (Var bound_var, [{lb_dst = free_var, lb_src = src_expr, lb_position = position}], var_heap <:= (bind_dst, VI_Empty), expr_heap)
bind_opt_var_or_create_new_var No src_expr position def_level var_heap expr_heap
# new_name = newVarId "_x"
(var_info_ptr, var_heap) = newPtr VI_Empty var_heap
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_ident = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }
free_var = { fv_ident = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 }
= (Var bound_var, [{lb_dst = free_var, lb_src = src_expr, lb_position = position }], var_heap, expr_heap)
bind_match_expr var_expr=:(Var var) opt_var_bind _ def_level var_heap expr_heap
= (var_expr, opt_var_bind, var_heap, expr_heap)
bind_match_expr match_expr opt_var_bind position def_level var_heap expr_heap
# new_name = newVarId "_x"
(var_info_ptr, var_heap) = newPtr VI_Empty var_heap
// (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_ident = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr }
free_var = { fv_ident = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 }
= (Var bound_var, [{lb_src = match_expr, lb_dst = free_var, lb_position = position } : opt_var_bind], var_heap, expr_heap)
adjust_match_expression (Var var) expr_heap
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var & var_expr_ptr = var_expr_ptr }, expr_heap)
adjust_match_expression match_expr expr_heap
= (match_expr, expr_heap)
add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs
| glob_module==cPredefinedModuleIndex
# pd_cons_index=ds_index+FirstConstructorPredefinedSymbolIndex
| pd_cons_index==PD_UnboxedConsSymbol
# (stdStrictLists_index,_,decons_u_index,_,decons_u_ident,cs) = get_unboxed_list_indices_and_decons_u_ident cs
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_u_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_u_index,glob_module=stdStrictLists_index}}
# decons_u_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr}
= (decons_u_expr,expr_heap,cs)
| pd_cons_index==PD_UnboxedTailStrictConsSymbol
# (stdStrictLists_index,_,decons_uts_index,_,decons_uts_ident,cs) = get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_uts_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_uts_index,glob_module=stdStrictLists_index}}
# decons_uts_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr}
= (decons_uts_expr,expr_heap,cs)
| pd_cons_index==PD_OverloadedConsSymbol
# (stdStrictLists_index,_,decons_index,_,decons_ident,cs) = get_overloaded_list_indices_and_decons_ident cs
# (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap
app_symb = {symb_ident=decons_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_index,glob_module=stdStrictLists_index}}
# decons_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr}
= (decons_expr,expr_heap,cs)
= (src_expr,expr_heap,cs)
= (src_expr,expr_heap,cs)
unfoldPatternMacro macro=:{fun_body=TransformedBody {tb_args,tb_rhs}} mod_index all_macro_args opt_var ps=:{ps_var_heap} modules cons_defs error
| no_sharing tb_args
# length_macro_args = length tb_args
(macro_args, extra_args)
= if (length all_macro_args==length_macro_args)
(all_macro_args, [])
(splitAt length_macro_args all_macro_args)
ums = { ums_var_heap = fold2St bind_var tb_args macro_args ps_var_heap, ums_modules = modules, ums_cons_defs = cons_defs, ums_error = error }
(pattern, {ums_var_heap,ums_modules,ums_cons_defs,ums_error}) = unfold_pattern_macro mod_index macro.fun_ident opt_var extra_args tb_rhs ums
= (pattern, { ps & ps_var_heap = ums_var_heap}, ums_modules, ums_cons_defs, ums_error)
= (AP_Empty, { ps & ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_ident "sharing not allowed" error)
where
no_sharing [{fv_count} : args]
= fv_count <= 1 && no_sharing args
no_sharing []
= True
bind_var {fv_info_ptr} pattern ps_var_heap
= ps_var_heap <:= (fv_info_ptr, VI_Pattern pattern)
unfold_pattern_macro mod_index macro_ident _ extra_args (Var {var_ident,var_info_ptr}) ums=:{ums_var_heap, ums_error}
| not (isEmpty extra_args)
= (AP_Empty, { ums & ums_error = checkError macro_ident "too many arguments for pattern macro" ums_error })
# (VI_Pattern pattern, ums_var_heap) = readPtr var_info_ptr ums_var_heap
= (pattern, { ums & ums_var_heap = ums_var_heap})
unfold_pattern_macro mod_index macro_ident opt_var extra_args (App {app_symb={symb_kind=SK_Constructor {glob_module,glob_object},symb_ident},app_args})
ums=:{ums_cons_defs,ums_modules,ums_error}
# (cons_def, cons_index, ums_cons_defs, ums_modules) = get_cons_def mod_index glob_module glob_object ums_cons_defs ums_modules
| cons_def.cons_type.st_arity == length app_args+length extra_args
# (patterns, ums) = mapSt (unfold_pattern_macro mod_index macro_ident No []) app_args { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules }
cons_symbol = { glob_object = MakeDefinedSymbol symb_ident cons_index cons_def.cons_type.st_arity, glob_module = glob_module }
global_type_index = {gi_module = glob_module, gi_index = cons_def.cons_type_index}
= (AP_Algebraic cons_symbol global_type_index (patterns++extra_args) opt_var, ums)
= (AP_Empty, { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules,
ums_error = checkError cons_def.cons_ident "incorrect number of arguments" ums_error })
where
get_cons_def mod_index cons_mod cons_index cons_defs modules
| mod_index == cons_mod
# (cons_def, cons_defs) = cons_defs![cons_index]
= (cons_def, cons_index, cons_defs, modules)
# ({dcl_common}, modules) = modules![cons_mod]
cons_def = dcl_common.com_cons_defs.[cons_index]
= (cons_def, cons_index, cons_defs, modules)
unfold_pattern_macro mod_index macro_ident opt_var extra_args (BasicExpr bv) ums=:{ums_error}
| not (isEmpty extra_args)
= (AP_Empty, { ums & ums_error = checkError macro_ident "too many arguments for pattern macro" ums_error })
= (AP_Basic bv opt_var, ums)
unfold_pattern_macro mod_index macro_ident opt_var _ expr ums=:{ums_error}
= (AP_Empty, { ums & ums_error = checkError macro_ident "illegal rhs for a pattern macro" ums_error })
unfoldPatternMacro macro mod_index all_macro_args opt_var ps=:{ps_var_heap} modules cons_defs error
= (AP_Empty, { ps & ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_ident "illegal macro in pattern" error)
checkSelectors end_with_update free_vars [ selector : selectors ] e_input e_state e_info cs
| isEmpty selectors
# (selector, free_vars, e_state, e_info, cs) = check_selector end_with_update free_vars selector e_input e_state e_info cs
= ([ selector ], free_vars, e_state, e_info, cs)
# (selector, free_vars, e_state, e_info, cs) = check_selector cEndWithSelection free_vars selector e_input e_state e_info cs
(selectors, free_vars, e_state, e_info, cs) = checkSelectors end_with_update free_vars selectors e_input e_state e_info cs
= ([ selector : selectors ], free_vars, e_state, e_info, cs)
where
check_selector _ free_vars (PS_Record selector=:{id_info,id_name} opt_type) e_input=:{ei_mod_index} e_state
e_info=:{ef_selector_defs, ef_modules} cs=:{cs_symbol_table}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
# selectors = retrieveSelectorIndexes ei_mod_index entry
(field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs)
= get_field_nr ei_mod_index opt_type selectors id_name ef_selector_defs ef_modules { cs & cs_symbol_table = cs_symbol_table }
= (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state,
{e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs)
check_selector _ free_vars (PS_QualifiedRecord module_id field_name opt_type) e_input=:{ei_mod_index} e_state
e_info cs=:{cs_symbol_table}
# (entry, symbol_table) = readPtr module_id.id_info cs_symbol_table
# cs = {cs & cs_symbol_table=symbol_table}
= case entry.ste_kind of
STE_ModuleQualifiedImports sorted_qualified_imports
# selectors = retrieve_qualified_selector_indices field_name sorted_qualified_imports
# {ef_selector_defs, ef_modules}=e_info
(field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs)
= get_field_nr ei_mod_index opt_type selectors field_name ef_selector_defs ef_modules cs
selector = {id_name=field_name,id_info=nilPtr}
-> (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state,
{e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs)
STE_ClosedModule
-> not_imported_error cs
STE_Module _
-> not_imported_error cs
_
# selector = {id_name=field_name,id_info=nilPtr}
-> (RecordSelection {glob_object = MakeDefinedSymbol selector NoIndex 1,glob_module = NoIndex}
NoIndex, free_vars, e_state, e_info,
{cs & cs_error = checkError module_id "not defined" cs.cs_error })
where
not_imported_error cs
# selector = {id_name=field_name,id_info=nilPtr}
= (RecordSelection {glob_object = MakeDefinedSymbol selector NoIndex 1,glob_module = NoIndex} NoIndex,
free_vars, e_state, e_info, {cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++field_name) "not imported" cs.cs_error })
check_selector end_with_update free_vars (PS_Array index_expr) e_input e_state e_info cs
| end_with_update
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArrayUpdateFun PD_StdArray STE_Member 3 cs
= checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs
= checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
get_field_nr :: !Index !OptionalRecordName ![Global Index] !{#Char} !u:{#SelectorDef} !v:{# DclModule} !*CheckState
-> (!Index, !Index, !Index, u:{#SelectorDef}, v:{#DclModule}, !*CheckState)
get_field_nr mod_index _ [] id_name selector_defs modules cs=:{cs_error}
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name "selector not defined" cs_error })
get_field_nr mod_index (RecordNameIdent type_id=:{id_info}) selectors id_name selector_defs modules cs=:{cs_symbol_table,cs_error}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
# (type_index, type_module) = retrieveGlobalDefinition entry STE_Type mod_index
| type_index <> NotFound
# (selector_index, selector_offset, selector_defs, modules)
= determine_selector mod_index type_module type_index selectors selector_defs modules
| selector_offset <> NoIndex
= (type_module, selector_index, selector_offset, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table })
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table,
cs_error = checkError id_name "selector not defined" cs_error })
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table,
cs_error = checkError type_id "type not defined" cs_error })
get_field_nr mod_index (RecordNameQualifiedIdent module_id record_name) selectors id_name selector_defs modules cs
# (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id record_name TypeNameSpaceN cs
| not found
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, cs)
= case decl_kind of
STE_Imported STE_Type type_mod_index
# (selector_index, selector_offset, selector_defs, modules)
= determine_selector mod_index type_mod_index decl_index selectors selector_defs modules
| selector_offset <> NoIndex
-> (type_mod_index, selector_index, selector_offset, selector_defs, modules, cs)
-> (NoIndex, NoIndex, NoIndex, selector_defs, modules,
{cs & cs_error = checkError id_name "selector not defined" cs.cs_error })
_
-> (NoIndex, NoIndex, NoIndex, selector_defs, modules,
{cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++record_name) "type not defined" cs.cs_error} )
get_field_nr mod_index NoRecordName [{glob_object,glob_module}] id_name selector_defs modules cs
| mod_index == glob_module
# (selector_offset,selector_defs) = selector_defs![glob_object].sd_field_nr
= (glob_module, glob_object, selector_offset, selector_defs, modules, cs)
# (selector_offset,modules) = modules![glob_module].dcl_common.com_selector_defs.[glob_object].sd_field_nr
= (glob_module, glob_object, selector_offset, selector_defs, modules, cs)
get_field_nr mod_index NoRecordName _ id_name selector_defs modules cs=:{cs_error}
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name "ambiguous selector specified" cs_error })
determine_selector :: !Index !Index !Index ![Global Index] !u:{# SelectorDef} !v:{# DclModule} -> (!Int, !Int, !u:{# SelectorDef}, !v:{# DclModule})
determine_selector mod_index type_mod_index type_index [] selector_defs modules
= (NoIndex, NoIndex, selector_defs, modules)
determine_selector mod_index type_mod_index type_index [{glob_module, glob_object} : selectors] selector_defs modules
| type_mod_index == glob_module
| type_mod_index == mod_index
# (selector_def,selector_defs) = selector_defs![glob_object]
| selector_def.sd_type_index == type_index
= (glob_object, selector_def.sd_field_nr, selector_defs, modules)
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
# (selector_def, modules) = modules![glob_module].dcl_common.com_selector_defs.[glob_object]
| selector_def.sd_type_index == type_index
= (glob_object, selector_def.sd_field_nr, selector_defs, modules)
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
# (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars index_expr e_input e_state e_info cs
(new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
= (ArraySelection glob_select_symb new_info_ptr index_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs)
checkFields :: !Index ![FieldAssignment] !OptionalRecordName !u:ExpressionInfo !*CheckState
-> (!Optional ((Global DefinedSymbol), Index, [Bind ParsedExpr (Global FieldSymbol)]), !u:ExpressionInfo, !*CheckState)
checkFields mod_index field_ass opt_type e_info=:{ef_selector_defs,ef_type_defs,ef_modules} cs
# (ok, field_ass, cs) = check_fields field_ass cs
| ok
# (opt_type_def, ef_selector_defs, ef_type_defs, ef_modules, cs)
= determine_record_type mod_index opt_type field_ass ef_selector_defs ef_type_defs ef_modules cs
e_info = { e_info & ef_selector_defs = ef_selector_defs, ef_type_defs = ef_type_defs, ef_modules = ef_modules}
= case opt_type_def of
Yes ({td_index,td_rhs = RecordType {rt_constructor,rt_fields}}, type_mod_index)
# (field_exprs, cs_error) = check_and_rearrange_fields type_mod_index 0 rt_fields field_ass cs.cs_error
#! cons_symbol = {glob_object = rt_constructor, glob_module = type_mod_index}
-> (Yes (cons_symbol, td_index, field_exprs), e_info, {cs & cs_error = cs_error})
Yes _
# (RecordNameIdent type_ident) = opt_type
-> (No, e_info, { cs & cs_error = checkError type_ident "not a record constructor" cs.cs_error })
No
-> (No, e_info, cs)
= (No, e_info, cs)
where
check_fields [ bind=:{bind_dst=bind_dst=:FieldName field_ident} : field_ass ] cs=:{cs_symbol_table,cs_error}
# (entry, cs_symbol_table) = readPtr field_ident.id_info cs_symbol_table
# fields = retrieveSelectorIndexes mod_index entry
| isEmpty fields
= (False, [], { cs & cs_symbol_table = cs_symbol_table, cs_error = checkError field_ident "not defined as a record field" cs_error })
# (ok, field_ass, cs) = check_fields field_ass { cs & cs_symbol_table = cs_symbol_table }
= (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs)
check_fields [ bind=:{bind_dst=bind_dst=:QualifiedFieldName module_id field_name} : field_ass ] cs=:{cs_symbol_table}
# (entry, symbol_table) = readPtr module_id.id_info cs_symbol_table
# cs = {cs & cs_symbol_table=symbol_table}
= case entry.ste_kind of
STE_ModuleQualifiedImports sorted_qualified_imports
# fields = retrieve_qualified_selector_indices field_name sorted_qualified_imports
| isEmpty fields
-> not_imported_error cs
# (ok, field_ass, cs) = check_fields field_ass cs
-> (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs)
STE_ClosedModule
-> not_imported_error cs
STE_Module _
-> not_imported_error cs
_
-> (False, [], { cs & cs_error = checkError module_id "not defined" cs.cs_error })
where
not_imported_error cs
= (False, [], { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++field_name) "not defined as a record field" cs.cs_error })
check_fields [] cs
= (True, [], cs)
try_to_get_unique_field []
= No
try_to_get_unique_field [ {bind_dst = (field_id, [field])} : fields ]
= Yes field
try_to_get_unique_field [ _ : fields ]
= try_to_get_unique_field fields
determine_record_type mod_index (RecordNameIdent type_id=:{id_info}) _ selector_defs type_defs modules cs=:{cs_symbol_table, cs_error}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
# (type_index, type_mod_index) = retrieveGlobalDefinition entry STE_Type mod_index
| type_index <> NotFound
| mod_index == type_mod_index
# (type_def, type_defs) = type_defs![type_index]
= (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, { cs & cs_symbol_table = cs_symbol_table })
# (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[type_index]
= (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, { cs & cs_symbol_table = cs_symbol_table })
= (No, selector_defs, type_defs, modules, { cs & cs_error = checkError type_id "not defined" cs_error, cs_symbol_table = cs_symbol_table})
determine_record_type mod_index (RecordNameQualifiedIdent module_id record_name) _ selector_defs type_defs modules cs
# (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id record_name TypeNameSpaceN cs
| not found
= (No, selector_defs, type_defs, modules, cs)
= case decl_kind of
STE_Imported STE_Type type_mod_index
| type_mod_index==mod_index
# (type_def, type_defs) = type_defs![decl_index]
-> (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs)
# (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[decl_index]
-> (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs)
_
-> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++record_name) "not imported" cs.cs_error })
determine_record_type mod_index NoRecordName fields selector_defs type_defs modules cs=:{cs_error}
# succ = try_to_get_unique_field fields
= case succ of
Yes {glob_module, glob_object}
| glob_module == mod_index
# (selector_def, selector_defs) = selector_defs![glob_object]
(type_def, type_defs) = type_defs![selector_def.sd_type_index]
-> (Yes (type_def, glob_module), selector_defs, type_defs, modules, cs)
# ({dcl_common={com_selector_defs,com_type_defs}}, modules) = modules![glob_module]
{sd_type_index} = com_selector_defs.[glob_object]
type_def = com_type_defs.[sd_type_index]
-> (Yes (type_def,glob_module), selector_defs, type_defs, modules, cs)
No
-> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError "could not determine the type of this record" "" cs.cs_error })
check_and_rearrange_fields :: !Int !Int !{#FieldSymbol} ![Bind ParsedExpr (FieldNameOrQualifiedFieldName,[Global .Int])] !*ErrorAdmin -> (![Bind ParsedExpr .(Global FieldSymbol)],!.ErrorAdmin);
check_and_rearrange_fields mod_index field_index fields field_ass cs_error
| field_index < size fields
# (field_expr, field_ass) = look_up_field mod_index fields.[field_index] field_ass
(field_exprs, cs_error) = check_and_rearrange_fields mod_index (inc field_index) fields field_ass cs_error
= ([field_expr : field_exprs], cs_error)
| isEmpty field_ass
= ([], cs_error)
= ([], foldSt field_error field_ass cs_error)
where
look_up_field mod_index field []
= ({bind_src = PE_WildCard, bind_dst = { glob_object = field, glob_module = mod_index }}, [])
look_up_field mod_index field=:{fs_index} [ass=:{bind_src, bind_dst = (_, fields)} : field_ass]
| field_list_contains_field mod_index fs_index fields
= ({bind_src = bind_src, bind_dst = { glob_module = mod_index, glob_object = field}}, field_ass)
# (field_expr, field_ass) = look_up_field mod_index field field_ass
= (field_expr, [ass : field_ass])
field_list_contains_field mod_index fs_index []
= False
field_list_contains_field mod_index fs_index [{glob_object,glob_module} : fields]
= mod_index == glob_module && fs_index == glob_object || field_list_contains_field mod_index fs_index fields
field_error {bind_dst=(field_id,_)} error
= checkError field_id "field is either multiply used or not a part of this record" error
checkRhssAndTransformLocalDefs free_vars [] rhs_expr e_input e_state e_info cs
= (rhs_expr, free_vars, e_state, e_info, cs)
checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs
# (binds, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars loc_defs e_input e_state e_info cs
(rhs_expr, es_expr_heap) = buildLetExpression [] binds rhs_expr NoPos e_state.es_expr_heap
= (rhs_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs)
checkLhssOfLocalDefs :: .Int .Int LocalDefs Int *ExpressionState *ExpressionInfo *CheckState -> (!.[NodeDef AuxiliaryPattern],!(![Ident],![ArrayPattern]),!.ExpressionState,!.ExpressionInfo,!.CheckState);
checkLhssOfLocalDefs def_level mod_index (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_nodes,loc_in_icl_module}) local_functions_index_offset e_state=:{es_var_heap,es_fun_defs} e_info=:{ef_is_macro_fun} cs
# ir_from=ir_from+local_functions_index_offset
# ir_to=ir_to+local_functions_index_offset
# (loc_defs, accus, {ps_fun_defs,ps_var_heap}, e_info, cs)
= check_patterns loc_nodes {pi_def_level = def_level, pi_mod_index = mod_index, pi_is_node_pattern = True } ([], [])
{ps_fun_defs = es_fun_defs, ps_var_heap = es_var_heap} e_info cs
| loc_in_icl_module
# (fun_defs, cs_symbol_table, cs_error) = addLocalFunctionDefsToSymbolTable def_level ir_from ir_to ef_is_macro_fun ps_fun_defs cs.cs_symbol_table cs.cs_error
= (loc_defs, accus, { e_state & es_fun_defs = fun_defs, es_var_heap = ps_var_heap }, e_info, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error })
# (macro_defs, cs_symbol_table, cs_error) = addLocalDclMacroDefsToSymbolTable def_level mod_index ir_from ir_to e_info.ef_macro_defs cs.cs_symbol_table cs.cs_error
= (loc_defs, accus, { e_state & es_fun_defs = ps_fun_defs, es_var_heap = ps_var_heap }, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error })
where
check_patterns [ node_def : node_defs ] p_input accus var_store e_info cs
# (pattern, accus, var_store, e_info, cs) = check_local_lhs_pattern node_def.nd_dst No p_input accus var_store e_info cs
(patterns, accus, var_store, e_info, cs) = check_patterns node_defs p_input accus var_store e_info cs
= ([{ node_def & nd_dst = pattern } : patterns], accus, var_store, e_info, cs)
check_patterns [] p_input accus var_store e_info cs
= ([], accus, var_store, e_info, cs)
/* RWS: FIXME
This is a patch for the case
...
where
X = 10
in which X should be a node-id (a.k.a. AP_Variable) and not a pattern.
I think the distinction between node-ids and constructors should be done
in an earlier phase, but this will need a larger rewrite.
*/
check_local_lhs_pattern (PE_Ident id=:{id_name, id_info}) opt_var {pi_def_level, pi_mod_index} accus=:(var_env, array_patterns)
ps e_info cs=:{cs_symbol_table}
# (entry, cs_symbol_table) = readPtr id_info cs_symbol_table
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable pi_def_level entry id new_info_ptr { cs & cs_symbol_table = cs_symbol_table }
= (AP_Variable id new_info_ptr opt_var, ([ id : var_env ], array_patterns), { ps & ps_var_heap = ps_var_heap}, e_info, cs)
check_local_lhs_pattern pattern opt_var p_input accus var_store e_info cs
= checkPattern pattern opt_var p_input accus var_store e_info cs
addArraySelections [] rhs_expr free_vars e_input e_state e_info cs
= (rhs_expr, free_vars, e_state, e_info, cs)
addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs
# (let_strict_binds, let_lazy_binds, free_vars, e_state, e_info, cs)
= buildArraySelections e_input array_patterns free_vars e_state e_info cs
(let_expr_ptr, es_expr_heap)
= newPtr EI_Empty e_state.es_expr_heap
= ( Let {let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds,
let_expr = rhs_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }
, free_vars , { e_state & es_expr_heap = es_expr_heap} , e_info, cs )
buildArraySelections e_input array_patterns free_vars e_state e_info cs
= foldSt (buildSelections e_input) array_patterns ([], [], free_vars, e_state, e_info, cs)
buildSelections e_input {ap_selections=[]}
(strict_binds, lazy_binds, free_vars, e_state, e_info, cs)
= (strict_binds, lazy_binds, free_vars, e_state, e_info, cs) // if an error occurs in checkPattern
buildSelections e_input {ap_opt_var, ap_array_var, ap_selections}
(strict_binds, lazy_binds, free_vars, e_state, e_info, cs)
# (ap_array_var, [last_array_selection:lazy_binds], free_vars, e_state, e_info, cs)
= foldSt (build_sc e_input) (reverse ap_selections) // reverse to make cycle-in-spine behaviour compatible to Clean 1.3
(ap_array_var, lazy_binds, free_vars, e_state, e_info, cs)
(lazy_binds, e_state)
= case ap_opt_var of
Yes { bind_src = opt_var_ident, bind_dst = opt_var_var_info_ptr }
# (bound_array_var, es_expr_heap) = allocate_bound_var ap_array_var e_state.es_expr_heap
free_var = { fv_ident = opt_var_ident, fv_info_ptr = opt_var_var_info_ptr, fv_def_level = NotALevel,
fv_count = 0 }
-> ([{ lb_dst = free_var, lb_src = Var bound_array_var, lb_position = NoPos }: lazy_binds],
{ e_state & es_expr_heap = es_expr_heap })
no -> (lazy_binds, e_state)
= ([last_array_selection:strict_binds], lazy_binds, free_vars, e_state, e_info, cs)
where
build_sc e_input {bind_dst=parsed_index_exprs, bind_src=array_element_var} (ap_array_var, binds, free_vars, e_state, e_info, cs)
# (var_for_uselect_result, es_var_heap)
= allocate_free_var { id_name = "_x", id_info = nilPtr } e_state.es_var_heap
(new_array_var, es_var_heap)
= allocate_free_var ap_array_var.fv_ident es_var_heap
(bound_array_var, es_expr_heap)
= allocate_bound_var ap_array_var e_state.es_expr_heap
(bound_var_for_uselect_result, es_expr_heap)
= allocate_bound_var var_for_uselect_result es_expr_heap
dimension
= length parsed_index_exprs
(new_expr_ptrs, es_expr_heap)
= mapSt newPtr (repeatn dimension EI_Empty) es_expr_heap
(tuple_cons, cs)
= getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs
(glob_select_symb, selector_kind, cs)
= case dimension of
1 # (unq_select_symb, cs) = getPredefinedGlobalSymbol PD_UnqArraySelectFun PD_StdArray STE_Member 2 cs
-> (unq_select_symb, UniqueSingleArraySelector, cs)
_ # (select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs
-> (select_symb, UniqueSelector, cs)
e_state
= { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }
(index_exprs, (free_vars, e_state, e_info, cs))
= mapSt (check_index_expr e_input) parsed_index_exprs (free_vars, e_state, e_info, cs)
selections
= [ ArraySelection glob_select_symb new_expr_ptr index_expr \\ new_expr_ptr<-new_expr_ptrs & index_expr<-index_exprs ]
= ( new_array_var
, [ {lb_dst = var_for_uselect_result, lb_src = Selection selector_kind (Var bound_array_var) selections, lb_position = NoPos }
, {lb_dst = new_array_var, lb_src = TupleSelect tuple_cons.glob_object 1 (Var bound_var_for_uselect_result), lb_position = NoPos }
, {lb_dst = array_element_var, lb_src = TupleSelect tuple_cons.glob_object 0 (Var bound_var_for_uselect_result), lb_position = NoPos }
: binds
]
, free_vars
, e_state
, e_info
, cs
)
check_index_expr e_input parsed_index_expr (free_vars, e_state, e_info, cs)
# (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars parsed_index_expr e_input e_state e_info cs
= (index_expr, (free_vars, e_state, e_info, cs))
buildLetExpression :: ![LetBind] ![LetBind] !Expression !Position !*ExpressionHeap -> (!Expression, !*ExpressionHeap)
buildLetExpression [] [] expr _ expr_heap
= (expr, expr_heap)
buildLetExpression let_strict_binds let_lazy_binds expr let_expr_position expr_heap
# (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Let {let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = expr,
let_info_ptr = let_expr_ptr, let_expr_position = let_expr_position }, expr_heap)
buildApplication :: !SymbIdent !Int !Int ![Expression] !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin)
buildApplication symbol=:{symb_kind=SK_Constructor _} form_arity act_arity args e_state error
# app = App { app_symb = symbol , app_args = args, app_info_ptr = nilPtr }
| act_arity > form_arity
= (app, e_state, checkError symbol.symb_ident "used with too many arguments" error)
= (app, e_state, error)
buildApplication symbol=:{symb_kind=SK_OverloadedConstructor cons_index} form_arity act_arity args e_state error
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
e_state = {e_state & es_expr_heap=es_expr_heap}
app = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = args, app_info_ptr = new_info_ptr}
| act_arity > form_arity
= (app, e_state, checkError symbol.symb_ident "used with too many arguments" error)
= (app, e_state, error)
buildApplication symbol=:{symb_kind=SK_NewTypeConstructor _} form_arity act_arity args e_state error
# app = App { app_symb = symbol , app_args = args, app_info_ptr = nilPtr }
| act_arity == form_arity
= (app, e_state, error)
| act_arity > form_arity
= (app, e_state, checkError symbol.symb_ident "used with too many arguments" error)
= (app, e_state, checkError symbol.symb_ident "argument missing (for newtype constructor)" error)
buildApplication symbol form_arity act_arity args e_state=:{es_expr_heap} error
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap
| form_arity < act_arity
# app = { app_symb = symbol , app_args = take form_arity args, app_info_ptr = new_info_ptr }
= (App app @ drop form_arity args, { e_state & es_expr_heap = es_expr_heap }, error)
# app = { app_symb = symbol , app_args = take form_arity args, app_info_ptr = new_info_ptr }
= (App app, { e_state & es_expr_heap = es_expr_heap }, error)
buildApplicationWithoutArguments :: !SymbIdent !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin)
buildApplicationWithoutArguments symbol=:{symb_kind=SK_Constructor _} e_state error
# app = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr }
= (app, e_state, error)
buildApplicationWithoutArguments symbol=:{symb_kind=SK_OverloadedConstructor cons_index} e_state error
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
app = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = [], app_info_ptr = new_info_ptr}
= (app, {e_state & es_expr_heap = es_expr_heap}, error)
buildApplicationWithoutArguments symbol=:{symb_kind=SK_NewTypeConstructor _} e_state error
# app = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr }
= (app, e_state, checkError symbol.symb_ident "argument missing (for newtype constructor)" error)
buildApplicationWithoutArguments symbol e_state error
# (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap
# app = App { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr }
= (app, { e_state & es_expr_heap = es_expr_heap }, error)
buildPattern mod_index (APK_Constructor type_index) cons_ident args opt_var ps e_info cs
= (AP_Algebraic cons_ident type_index args opt_var, ps, e_info, cs)
buildPattern mod_index (APK_NewTypeConstructor type_index) cons_ident [arg] opt_var ps e_info cs
= (AP_NewType cons_ident type_index arg opt_var, ps, e_info, cs)
buildPattern mod_index (APK_Macro is_dcl_macro) {glob_module,glob_object} args opt_var ps e_info=:{ef_modules,ef_macro_defs,ef_cons_defs} cs=:{cs_error}
| is_dcl_macro
# (macro,ef_macro_defs) = ef_macro_defs![glob_module,glob_object.ds_index]
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro macro mod_index args opt_var ps ef_modules ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_macro_defs=ef_macro_defs, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
# (macro,ps) = ps!ps_fun_defs.[glob_object.ds_index]
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro macro mod_index args opt_var ps ef_modules ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_macro_defs=ef_macro_defs, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
getPredefinedGlobalSymbol :: !Index !Index !STE_Kind !Int !*CheckState -> (!Global DefinedSymbol, !*CheckState)
getPredefinedGlobalSymbol symb_index module_index req_ste_kind arity cs=:{cs_predef_symbols,cs_symbol_table}
# mod_id = predefined_idents.[module_index]
# (mod_entry, cs_symbol_table) = readPtr mod_id.id_info cs_symbol_table
| mod_entry.ste_kind == STE_ClosedModule
# (glob_object, cs) = get_predefined_symbol symb_index req_ste_kind arity mod_entry.ste_index
{ cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table}
= ({ glob_object = glob_object, glob_module = mod_entry.ste_index }, cs)
= ({ glob_object = { ds_ident = { id_name = "** ERRONEOUS **", id_info = nilPtr }, ds_index = NoIndex, ds_arity = arity }, glob_module = NoIndex},
{ cs & cs_error = checkError mod_id "not imported" cs.cs_error, cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table })
where
get_predefined_symbol :: !Index !STE_Kind !Int !Index !*CheckState -> (!DefinedSymbol,!*CheckState)
get_predefined_symbol symb_index req_ste_kind arity mod_index cs=:{cs_predef_symbols,cs_symbol_table,cs_error}
# symb_id = predefined_idents.[symb_index]
(symb_entry, cs_symbol_table) = readPtr symb_id.id_info cs_symbol_table
cs = { cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table }
| symb_entry.ste_kind == req_ste_kind
= ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs)
= case symb_entry.ste_kind of
STE_Imported kind module_index
| mod_index == module_index && kind == req_ste_kind
-> ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs)
_
-> ({ ds_ident = symb_id, ds_index = NoIndex, ds_arity = arity }, { cs & cs_error = checkError symb_id "undefined" cs.cs_error })
typeOfBasicValue :: !BasicValue !*CheckState -> (!BasicType, !*CheckState)
typeOfBasicValue (BVI _) cs = (BT_Int, cs)
typeOfBasicValue (BVInt _) cs = (BT_Int, cs)
typeOfBasicValue (BVC _) cs = (BT_Char, cs)
typeOfBasicValue (BVB _) cs = (BT_Bool, cs)
typeOfBasicValue (BVR _) cs = (BT_Real, cs)
typeOfBasicValue (BVS _) cs
# ({glob_module,glob_object={ds_ident,ds_index,ds_arity}}, cs) = getPredefinedGlobalSymbol PD_StringType PD_PredefinedModule STE_Type 0 cs
= (BT_String (TA (MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity) []), cs)
buildTypeCase type_case_dynamic type_case_patterns type_case_default type_case_info_ptr case_explicit :==
Case { case_expr = type_case_dynamic, case_guards = DynamicPatterns type_case_patterns, case_default = type_case_default,
case_info_ptr = type_case_info_ptr, case_ident = No, case_default_pos = NoPos,
case_explicit = case_explicit
}
determinePatternVariable (Yes bind) var_heap
= (bind, var_heap)
determinePatternVariable No var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ bind_src = newVarId "_x", bind_dst = new_info_ptr }, var_heap)
pushErrorAdmin2 _ NoPos cs=:{cs_error={ea_loc=[top_of_stack:_]}}
// there is no position info, push current position to balance pop calls
= pushErrorAdmin top_of_stack cs
pushErrorAdmin2 string pos=:(LinePos _ _) cs
= pushErrorAdmin (newPosition {id_name=string, id_info=nilPtr} pos) cs
allocate_bound_var :: !FreeVar !*ExpressionHeap -> (!BoundVar, !.ExpressionHeap)
allocate_bound_var {fv_ident, fv_info_ptr} expr_heap
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= ({ var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, expr_heap)
allocate_free_var ident var_heap
# (new_var_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ fv_def_level = NotALevel, fv_ident = ident, fv_info_ptr = new_var_info_ptr, fv_count = 0 }, var_heap)
newVarId name = { id_name = name, id_info = nilPtr }
retrieveSelectorIndexes :: Int !SymbolTableEntry -> [(Global Int)]
retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous }
= map (adjust_mod_index mod_index) selector_list
where
adjust_mod_index mod_index selector=:{glob_module}
| glob_module == NoIndex
= { selector & glob_module = mod_index }
= selector
retrieveSelectorIndexes mod_index off_kind
= []
retrieve_qualified_selector_indices field_name sorted_qualified_imports
= [{glob_module=type_mod_index,glob_object=decl_index} \\
{decl_kind=STE_Imported (STE_Field selector) type_mod_index,decl_index}
<- search_qualified_imports field_name sorted_qualified_imports FieldNameSpaceN]
instance <<< FieldSymbol
where
(<<<) file { fs_var } = file <<< fs_var
|