1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
|
implementation module check
import StdEnv
import syntax, typesupport, parse, checksupport, utilities, checktypes, transform, predef, RWSDebug
import explicitimports
cPredefinedModuleIndex :== 1
convertIndex :: !Index !Index !(Optional ConversionTable) -> !Index
convertIndex index table_index (Yes tables)
= tables.[table_index].[index]
convertIndex index table_index No
= index
getPredefinedGlobalSymbol symb_index module_index req_ste_kind arity cs=:{cs_predef_symbols,cs_symbol_table}
#! pre_def_mod = cs_predef_symbols.[module_index]
# mod_id = pre_def_mod.pds_ident
#! mod_entry = sreadPtr mod_id.id_info cs_symbol_table
| mod_entry.ste_kind == STE_ClosedModule
# (glob_object, cs) = get_predefined_symbol symb_index req_ste_kind arity mod_entry.ste_index cs
= ({ glob_object = glob_object, glob_module = mod_entry.ste_index }, cs)
= ({ glob_object = { ds_ident = { id_name = "** ERRONEOUS **", id_info = nilPtr }, ds_index = NoIndex, ds_arity = arity }, glob_module = NoIndex},
{ cs & cs_error = checkError mod_id "not imported" cs.cs_error})
where
get_predefined_symbol symb_index req_ste_kind arity mod_index cs=:{cs_predef_symbols,cs_symbol_table,cs_error}
#! pre_def_symb = cs_predef_symbols.[symb_index]
# symb_id = pre_def_symb.pds_ident
#! symb_entry = sreadPtr symb_id.id_info cs_symbol_table
| symb_entry.ste_kind == req_ste_kind
= ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs)
= case symb_entry.ste_kind of
STE_Imported kind module_index
| mod_index == module_index && kind == req_ste_kind
-> ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs)
_
-> ({ ds_ident = symb_id, ds_index = NoIndex, ds_arity = arity }, { cs & cs_error = checkError symb_id "undefined" cs.cs_error })
checkTypeClasses :: !Index !Index !*{#ClassDef} !*{#MemberDef} !*{#CheckedTypeDef} !*{#DclModule} !*TypeHeaps !*CheckState
-> (!*{#ClassDef}, !*{#MemberDef}, !*{#CheckedTypeDef}, !*{#DclModule}, !*TypeHeaps, !*CheckState)
checkTypeClasses class_index module_index class_defs member_defs type_defs modules type_heaps=:{th_vars} cs=:{cs_symbol_table,cs_error}
| class_index == size class_defs
= (class_defs, member_defs, type_defs, modules, type_heaps, cs)
#! class_def = class_defs.[class_index]
# {class_name,class_pos,class_args,class_context,class_members} = class_def
position = newPosition class_name class_pos
cs_error = setErrorAdmin position cs_error
(rev_class_args, cs_symbol_table, th_vars, cs_error)
= add_variables_to_symbol_table cGlobalScope class_args [] cs_symbol_table th_vars cs_error
cs = {cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }
(class_context, type_defs, class_defs, modules, type_heaps, cs)
= checkTypeContexts class_context module_index type_defs class_defs modules { type_heaps & th_vars = th_vars } cs
(class_args, cs_symbol_table) = retrieve_variables_from_symbol_table rev_class_args [] cs.cs_symbol_table
class_defs = { class_defs & [class_index] = { class_def & class_context = class_context, class_args = class_args }}
member_defs = set_classes_in_member_defs 0 class_members {glob_object = class_index, glob_module = module_index} member_defs
= checkTypeClasses (inc class_index) module_index class_defs member_defs type_defs modules type_heaps { cs & cs_symbol_table = cs_symbol_table }
where
add_variables_to_symbol_table :: !Level ![TypeVar] ![TypeVar] !*SymbolTable !*TypeVarHeap !*ErrorAdmin
-> (![TypeVar],!*SymbolTable,!*TypeVarHeap,!*ErrorAdmin)
add_variables_to_symbol_table level [] rev_class_args symbol_table th_vars error
= (rev_class_args, symbol_table, th_vars, error)
add_variables_to_symbol_table level [var=:{tv_name={id_name,id_info}} : vars] rev_class_args symbol_table th_vars error
#! entry = sreadPtr id_info symbol_table
| entry.ste_kind == STE_Empty || entry.ste_def_level < level
# (new_var_ptr, th_vars) = newPtr TVI_Empty th_vars
# symbol_table = NewEntry symbol_table id_info (STE_TypeVariable new_var_ptr) NoIndex level entry
= add_variables_to_symbol_table level vars [{ var & tv_info_ptr = new_var_ptr} : rev_class_args] symbol_table th_vars error
= add_variables_to_symbol_table level vars rev_class_args symbol_table th_vars (checkError id_name "(variable) already defined" error)
retrieve_variables_from_symbol_table [var=:{tv_name={id_name,id_info}} : vars] class_args symbol_table
#! entry = sreadPtr id_info symbol_table
= retrieve_variables_from_symbol_table vars [var : class_args] (symbol_table <:= (id_info,entry.ste_previous))
retrieve_variables_from_symbol_table [] class_args symbol_table
= (class_args, symbol_table)
set_classes_in_member_defs mem_offset class_members glob_class_index member_defs
| mem_offset == size class_members
= member_defs
# {ds_index} = class_members.[mem_offset]
#! member_def = member_defs.[ds_index]
= set_classes_in_member_defs (inc mem_offset) class_members glob_class_index { member_defs & [ds_index] = { member_def & me_class = glob_class_index }}
checkSpecial :: !Index !FunType !Index !SpecialSubstitution (!Index, ![FunType], !*Heaps, !*ErrorAdmin)
-> (!Special, (!Index, ![FunType], !*Heaps, !*ErrorAdmin))
checkSpecial mod_index fun_type=:{ft_type} fun_index subst (next_inst_index, special_types, heaps, error)
# (special_type, hp_type_heaps) = substitute_type ft_type subst heaps.hp_type_heaps
(spec_types, error) = checkAndCollectTypesOfContexts special_type.st_context error
ft_type = { special_type & st_context = [] }
(new_info_ptr, hp_var_heap) = newPtr VI_Empty heaps.hp_var_heap
= ( { spec_index = { glob_module = mod_index, glob_object = next_inst_index }, spec_types = spec_types, spec_vars = subst.ss_vars, spec_attrs = subst.ss_attrs },
((inc next_inst_index), [{ fun_type & ft_type = ft_type, ft_specials = SP_FunIndex fun_index, ft_type_ptr = new_info_ptr} : special_types ],
{ heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap }, error))
where
substitute_type st=:{st_vars,st_attr_vars,st_args,st_result,st_context,st_attr_env} environment type_heaps
# (st_vars, st_attr_vars, [st_result : st_args], st_context, st_attr_env, _, type_heaps)
= instantiateTypes st_vars st_attr_vars [ st_result : st_args ] st_context st_attr_env environment [] type_heaps
= ({st & st_vars = st_vars, st_args = st_args, st_result = st_result, st_attr_vars = st_attr_vars,
st_context = st_context, st_attr_env = st_attr_env }, type_heaps)
checkDclFunctions :: !Index !Index ![FunType] !v:{#CheckedTypeDef} !x:{#ClassDef} !u:{#.DclModule} !*Heaps !*CheckState
-> (!Index, ![FunType], ![FunType], !z:{#CheckedTypeDef}, !y:{#ClassDef}, !w:{#DclModule}, !.Heaps, !.CheckState), [u v <= w, x <= y, u v <= z]
checkDclFunctions module_index first_inst_index fun_types type_defs class_defs modules heaps cs
= check_dcl_functions module_index fun_types 0 first_inst_index [] [] type_defs class_defs modules heaps cs
where
check_dcl_functions module_index [] fun_index next_inst_index collected_funtypes collected_instances type_defs class_defs modules heaps cs
= (next_inst_index, collected_funtypes, collected_instances, type_defs, class_defs, modules, heaps, cs)
check_dcl_functions module_index [fun_type=:{ft_symb,ft_type,ft_pos,ft_specials} : fun_types] fun_index
next_inst_index collected_funtypes collected_instances type_defs class_defs modules heaps cs
# position = newPosition ft_symb ft_pos
cs = { cs & cs_error = setErrorAdmin position cs.cs_error }
(ft_type, ft_specials, type_defs, class_defs, modules, hp_type_heaps, cs)
= checkSymbolType module_index ft_type ft_specials type_defs class_defs modules heaps.hp_type_heaps cs
(spec_types, next_inst_index, collected_instances, heaps, cs_error)
= check_specials module_index { fun_type & ft_type = ft_type } fun_index ft_specials next_inst_index collected_instances
{ heaps & hp_type_heaps = hp_type_heaps } cs.cs_error
(new_info_ptr, hp_var_heap) = newPtr VI_Empty heaps.hp_var_heap
= check_dcl_functions module_index fun_types (inc fun_index) next_inst_index [
{ fun_type & ft_type = ft_type, ft_specials = spec_types, ft_type_ptr = new_info_ptr } : collected_funtypes]
collected_instances type_defs class_defs modules { heaps & hp_var_heap = hp_var_heap } { cs & cs_error = cs_error }
check_specials :: !Index !FunType !Index !Specials !Index ![FunType] !*Heaps !*ErrorAdmin
-> (!Specials, !Index, ![FunType], !*Heaps, !*ErrorAdmin)
check_specials mod_index fun_type fun_index (SP_Substitutions substs) next_inst_index all_instances heaps error
# (list_of_specials, (next_inst_index, all_instances, heaps, cs_error))
= mapSt (checkSpecial mod_index fun_type fun_index) substs (next_inst_index, all_instances, heaps, error)
= (SP_ContextTypes list_of_specials, next_inst_index, all_instances, heaps, cs_error)
check_specials mod_index fun_type fun_index SP_None next_inst_index all_instances heaps error
= (SP_None, next_inst_index, all_instances, heaps, error)
checkSpecialsOfInstances :: !Index !Index ![ClassInstance] !Index ![ClassInstance] ![FunType] {# FunType} *{! [Special] } !*Heaps !*ErrorAdmin
-> (!Index, ![ClassInstance], ![FunType], !*{! [Special]}, !*Heaps, !*ErrorAdmin)
checkSpecialsOfInstances mod_index first_mem_index [class_inst=:{ins_members,ins_specials} : class_insts] next_inst_index all_class_instances all_specials
new_inst_defs all_spec_types heaps error
= case ins_specials of
SP_TypeOffset type_offset
# (next_inst_index, rev_mem_specials, all_specials, all_spec_types, heaps, error)
= check_and_build_members mod_index first_mem_index 0 ins_members type_offset next_inst_index [] all_specials new_inst_defs all_spec_types heaps error
class_inst = { class_inst & ins_members = { mem \\ mem <- reverse rev_mem_specials } }
-> checkSpecialsOfInstances mod_index first_mem_index class_insts next_inst_index [class_inst : all_class_instances]
all_specials new_inst_defs all_spec_types heaps error
SP_None
-> checkSpecialsOfInstances mod_index first_mem_index class_insts next_inst_index [class_inst : all_class_instances]
all_specials new_inst_defs all_spec_types heaps error
where
check_and_build_members mod_index first_mem_index member_offset ins_members type_offset next_inst_index rev_mem_specials all_specials inst_spec_defs
all_spec_types heaps error
| member_offset < size ins_members
# member = ins_members.[member_offset]
member_index = member.ds_index
spec_member_index = member_index - first_mem_index
#! spec_types = all_spec_types.[spec_member_index]
# mem_inst = inst_spec_defs.[spec_member_index]
(SP_Substitutions specials) = mem_inst.ft_specials
env = specials !! type_offset
member = { member & ds_index = next_inst_index }
(spec_type, (next_inst_index, all_specials, heaps, error))
= checkSpecial mod_index mem_inst member_index env (next_inst_index, all_specials, heaps, error)
all_spec_types = { all_spec_types & [spec_member_index] = [ spec_type : spec_types] }
= check_and_build_members mod_index first_mem_index (inc member_offset) ins_members type_offset next_inst_index [ member : rev_mem_specials ]
all_specials inst_spec_defs all_spec_types heaps error
= (next_inst_index, rev_mem_specials, all_specials, all_spec_types, heaps, error)
checkSpecialsOfInstances mod_index first_mem_index [] next_inst_index all_class_instances all_specials inst_spec_defs all_spec_types heaps error
= (next_inst_index, all_class_instances, all_specials, all_spec_types, heaps, error)
checkMemberTypes :: !Index !*{#MemberDef} !*{#CheckedTypeDef} !*{#ClassDef} !*{#DclModule} !*TypeHeaps !*VarHeap !*CheckState
-> (!*{#MemberDef}, !*{#CheckedTypeDef}, !*{#ClassDef}, !*{#DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState)
checkMemberTypes module_index member_defs type_defs class_defs modules type_heaps var_heap cs
#! nr_of_members = size member_defs
= iFoldSt (check_class_member module_index) 0 nr_of_members (member_defs, type_defs, class_defs, modules, type_heaps, var_heap, cs)
where
check_class_member module_index member_index (member_defs, type_defs, class_defs, modules, type_heaps, var_heap, cs)
# (member_def=:{me_symb,me_type,me_pos}, member_defs) = member_defs![member_index]
position = newPosition me_symb me_pos
cs = { cs & cs_error = setErrorAdmin position cs.cs_error }
(me_type, _, type_defs, class_defs, modules, type_heaps, cs)
= checkSymbolType module_index me_type SP_None type_defs class_defs modules type_heaps cs
me_class_vars = map (\(TV type_var) -> type_var) (hd me_type.st_context).tc_types
(me_type_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ member_defs & [member_index] = { member_def & me_type = me_type, me_class_vars = me_class_vars, me_type_ptr = me_type_ptr }},
type_defs, class_defs, modules, type_heaps, var_heap, cs)
:: InstanceSymbols =
{ is_type_defs :: !.{# CheckedTypeDef}
, is_class_defs :: !.{# ClassDef}
, is_member_defs :: !.{# MemberDef}
, is_modules :: !.{# DclModule}
}
checkInstanceDefs :: !Index !*{#ClassInstance} !u:{#CheckedTypeDef} !u:{#ClassDef} !u:{#MemberDef} !u:{#DclModule} !*TypeHeaps !*CheckState
-> (!.{#ClassInstance},!u:{#CheckedTypeDef},!u:{#ClassDef},!u:{#MemberDef},!u:{#DclModule},!.TypeHeaps,!.CheckState)
checkInstanceDefs mod_index instance_defs type_defs class_defs member_defs modules type_heaps cs
# is = { is_type_defs = type_defs, is_class_defs = class_defs, is_member_defs = member_defs, is_modules = modules }
(instance_defs, is, type_heaps, cs) = check_instance_defs 0 mod_index instance_defs is type_heaps cs
= (instance_defs, is.is_type_defs, is.is_class_defs, is.is_member_defs, is.is_modules, type_heaps, cs)
where
check_instance_defs :: !Index !Index !*{# ClassInstance} !u:InstanceSymbols !*TypeHeaps !*CheckState
-> (!*{# ClassInstance},!u:InstanceSymbols,!*TypeHeaps,!*CheckState)
check_instance_defs inst_index mod_index instance_defs is type_heaps cs
| inst_index < size instance_defs
#! instance_def = instance_defs.[inst_index]
# (instance_def, is, type_heaps, cs) = check_instance mod_index instance_def is type_heaps cs
= check_instance_defs (inc inst_index) mod_index { instance_defs & [inst_index] = instance_def } is type_heaps cs
= (instance_defs, is, type_heaps, cs)
check_instance :: !Index !ClassInstance !u:InstanceSymbols !*TypeHeaps !*CheckState -> (!ClassInstance, !u:InstanceSymbols, !*TypeHeaps, !*CheckState)
check_instance module_index
ins=:{ins_members,ins_class={glob_object = class_name =: {ds_ident = {id_name,id_info},ds_arity}},ins_type,ins_specials,ins_pos,ins_ident}
is=:{is_class_defs,is_modules} type_heaps cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
# (class_index, class_mod_index, class_def, is_class_defs, is_modules) = get_class_def entry module_index is_class_defs is_modules
is = { is & is_class_defs = is_class_defs, is_modules = is_modules }
cs = pushErrorAdmin (newPosition ins_ident ins_pos) cs
| class_index <> NotFound
| class_def.class_arity == ds_arity
# (ins_type, ins_specials, is_type_defs, is_class_defs, is_modules, type_heaps, cs) = checkInstanceType module_index ins_type ins_specials
is.is_type_defs is.is_class_defs is.is_modules type_heaps cs
ins_class = { glob_object = { class_name & ds_index = class_index }, glob_module = class_mod_index}
is = { is & is_type_defs = is_type_defs, is_class_defs = is_class_defs, is_modules = is_modules }
= ({ins & ins_class = ins_class, ins_type = ins_type, ins_specials = ins_specials}, is, type_heaps, popErrorAdmin cs)
= ( ins
, is
, type_heaps
, popErrorAdmin { cs & cs_error = checkError id_name ("wrong arity: expected "+++toString class_def.class_arity+++" found "+++toString ds_arity) cs.cs_error }
)
= (ins, is, type_heaps, popErrorAdmin { cs & cs_error = checkError id_name "class undefined" cs.cs_error })
get_class_def :: !SymbolTableEntry !Index v:{# ClassDef} u:{# DclModule} -> (!Index,!Index,ClassDef,!v:{# ClassDef},!u:{# DclModule})
get_class_def {ste_kind = STE_Class, ste_index} mod_index class_defs modules
#! class_def = class_defs.[ste_index]
= (ste_index, mod_index, class_def, class_defs, modules)
get_class_def {ste_kind = STE_Imported STE_Class dcl_index, ste_index, ste_def_level} mod_index class_defs modules
#! dcl_mod = modules.[dcl_index]
# class_def = dcl_mod.dcl_common.com_class_defs.[ste_index]
= (ste_index, dcl_index, class_def, class_defs, modules)
get_class_def _ mod_index class_defs modules
= (NotFound, cIclModIndex, abort "no class definition", class_defs, modules)
checkInstances :: !Index !*CommonDefs !u:{# DclModule} !*VarHeap !*TypeHeaps !*CheckState
-> (![(Index,SymbolType)], !*CommonDefs, !u:{# DclModule}, !*VarHeap , !*TypeHeaps, !*CheckState)
checkInstances mod_index icl_common=:{com_instance_defs,com_class_defs,com_member_defs} modules var_heap type_heaps cs=:{cs_error}
| cs_error.ea_ok
# (instance_types, com_instance_defs, com_class_defs, com_member_defs, modules, var_heap, type_heaps, cs)
= check_instances 0 mod_index [] com_instance_defs com_class_defs com_member_defs modules var_heap type_heaps cs
= (instance_types, { icl_common & com_instance_defs = com_instance_defs,com_class_defs = com_class_defs,com_member_defs = com_member_defs },
modules, var_heap, type_heaps, cs)
= ([], icl_common, modules, var_heap, type_heaps, cs)
where
check_instances :: !Index !Index ![(Index,SymbolType)] !x:{# ClassInstance} !w:{# ClassDef} !v:{# MemberDef} !u:{# DclModule}
!*VarHeap !*TypeHeaps !*CheckState
-> (![(Index,SymbolType)], !x:{# ClassInstance}, !w:{# ClassDef}, !v:{# MemberDef}, !u:{# DclModule}, !*VarHeap, !*TypeHeaps, !*CheckState)
check_instances inst_index mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps cs
| inst_index < size instance_defs
#! {ins_class,ins_members,ins_type} = instance_defs.[inst_index]
# ({class_members,class_name}, class_defs, modules) = getClassDef ins_class mod_index class_defs modules
class_size = size class_members
| class_size == size ins_members
# (instance_types, member_defs, modules, var_heap, type_heaps, cs) = check_member_instances mod_index ins_class.glob_module
0 class_size ins_members class_members ins_type instance_types member_defs modules var_heap type_heaps cs
= check_instances (inc inst_index) mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps cs
= check_instances (inc inst_index) mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps
{ cs & cs_error = checkError class_name "different number of members specified" cs.cs_error }
= (instance_types, instance_defs, class_defs, member_defs, modules, var_heap, type_heaps, cs)
/*
check_member_instances :: !Index !Index ![DefinedSymbol] ![DefinedSymbol] !InstanceType ![TypeVar] ![(Index,SymbolType)] !v:{# MemberDef} !u:{# DclModule} !*TypeHeaps !*CheckState
-> (![(Index,SymbolType)], !v:{# MemberDef},!u:{# DclModule},!*TypeHeaps,!*CheckState)
*/
check_member_instances module_index member_mod_index mem_offset class_size ins_members class_members
ins_type instance_types member_defs modules var_heap type_heaps cs
| mem_offset == class_size
= (instance_types, member_defs, modules, var_heap, type_heaps, cs)
# ins_member = ins_members.[mem_offset]
class_member = class_members.[mem_offset]
| ins_member.ds_ident <> class_member.ds_ident
= check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type
instance_types member_defs modules var_heap type_heaps
{ cs & cs_error = checkError class_member.ds_ident "instance of class member expected" cs.cs_error}
| ins_member.ds_arity <> class_member.ds_arity
= check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type
instance_types member_defs modules var_heap type_heaps
{ cs & cs_error = checkError class_member.ds_ident "used with wrong arity" cs.cs_error}
# ({me_type,me_class_vars}, member_defs, modules) = getMemberDef member_mod_index class_member.ds_index module_index member_defs modules
(instance_type, _, type_heaps) = determineTypeOfMemberInstance me_type me_class_vars ins_type SP_None type_heaps
(st_context, var_heap) = initializeContextVariables instance_type.st_context var_heap
= check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type
[ (ins_member.ds_index, { instance_type & st_context = st_context }) : instance_types ] member_defs modules var_heap type_heaps cs
getClassDef :: !(Global DefinedSymbol) !Int !u:{#ClassDef} !v:{#DclModule} -> (!ClassDef,!u:{#ClassDef},!v:{#DclModule})
getClassDef {glob_module, glob_object={ds_ident, ds_index}} mod_index class_defs modules
| glob_module == mod_index
#! class_def = class_defs.[ds_index]
= (class_def, class_defs, modules)
#! dcl_mod = modules.[glob_module]
= (dcl_mod.dcl_common.com_class_defs.[ds_index], class_defs, modules)
getMemberDef :: !Int Int !Int !u:{#MemberDef} !v:{#DclModule} -> (!MemberDef,!u:{#MemberDef},!v:{#DclModule})
getMemberDef mem_mod mem_index mod_index member_defs modules
| mem_mod == mod_index
#! member_def = member_defs.[mem_index]
= (member_def, member_defs, modules)
#! dcl_mod = modules.[mem_mod]
= (dcl_mod.dcl_common.com_member_defs.[mem_index], member_defs, modules)
instantiateTypes :: ![TypeVar] ![AttributeVar] !types ![TypeContext] ![AttrInequality] !SpecialSubstitution ![SpecialSubstitution] !*TypeHeaps
-> (![TypeVar], ![AttributeVar], !types , ![TypeContext], ![AttrInequality], ![SpecialSubstitution], !*TypeHeaps) | substitute types
instantiateTypes old_type_vars old_attr_vars types type_contexts attr_env {ss_environ, ss_vars, ss_attrs, ss_context} special_subst_list type_heaps=:{th_vars, th_attrs}
# th_vars = clear_vars old_type_vars th_vars
(new_type_vars, th_vars) = foldSt build_var_subst ss_vars ([], th_vars)
(new_attr_vars, th_attrs) = foldSt build_attr_subst ss_attrs ([], th_attrs)
type_heaps = foldSt build_type_subst ss_environ { type_heaps & th_vars = th_vars, th_attrs = th_attrs }
(new_ss_context, type_heaps) = substitute ss_context type_heaps
(inst_vars, th_vars) = foldSt determine_free_var old_type_vars (new_type_vars, type_heaps.th_vars)
(inst_attr_vars, th_attrs) = foldSt build_attr_subst old_attr_vars (new_attr_vars, type_heaps.th_attrs)
(inst_types, type_heaps) = substitute types { type_heaps & th_vars = th_vars, th_attrs = th_attrs }
(inst_contexts, type_heaps) = substitute type_contexts type_heaps
(inst_attr_env, type_heaps) = substitute attr_env type_heaps
(special_subst_list, th_vars) = mapSt adjust_special_subst special_subst_list type_heaps.th_vars
= (inst_vars, inst_attr_vars, inst_types, inst_contexts ++ new_ss_context, inst_attr_env, special_subst_list, { type_heaps & th_vars = th_vars })
where
clear_vars type_vars type_var_heap = foldSt (\tv -> writePtr tv.tv_info_ptr TVI_Empty) type_vars type_var_heap
determine_free_var tv=:{tv_info_ptr} (free_vars, type_var_heap)
# (type_var_info, type_var_heap) = readPtr tv_info_ptr type_var_heap
= case type_var_info of
TVI_Empty
-> build_var_subst tv (free_vars, type_var_heap)
_
-> (free_vars, type_var_heap)
build_type_subst {bind_src,bind_dst} type_heaps
# (bind_src, type_heaps) = substitute bind_src type_heaps
= { type_heaps & th_vars = writePtr bind_dst.tv_info_ptr (TVI_Type bind_src) type_heaps.th_vars}
build_var_subst var (free_vars, type_var_heap)
# (new_info_ptr, type_var_heap) = newPtr TVI_Empty type_var_heap
new_fv = { var & tv_info_ptr = new_info_ptr}
= ([ new_fv : free_vars ], writePtr var.tv_info_ptr (TVI_Type (TV new_fv)) type_var_heap)
build_attr_subst attr (free_attrs, attr_var_heap)
# (new_info_ptr, attr_var_heap) = newPtr AVI_Empty attr_var_heap
new_attr = { attr & av_info_ptr = new_info_ptr}
= ([new_attr : free_attrs], writePtr attr.av_info_ptr (AVI_Attr (TA_Var new_attr)) attr_var_heap)
adjust_special_subst special_subst=:{ss_environ} type_var_heap
# (ss_environ, type_var_heap) = mapSt adjust_special_bind ss_environ type_var_heap
= ({ special_subst & ss_environ = ss_environ }, type_var_heap)
adjust_special_bind bind=:{bind_dst={tv_info_ptr}} type_var_heap
# (TVI_Type (TV new_tv), type_var_heap) = readPtr tv_info_ptr type_var_heap
= ({ bind & bind_dst = new_tv }, type_var_heap)
substituteInstanceType :: !InstanceType !SpecialSubstitution !*TypeHeaps -> (!InstanceType,!*TypeHeaps)
substituteInstanceType it=:{it_vars,it_attr_vars,it_types,it_context} environment type_heaps
# (it_vars, it_attr_vars, it_types, it_context, _, _, type_heaps)
= instantiateTypes it_vars it_attr_vars it_types it_context [] environment [] type_heaps
= ({it & it_vars = it_vars, it_types = it_types, it_attr_vars = it_attr_vars, it_context = it_context }, type_heaps)
hasTypeVariables []
= False
hasTypeVariables [TV tvar : types]
= True
hasTypeVariables [ _ : types]
= hasTypeVariables types
determineTypeOfMemberInstance :: !SymbolType ![TypeVar] !InstanceType !Specials !*TypeHeaps -> (!SymbolType, !Specials, !*TypeHeaps)
determineTypeOfMemberInstance mem_st class_vars {it_types,it_vars,it_attr_vars,it_context} specials type_heaps
# env = { ss_environ = foldl2 (\binds var type -> [ {bind_src = type, bind_dst = var} : binds]) [] class_vars it_types,
ss_context = it_context, ss_vars = it_vars, ss_attrs = it_attr_vars}
= determine_type_of_member_instance mem_st env specials type_heaps
where
determine_type_of_member_instance mem_st=:{st_context} env (SP_Substitutions substs) type_heaps
# (mem_st, substs, type_heaps) = substitute_symbol_type { mem_st & st_context = tl st_context } env substs type_heaps
= (mem_st, SP_Substitutions substs, type_heaps)
determine_type_of_member_instance mem_st=:{st_context} env SP_None type_heaps
# (mem_st, _, type_heaps) = substitute_symbol_type { mem_st & st_context = tl st_context } env [] type_heaps
= (mem_st, SP_None, type_heaps)
substitute_symbol_type st=:{st_vars,st_attr_vars,st_args,st_result,st_context,st_attr_env} environment specials type_heaps
# (st_vars, st_attr_vars, [st_result : st_args], st_context, st_attr_env, specials, type_heaps)
= instantiateTypes st_vars st_attr_vars [ st_result : st_args ] st_context st_attr_env environment specials type_heaps
= ({st & st_vars = st_vars, st_args = st_args, st_result = st_result, st_attr_vars = st_attr_vars,
st_context = st_context, st_attr_env = st_attr_env }, specials, type_heaps)
determineTypesOfInstances :: !Index !Index !*CommonDefs !*{#DclModule} !*TypeHeaps !*VarHeap !*CheckState
-> (![FunType], !Index, ![ClassInstance], !*CommonDefs, !*{#DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState)
determineTypesOfInstances first_memb_inst_index mod_index dcl_common=:{com_instance_defs,com_class_defs,com_member_defs}
modules type_heaps var_heap cs=:{cs_error}
| cs_error.ea_ok
#! nr_of_class_instances = size com_instance_defs
# (memb_inst_defs, next_mem_inst_index, all_class_specials, com_class_defs, com_member_defs, modules, com_instance_defs, type_heaps, var_heap, cs_error)
= determine_types_of_instances 0 nr_of_class_instances first_memb_inst_index mod_index [] com_class_defs com_member_defs
modules com_instance_defs type_heaps var_heap cs_error
= (memb_inst_defs, next_mem_inst_index, all_class_specials,
{ dcl_common & com_instance_defs = com_instance_defs,com_class_defs = com_class_defs, com_member_defs = com_member_defs },
modules, type_heaps, var_heap, { cs & cs_error = cs_error })
= ([], first_memb_inst_index, [], dcl_common, modules, type_heaps, var_heap, cs)
where
determine_types_of_instances :: !Index !Index !Index !Index ![ClassInstance] !v:{#ClassDef} !w:{#MemberDef}
!x:{#DclModule} !*{#ClassInstance} !*TypeHeaps !*VarHeap !*ErrorAdmin
-> (![FunType], !Index, ![ClassInstance], !v:{#ClassDef}, !w:{#MemberDef}, !x:{#DclModule}, !*{#ClassInstance}, !*TypeHeaps, !*VarHeap, !*ErrorAdmin)
determine_types_of_instances inst_index next_class_inst_index next_mem_inst_index mod_index all_class_specials
class_defs member_defs modules instance_defs type_heaps var_heap error
| inst_index < size instance_defs
#! instance_def = instance_defs.[inst_index]
# {ins_class,ins_pos,ins_type,ins_specials} = instance_def
({class_members}, class_defs, modules) = getClassDef ins_class mod_index class_defs modules
class_size = size class_members
(ins_members, memb_inst_defs1, member_defs, modules, type_heaps, var_heap)
= determine_instance_symbols_and_types next_mem_inst_index 0 mod_index ins_class.glob_module class_size class_members
ins_type ins_specials ins_pos member_defs modules type_heaps var_heap
instance_def = { instance_def & ins_members = { member \\ member <- ins_members }}
(ins_specials, next_class_inst_index, all_class_specials, type_heaps, error)
= check_instance_specials mod_index instance_def inst_index ins_specials next_class_inst_index all_class_specials type_heaps error
(memb_inst_defs2, next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error)
= determine_types_of_instances (inc inst_index) next_class_inst_index (next_mem_inst_index + class_size) mod_index all_class_specials
class_defs member_defs modules { instance_defs & [inst_index] = { instance_def & ins_specials = ins_specials }} type_heaps var_heap error
= (memb_inst_defs1 ++ memb_inst_defs2, next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error)
= ([], next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error)
determine_instance_symbols_and_types :: !Index !Index !Index !Index !Int !{#DefinedSymbol} !InstanceType !Specials !Position
!w:{#MemberDef} !u:{#DclModule} !*TypeHeaps !*VarHeap
-> (![DefinedSymbol], ![FunType], !w:{#MemberDef}, !u:{#DclModule}, !*TypeHeaps, !*VarHeap)
determine_instance_symbols_and_types first_inst_index mem_offset module_index member_mod_index class_size class_members
ins_type ins_specials ins_pos member_defs modules type_heaps var_heap
| mem_offset == class_size
= ([], [], member_defs, modules, type_heaps, var_heap)
# class_member = class_members.[mem_offset]
({me_symb,me_type,me_priority,me_class_vars}, member_defs, modules) = getMemberDef member_mod_index class_member.ds_index module_index member_defs modules
(instance_type, new_ins_specials, type_heaps) = determineTypeOfMemberInstance me_type me_class_vars ins_type ins_specials type_heaps
(new_info_ptr, var_heap) = newPtr VI_Empty var_heap
inst_def = MakeNewFunctionType me_symb me_type.st_arity me_priority instance_type ins_pos new_ins_specials new_info_ptr
(inst_symbols, memb_inst_defs, member_defs, modules, type_heaps, var_heap)
= determine_instance_symbols_and_types first_inst_index (inc mem_offset) module_index member_mod_index
class_size class_members ins_type ins_specials ins_pos member_defs modules type_heaps var_heap
= ([{ class_member & ds_index = first_inst_index + mem_offset } : inst_symbols], [inst_def : memb_inst_defs], member_defs, modules, type_heaps, var_heap)
check_instance_specials :: !Index !ClassInstance !Index !Specials !Index ![ClassInstance] !*TypeHeaps !*ErrorAdmin
-> (!Specials, !Index, ![ClassInstance], !*TypeHeaps, !*ErrorAdmin)
check_instance_specials mod_index inst_type inst_index (SP_Substitutions substs) next_inst_index all_instances type_heaps error
# (list_of_specials, next_inst_index, all_instances, type_heaps, error)
= check_specials mod_index inst_type 0 substs [] next_inst_index all_instances type_heaps error
= (SP_ContextTypes list_of_specials, next_inst_index, all_instances, type_heaps, error)
where
check_specials mod_index inst=:{ins_type} type_offset [ subst : substs ] list_of_specials next_inst_index all_instances type_heaps error
# (special_type, type_heaps) = substituteInstanceType ins_type subst type_heaps
(spec_types, error) = checkAndCollectTypesOfContexts special_type.it_context error
special = { spec_index = { glob_module = mod_index, glob_object = next_inst_index }, spec_types = spec_types,
spec_vars = subst.ss_vars, spec_attrs = subst.ss_attrs }
= check_specials mod_index inst (inc type_offset) substs [ special : list_of_specials ] (inc next_inst_index)
[{ inst & ins_type = { special_type & it_context = [] }, ins_specials = SP_TypeOffset type_offset} : all_instances ] type_heaps error
check_specials mod_index inst=:{ins_type} type_offset [] list_of_specials next_inst_index all_instances type_heaps error
= (list_of_specials, next_inst_index, all_instances, type_heaps, error)
check_instance_specials mod_index fun_type fun_index SP_None next_inst_index all_instances type_heaps error
= (SP_None, next_inst_index, all_instances, type_heaps, error)
checkAndCollectTypesOfContexts type_contexts error
= mapSt check_and_collect_context_types type_contexts error
where
check_and_collect_context_types {tc_class={glob_object={ds_ident}},tc_types} error
| hasTypeVariables tc_types
= (tc_types, checkError ds_ident.id_name "illegal specialization" error)
= (tc_types, error)
/*
retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous }
# imported_selectors = retrieveSelectorIndexes mod_index ste_previous
= mapAppend (\ sel -> { sel & glob_module = mod_index }) selector_list [{glob_module = mod_index, glob_object = ste_index } : imported_selectors ]
retrieveSelectorIndexes mod_index {ste_kind = STE_Imported (STE_Selector selector_list) dcl_mod_index, ste_index }
= [ { glob_object = ste_index, glob_module = dcl_mod_index } : selector_list ]
retrieveSelectorIndexes mod_index off_kind
= []
*/
retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous }
= map (adjust_mod_index mod_index) selector_list
where
adjust_mod_index mod_index selector=:{glob_module}
| glob_module == NoIndex
= { selector & glob_module = mod_index }
= selector
retrieveSelectorIndexes mod_index off_kind
= []
checkFields :: !Index ![FieldAssignment] !(Optional Ident) !u:ExpressionInfo !*CheckState
-> (!Optional ((Global DefinedSymbol), Index, [Bind ParsedExpr (Global FieldSymbol)]), !u:ExpressionInfo, !*CheckState)
checkFields mod_index field_ass opt_type e_info=:{ef_selector_defs,ef_type_defs,ef_modules} cs
# (ok, field_ass, cs) = check_fields field_ass cs
| ok
# (opt_type_def, ef_selector_defs, ef_type_defs, ef_modules, cs)
= determine_record_type mod_index opt_type field_ass ef_selector_defs ef_type_defs ef_modules cs
e_info = { e_info & ef_selector_defs = ef_selector_defs, ef_type_defs = ef_type_defs, ef_modules = ef_modules}
= case opt_type_def of
Yes ({td_index,td_rhs = RecordType {rt_constructor,rt_fields}}, type_mod_index)
# (field_exprs, cs_error) = check_and_rearrange_fields type_mod_index 0 rt_fields field_ass cs.cs_error
-> (Yes ({ glob_object = rt_constructor, glob_module = type_mod_index }, td_index, field_exprs), e_info, { cs & cs_error = cs_error })
No
-> (No, e_info, cs)
= (No, e_info, cs)
where
check_fields [ bind=:{bind_dst} : field_ass ] cs=:{cs_symbol_table,cs_error}
#! entry = sreadPtr bind_dst.id_info cs_symbol_table
# fields = retrieveSelectorIndexes mod_index entry
| isEmpty fields
= (False, [], { cs & cs_error = checkError bind_dst "not defined as a record field" cs_error })
# (ok, field_ass, cs) = check_fields field_ass cs
= (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs)
check_fields [] cs
= (True, [], cs)
try_to_get_unique_field []
= No
try_to_get_unique_field [ {bind_dst = (field_id, [field])} : fields ]
= Yes field
try_to_get_unique_field [ _ : fields ]
= try_to_get_unique_field fields
determine_record_type mod_index (Yes type_id=:{id_info}) _ selector_defs type_defs modules cs=:{cs_symbol_table, cs_error}
#! entry = sreadPtr id_info cs_symbol_table
# (type_index, type_mod_index) = retrieveGlobalDefinition entry STE_Type mod_index
| type_index <> NotFound
| mod_index == type_mod_index
#! type_def = type_defs.[type_index]
= (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs)
# (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[type_index]
= (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs)
= (No, selector_defs, type_defs, modules, { cs & cs_error = checkError type_id " not defined" cs_error})
determine_record_type mod_index No fields selector_defs type_defs modules cs=:{cs_error}
# succ = try_to_get_unique_field fields
= case succ of
Yes {glob_module, glob_object}
| glob_module == mod_index
#! selector_def = selector_defs.[glob_object]
type_def = type_defs.[selector_def.sd_type_index]
-> (Yes (type_def, glob_module), selector_defs, type_defs, modules, cs)
#! {dcl_common={com_selector_defs,com_type_defs}} = modules.[glob_module]
#! selector_def = com_selector_defs.[glob_object]
type_def = com_type_defs.[selector_def.sd_type_index]
-> (Yes (type_def,glob_module), selector_defs, type_defs, modules, cs)
No
-> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError "" " could not determine the type of this record" cs.cs_error })
check_and_rearrange_fields mod_index field_index fields field_ass cs_error
| field_index < size fields
# (field_expr, field_ass) = look_up_field mod_index fields.[field_index] field_ass
(field_exprs, cs_error) = check_and_rearrange_fields mod_index (inc field_index) fields field_ass cs_error
= ([field_expr : field_exprs], cs_error)
| isEmpty field_ass
= ([], cs_error)
= ([], foldSt field_error field_ass cs_error)
where
look_up_field mod_index field []
= ({bind_src = PE_WildCard, bind_dst = { glob_object = field, glob_module = mod_index }}, [])
look_up_field mod_index field=:{fs_index} [ass=:{bind_src, bind_dst = (_, fields)} : field_ass]
| field_list_contains_field mod_index fs_index fields
= ({bind_src = bind_src, bind_dst = { glob_module = mod_index, glob_object = field}}, field_ass)
# (field_expr, field_ass) = look_up_field mod_index field field_ass
= (field_expr, [ass : field_ass])
field_list_contains_field mod_index fs_index []
= False
field_list_contains_field mod_index fs_index [{glob_object,glob_module} : fields]
= mod_index == glob_module && fs_index == glob_object || field_list_contains_field mod_index fs_index fields
field_error {bind_dst=(field_id,_)} error
= checkError field_id " field is either multiply used or not a part of this record" error
:: ExpressionInfo =
{ ef_type_defs :: !.{# CheckedTypeDef}
, ef_selector_defs :: !.{# SelectorDef}
, ef_cons_defs :: !.{# ConsDef}
, ef_member_defs :: !.{# MemberDef}
, ef_class_defs :: !.{# ClassDef}
, ef_modules :: !.{# DclModule}
, ef_is_macro_fun :: !Bool
}
:: ExpressionState =
{ es_expression_heap :: !.ExpressionHeap
, es_var_heap :: !.VarHeap
, es_type_heaps :: !.TypeHeaps
, es_calls :: ![FunCall]
, es_dynamics :: ![ExprInfoPtr]
, es_fun_defs :: !.{# FunDef}
}
:: ExpressionInput =
{ ei_expr_level :: !Level
, ei_fun_index :: !Index
, ei_fun_level :: !Level
, ei_mod_index :: !Index
// , ei_fun_kind :: !FunKind
}
cIsInExpressionList :== True
cIsNotInExpressionList :== False
:: UnfoldMacroState =
{ ums_var_heap :: !.VarHeap
, ums_modules :: !.{# DclModule}
, ums_cons_defs :: !.{# ConsDef}
, ums_error :: !.ErrorAdmin
}
unfoldPatternMacro mod_index macro_index macro_args opt_var ps=:{ps_var_heap, ps_fun_defs} modules cons_defs error
# (macro, ps_fun_defs) = ps_fun_defs![macro_index]
= case macro.fun_body of
TransformedBody {tb_args,tb_rhs}
| no_sharing tb_args
# ums = { ums_var_heap = fold2St bind_var tb_args macro_args ps_var_heap, ums_modules = modules, ums_cons_defs = cons_defs, ums_error = error }
(pattern, {ums_var_heap,ums_modules,ums_cons_defs,ums_error}) = unfold_pattern_macro mod_index macro.fun_symb opt_var tb_rhs ums
-> (pattern, { ps_fun_defs = ps_fun_defs, ps_var_heap = ums_var_heap}, ums_modules, ums_cons_defs, ums_error)
-> (AP_Empty macro.fun_symb, { ps_fun_defs = ps_fun_defs, ps_var_heap = ps_var_heap},
modules, cons_defs, checkError macro.fun_symb " sharing not allowed" error)
_
-> (AP_Empty macro.fun_symb, { ps_fun_defs = ps_fun_defs, ps_var_heap = ps_var_heap},
modules, cons_defs, checkError macro.fun_symb " illegal macro in pattern" error)
where
no_sharing [{fv_count} : args]
= fv_count <= 1 && no_sharing args
no_sharing []
= True
bind_var {fv_info_ptr} pattern ps_var_heap
= ps_var_heap <:= (fv_info_ptr, VI_Pattern pattern)
unfold_pattern_macro mod_index macro_ident _ (Var {var_name,var_info_ptr}) ums=:{ums_var_heap}
# (VI_Pattern pattern, ums_var_heap) = readPtr var_info_ptr ums_var_heap
= (pattern, { ums & ums_var_heap = ums_var_heap})
unfold_pattern_macro mod_index macro_ident opt_var (App {app_symb,app_args}) ums
= unfold_application mod_index macro_ident opt_var app_symb app_args ums
where
unfold_application mod_index macro_ident opt_var {symb_kind=SK_Constructor {glob_module,glob_object},symb_name,symb_arity} args
ums=:{ums_cons_defs, ums_modules,ums_error}
# (cons_def, cons_index, ums_cons_defs, ums_modules) = get_cons_def mod_index glob_module glob_object ums_cons_defs ums_modules
| cons_def.cons_type.st_arity == symb_arity
# (patterns, ums) = mapSt (unfold_pattern_macro mod_index macro_ident No) app_args { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules }
cons_symbol = { glob_object = MakeDefinedSymbol symb_name cons_index symb_arity, glob_module = glob_module }
= (AP_Algebraic cons_symbol cons_def.cons_type_index patterns opt_var, ums)
= (AP_Empty cons_def.cons_symb, { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules,
ums_error = checkError cons_def.cons_symb " missing argument(s)" ums_error })
/* SSS .... */
get_cons_def mod_index cons_mod cons_index cons_defs modules
| mod_index == cons_mod
# (cons_def, cons_defs) = cons_defs![cons_index]
= (cons_def, cons_index, cons_defs, modules)
#! {dcl_common,dcl_conversions} = modules.[cons_mod]
#! cons_def = dcl_common.com_cons_defs.[cons_index]
= (cons_def, convertIndex cons_index (toInt STE_Constructor) dcl_conversions, cons_defs, modules)
/* .... SSS */
get_cons_def mod_index cons_mod cons_index cons_defs modules
#! {dcl_common,dcl_conversions} = modules.[cons_mod]
#! cons_def = dcl_common.com_cons_defs.[cons_index]
= (cons_def, convertIndex cons_index (toInt STE_Constructor) dcl_conversions, cons_defs, modules)
unfold_pattern_macro mod_index macro_ident opt_var (BasicExpr bv bt) ums
= (AP_Basic bv opt_var, ums)
unfold_pattern_macro mod_index macro_ident opt_var expr ums=:{ums_error}
= (AP_Empty macro_ident, { ums & ums_error = checkError macro_ident " illegal rhs for a pattern macro" ums_error })
checkPatternVariable :: !Level !SymbolTableEntry !Ident !VarInfoPtr !*CheckState -> !*CheckState
checkPatternVariable def_level entry=:{ste_def_level,ste_kind} ident=:{id_info} var_info cs=:{cs_symbol_table,cs_error}
| ste_kind == STE_Empty || def_level > ste_def_level
# entry = {ste_kind = STE_Variable var_info, ste_index = NoIndex, ste_def_level = def_level, ste_previous = entry }
= { cs & cs_symbol_table = cs_symbol_table <:= (id_info,entry)}
= { cs & cs_error = checkError ident "(pattern variable) already defined" cs_error }
checkPatternConstructor :: !Index !Bool !SymbolTableEntry !Ident !(Optional (Bind Ident VarInfoPtr)) !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, !*PatternState, !*ExpressionInfo, !*CheckState);
checkPatternConstructor _ _ {ste_kind = STE_Empty} ident _ ps e_info cs=:{cs_error}
= (AP_Empty ident, ps, e_info, { cs & cs_error = checkError ident " not defined" cs_error })
checkPatternConstructor mod_index is_expr_list {ste_kind = STE_FunctionOrMacro _,ste_index} ident opt_var ps=:{ps_fun_defs} e_info cs=:{cs_error}
# ({fun_symb,fun_arity,fun_kind,fun_priority},ps_fun_defs) = ps_fun_defs![ste_index]
ps = { ps & ps_fun_defs = ps_fun_defs }
| fun_kind == FK_Macro
| is_expr_list
# macro_symbol = { glob_object = MakeDefinedSymbol fun_symb ste_index fun_arity, glob_module = cIclModIndex }
= (AP_Constant APK_Macro macro_symbol fun_priority, ps, e_info, cs)
| fun_arity == 0
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro mod_index ste_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
= (AP_Empty ident, ps, e_info, { cs & cs_error = checkError ident " not defined" cs_error })
= (AP_Empty ident, ps, e_info, { cs & cs_error = checkError fun_symb " not allowed in a pattern" cs_error })
checkPatternConstructor mod_index is_expr_list {ste_index, ste_kind} cons_symb opt_var ps
e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error}
# (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, ef_cons_defs, ef_modules, cs_error)
= determine_pattern_symbol mod_index ste_index ste_kind cons_symb.id_name ef_cons_defs ef_modules cs_error
e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules }
cons_symbol = { glob_object = MakeDefinedSymbol cons_symb cons_index cons_arity, glob_module = cons_module }
| is_expr_list
= (AP_Constant (APK_Constructor cons_type_index) cons_symbol cons_priority, ps, e_info, { cs & cs_error = cs_error })
| cons_arity == 0
= (AP_Algebraic cons_symbol cons_type_index [] opt_var, ps, e_info, { cs & cs_error = cs_error })
= (AP_Algebraic cons_symbol cons_type_index [] opt_var, ps, e_info, { cs & cs_error = checkError cons_symb " constructor arguments are missing" cs_error })
where
determine_pattern_symbol mod_index id_index STE_Constructor id_name cons_defs modules error
#! cons_def = cons_defs.[id_index]
# {cons_type={st_arity},cons_priority, cons_type_index} = cons_def
= (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) id_name cons_defs modules error
#! {dcl_common,dcl_conversions} = modules.[import_mod_index]
#! cons_def = dcl_common.com_cons_defs.[id_index]
# {cons_type={st_arity},cons_priority, cons_type_index} = cons_def
id_index = convertIndex id_index (toInt STE_Constructor) dcl_conversions
= (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_defs, modules, error)
determine_pattern_symbol mod_index id_index id_kind id_name cons_defs modules error
= (id_index, NoIndex, 0, NoPrio, NoIndex, cons_defs, modules, checkError id_name " constructor expected" error)
checkIdentPattern :: !Bool !Ident !(Optional (Bind Ident VarInfoPtr)) !PatternInput ![Ident] !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, ![Ident], !*PatternState, !*ExpressionInfo, !*CheckState)
checkIdentPattern is_expr_list id=:{id_name,id_info} opt_var {pi_def_level, pi_mod_index} var_env ps e_info cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
| isLowerCaseName id_name
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable pi_def_level entry id new_info_ptr cs
= (AP_Variable id new_info_ptr opt_var, [ id : var_env ], { ps & ps_var_heap = ps_var_heap}, e_info, cs)
# (pattern, ps, e_info, cs) = checkPatternConstructor pi_mod_index is_expr_list entry id opt_var ps e_info cs
= (pattern, var_env, ps, e_info, cs)
:: PatternState =
{ ps_var_heap :: !.VarHeap
, ps_fun_defs :: !.{# FunDef}
}
:: PatternInput =
{ pi_def_level :: !Int
, pi_mod_index :: !Index
, pi_is_node_pattern :: !Bool
}
buildPattern mod_index (APK_Constructor type_index) cons_symb args opt_var ps e_info cs
= (AP_Algebraic cons_symb type_index args opt_var, ps, e_info, cs)
buildPattern mod_index APK_Macro {glob_object} args opt_var ps e_info=:{ef_modules,ef_cons_defs} cs=:{cs_error}
# (pattern, ps, ef_modules, ef_cons_defs, cs_error)
= unfoldPatternMacro mod_index glob_object.ds_index args opt_var ps ef_modules ef_cons_defs cs_error
= (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error })
checkPattern :: !ParsedExpr !(Optional (Bind Ident VarInfoPtr)) !PatternInput ![Ident] !*PatternState !*ExpressionInfo !*CheckState
-> (!AuxiliaryPattern, ![Ident], !*PatternState, !*ExpressionInfo, !*CheckState)
checkPattern (PE_List [exp]) opt_var p_input var_env ps e_info cs=:{cs_symbol_table}
= case exp of
PE_Ident ident
-> checkIdentPattern cIsNotInExpressionList ident opt_var p_input var_env ps e_info cs
_
-> checkPattern exp opt_var p_input var_env ps e_info cs
checkPattern (PE_List [exp1, exp2 : exps]) opt_var p_input var_env ps e_info cs
# (exp_pat, var_env, ps, e_info, cs) = check_pattern exp1 p_input var_env ps e_info cs
= check_patterns [exp_pat] exp2 exps opt_var p_input var_env ps e_info cs
where
check_patterns left middle [] opt_var p_input=:{pi_mod_index} var_env ps e_info cs
# (mid_pat, var_env, ps, e_info, cs) = checkPattern middle No p_input var_env ps e_info cs
(pat, ps, e_info, cs) = combine_patterns pi_mod_index opt_var [mid_pat : left] [] 0 ps e_info cs // MW: pi_mod_index added (klopt dat ?)
= (pat, var_env, ps, e_info, cs)
check_patterns left middle [right:rest] opt_var p_input=:{pi_mod_index} var_env ps e_info cs
# (mid_pat, var_env, ps, e_info, cs) = check_pattern middle p_input var_env ps e_info cs
= case mid_pat of
AP_Constant kind constant=:{glob_object={ds_arity,ds_ident}} prio
| ds_arity == 0
# (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind constant [] No ps e_info cs
-> check_patterns [pattern: left] right rest opt_var p_input var_env ps e_info cs
| is_infix_constructor prio
# (left_arg, ps, e_info, cs) = combine_patterns pi_mod_index No left [] 0 ps e_info cs // MW: pi_mod_index added (klopt dat ?)
-> check_infix_pattern [] left_arg kind constant prio right rest opt_var p_input var_env ps e_info cs
-> (AP_Empty ds_ident, var_env, ps, e_info,
{ cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error })
_
-> check_patterns [mid_pat : left] right rest opt_var p_input var_env ps e_info cs
check_pattern (PE_Ident id) p_input var_env ps e_info cs
= checkIdentPattern cIsInExpressionList id No p_input var_env ps e_info cs
check_pattern expr p_input var_env ps e_info cs
= checkPattern expr No p_input var_env ps e_info cs
check_infix_pattern left_args left kind cons prio middle [] opt_var p_input=:{pi_mod_index} var_env ps e_info cs
# (mid_pat, var_env, ps, e_info, cs) = checkPattern middle No p_input var_env ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,mid_pat] opt_var ps e_info cs
(pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs
= (pattern, var_env, ps, e_info, cs)
check_infix_pattern left_args left kind cons prio middle [right] opt_var p_input=:{pi_mod_index} var_env ps e_info cs
# (mid_pat, var_env, ps, e_info, cs) = check_pattern middle p_input var_env ps e_info cs
// MW was (right_pat, var_env, ps, e_info, cs) = checkPattern middle No p_input var_env ps e_info cs
(right_pat, var_env, ps, e_info, cs) = checkPattern right No p_input var_env ps e_info cs
(right_arg, ps, e_info, cs) = combine_patterns pi_mod_index No [right_pat, mid_pat] [] 0 ps e_info cs // MW added pi_mod_index argument (klopt dat ?)
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,right_arg] opt_var ps e_info cs
(pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs
= (pattern, var_env, ps, e_info, cs)
check_infix_pattern left_args left kind1 cons1 prio1 middle [inf_cons, arg : rest] opt_var p_input=:{pi_mod_index} var_env ps e_info cs
# (inf_cons_pat, var_env, ps, e_info, cs) = check_pattern inf_cons p_input var_env ps e_info cs
= case inf_cons_pat of
AP_Constant kind2 cons2=:{glob_object={ds_ident,ds_arity}} prio2
| ds_arity == 0
# (mid_pat, var_env, ps, e_info, cs) = check_pattern middle p_input var_env ps e_info cs
(pattern2, ps, e_info, cs) = buildPattern pi_mod_index kind2 cons2 [] No ps e_info cs
(pattern1, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,mid_pat] No ps e_info cs
(pattern1, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern1 ps e_info cs
-> check_patterns [pattern2,pattern1] arg rest opt_var p_input var_env ps e_info cs
| is_infix_constructor prio2
# optional_prio = determinePriority prio1 prio2
-> case optional_prio of
Yes priority
| priority
# (mid_pat, var_env, ps, e_info, cs) = check_pattern middle p_input var_env ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,mid_pat] No ps e_info cs
(left_args, pattern, ps, e_info, cs) = build_left_pattern pi_mod_index left_args prio2 pattern ps e_info cs
-> check_infix_pattern left_args pattern kind2 cons2 prio2 arg rest opt_var p_input var_env ps e_info cs
# (mid_pat, var_env, ps, e_info, cs) = checkPattern middle No p_input var_env ps e_info cs
-> check_infix_pattern [(kind1, cons1, prio1, left) : left_args] mid_pat kind2 cons2 prio2 arg
rest No p_input var_env ps e_info cs
No
-> (AP_Empty ds_ident, var_env, ps, e_info, { cs & cs_error = checkError ds_ident "conflicting priorities" cs.cs_error })
-> (AP_Empty ds_ident, var_env, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error })
_
# (right_pat, var_env, ps, e_info, cs) = checkPattern middle No p_input var_env ps e_info cs
(pattern, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,right_pat] No ps e_info cs
(pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs
-> check_patterns [inf_cons_pat, pattern] arg rest opt_var p_input var_env ps e_info cs
is_infix_constructor (Prio _ _) = True
is_infix_constructor _ = False
build_left_pattern mod_index [] _ result_pattern ps e_info cs
= ([], result_pattern, ps, e_info, cs)
build_left_pattern mod_index la=:[(kind, cons, priol, left) : left_args] prior result_pattern ps e_info cs
# optional_prio = determinePriority priol prior
= case optional_prio of
Yes priority
| priority
# (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs
-> build_left_pattern mod_index left_args prior result_pattern ps e_info cs
-> (la, result_pattern, ps, e_info, cs)
No
-> (la, result_pattern, ps, e_info,{ cs & cs_error = checkError cons.glob_object.ds_ident "conflicting priorities" cs.cs_error })
build_final_pattern mod_index [] result_pattern ps e_info cs
= (result_pattern, ps, e_info, cs)
build_final_pattern mod_index [(kind, cons, priol, left) : left_appls] result_pattern ps e_info cs
# (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs
= build_final_pattern mod_index left_appls result_pattern ps e_info cs
combine_patterns mod_index opt_var [first_expr] args nr_of_args ps e_info cs
= case first_expr of
AP_Constant kind constant=:{glob_object={ds_ident,ds_arity}} _
| ds_arity == nr_of_args
# (pattern, ps, e_info, cs) = buildPattern mod_index kind constant args opt_var ps e_info cs
-> (pattern, ps, e_info, cs)
-> (AP_Empty ds_ident, ps, e_info, { cs & cs_error = checkError ds_ident "used with wrong arity" cs.cs_error})
_
| nr_of_args == 0
-> (first_expr, ps, e_info, cs)
-> (first_expr, ps, e_info, { cs & cs_error = checkError "<pattern>" "(curried) application not allowed " cs.cs_error })
combine_patterns mod_index opt_var [rev_arg : rev_args] args arity ps e_info cs
= combine_patterns mod_index opt_var rev_args [rev_arg : args] (inc arity) ps e_info cs
/*
combine_optional_variables (Yes var1) (Yes var2) error
= (Yes var1, checkError var2.bind_dst "pattern already bound" error)
combine_optional_variables No opt_var error
= (opt_var, error)
combine_optional_variables opt_var _ error
= (opt_var, error)
*/
checkPattern (PE_DynamicPattern pattern type) opt_var p_input var_env ps e_info cs
# (dyn_pat, var_env, ps, e_info, cs) = checkPattern pattern No p_input var_env ps e_info cs
= (AP_Dynamic dyn_pat type opt_var, var_env, ps, e_info, cs)
checkPattern (PE_Basic basic_value) opt_var p_input var_env ps e_info cs
= (AP_Basic basic_value opt_var, var_env, ps, e_info, cs)
checkPattern (PE_Tuple tuple_args) opt_var p_input var_env ps e_info cs
# (patterns, arity, var_env, ps, e_info, cs) = check_tuple_patterns tuple_args p_input var_env ps e_info cs
(tuple_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs
#! {cons_type_index} = e_info.ef_modules.[tuple_symbol.glob_module].dcl_common.com_cons_defs.[tuple_symbol.glob_object.ds_index]
= (AP_Algebraic tuple_symbol cons_type_index patterns opt_var, var_env, ps, e_info, cs)
where
check_tuple_patterns [] p_input var_env ps e_info cs
= ([], 0, var_env, ps, e_info, cs)
check_tuple_patterns [expr : exprs] p_input var_env ps e_info cs
# (pattern, var_env, ps, e_info, cs) = checkPattern expr No p_input var_env ps e_info cs
(patterns, length, var_env, ps, e_info, cs) = check_tuple_patterns exprs p_input var_env ps e_info cs
= ([pattern : patterns], inc length, var_env, ps, e_info, cs)
checkPattern (PE_Record record opt_type fields) opt_var p_input=:{pi_mod_index, pi_is_node_pattern} var_env ps e_info cs
# (opt_record_and_fields, e_info, cs) = checkFields pi_mod_index fields opt_type e_info cs
= case opt_record_and_fields of
Yes (record_symbol, type_index, new_fields)
# (patterns, (var_env, ps, e_info, cs)) = mapSt (check_field_pattern p_input) new_fields (var_env, ps, e_info, cs)
(patterns, ps_var_heap) = bind_opt_record_variable opt_var pi_is_node_pattern patterns new_fields ps.ps_var_heap
-> (AP_Algebraic record_symbol type_index patterns opt_var, var_env, { ps & ps_var_heap = ps_var_heap }, e_info, cs)
No
-> (AP_Empty (hd fields).bind_dst, var_env, ps, e_info, cs)
where
check_field_pattern p_input=:{pi_def_level} {bind_src = PE_Empty, bind_dst = {glob_object={fs_var}}} (var_env, ps, e_info, cs)
#! entry = sreadPtr fs_var.id_info cs.cs_symbol_table
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable pi_def_level entry fs_var new_info_ptr cs
= (AP_Variable fs_var new_info_ptr No, ([ fs_var : var_env ], { ps & ps_var_heap = ps_var_heap }, e_info, cs))
check_field_pattern p_input {bind_src = PE_WildCard, bind_dst={glob_object={fs_var}}} (var_env, ps, e_info, cs)
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
= (AP_WildCard (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), (var_env, { ps & ps_var_heap = ps_var_heap }, e_info, cs))
check_field_pattern p_input {bind_src,bind_dst} (var_env, ps, e_info, cs)
# (pattern, var_env, ps, e_info, cs) = checkPattern bind_src No p_input var_env ps e_info cs
= (pattern, (var_env, ps, e_info, cs))
add_bound_variable (AP_Algebraic symbol index patterns No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Algebraic symbol index patterns (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable (AP_Basic bas_val No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Basic bas_val (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable (AP_Dynamic dynamic dynamic_type No) {bind_dst = {glob_object={fs_var}}} ps_var_heap
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap
= (AP_Dynamic dynamic dynamic_type (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap)
add_bound_variable pattern _ ps_var_heap
= (pattern, ps_var_heap)
add_bound_variables [] _ var_heap
= ([] , var_heap)
add_bound_variables [ap : aps] [field : fields] var_heap
# (ap, var_heap) = add_bound_variable ap field var_heap
(aps, var_heap) = add_bound_variables aps fields var_heap
= ([ap : aps], var_heap)
bind_opt_record_variable (Yes {bind_dst}) False patterns fields var_heap
# (patterns, var_heap) = add_bound_variables patterns fields var_heap
= (patterns, var_heap <:= (bind_dst, VI_Record patterns))
bind_opt_record_variable no is_node_pattern patterns _ var_heap
= (patterns, var_heap)
checkPattern (PE_Bound bind) opt_var p_input var_env ps e_info cs
= checkBoundPattern bind opt_var p_input var_env ps e_info cs
checkPattern (PE_Ident id) opt_var p_input var_env ps e_info cs
= checkIdentPattern cIsNotInExpressionList id opt_var p_input var_env ps e_info cs
checkPattern PE_WildCard opt_var p_input var_env ps e_info cs
= (AP_WildCard No, var_env, ps, e_info, cs)
checkPattern expr opt_var p_input var_env ps e_info cs
= abort "checkPattern: do not know how to handle pattern" ---> expr
checkBoundPattern {bind_src,bind_dst} opt_var p_input var_env ps e_info cs=:{cs_symbol_table}
| isLowerCaseName bind_dst.id_name
#! entry = sreadPtr bind_dst.id_info cs_symbol_table
# (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap
cs = checkPatternVariable p_input.pi_def_level entry bind_dst new_info_ptr cs
ps = { ps & ps_var_heap = ps_var_heap }
var_env = [ bind_dst : var_env ]
= case opt_var of
Yes bind
-> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input var_env ps
e_info { cs & cs_error = checkError bind.bind_src "pattern already bound" cs.cs_error }
No
-> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input var_env ps e_info cs
= checkPattern bind_src opt_var p_input var_env ps e_info { cs & cs_error = checkError bind_dst "variable expected" cs.cs_error }
newFreeVariable :: !FreeVar ![FreeVar] ->(!Bool, ![FreeVar])
newFreeVariable new_var vars=:[free_var=:{fv_def_level,fv_info_ptr}: free_vars]
| new_var.fv_def_level > fv_def_level
= (True, [new_var : vars])
| new_var.fv_def_level == fv_def_level
| new_var.fv_info_ptr == fv_info_ptr
= (False, vars)
#! (free_var_added, free_vars) = newFreeVariable new_var free_vars
= (free_var_added, [free_var : free_vars])
#! (free_var_added, free_vars) = newFreeVariable new_var free_vars
= (free_var_added, [free_var : free_vars])
newFreeVariable new_var []
= (True, [new_var])
buildTypeCase type_case_dynamic type_case_patterns type_case_default type_case_info_ptr :==
Case { case_expr = type_case_dynamic, case_guards = DynamicPatterns type_case_patterns, case_default = type_case_default,
case_info_ptr = type_case_info_ptr, case_ident = No }
consOptional (Yes thing) things
= [ thing : things]
consOptional No things
= things
buildApplication :: !SymbIdent !Int !Int !Bool ![Expression] !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin)
buildApplication symbol form_arity act_arity is_fun args e_state=:{es_expression_heap} error
| is_fun
# (new_info_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap
| form_arity < act_arity
# app = { app_symb = { symbol & symb_arity = form_arity }, app_args = take form_arity args, app_info_ptr = new_info_ptr }
= (App app @ drop form_arity args, { e_state & es_expression_heap = es_expression_heap }, error)
# app = { app_symb = { symbol & symb_arity = act_arity }, app_args = take form_arity args, app_info_ptr = new_info_ptr }
= (App app, { e_state & es_expression_heap = es_expression_heap }, error)
# app = App { app_symb = { symbol & symb_arity = act_arity }, app_args = args, app_info_ptr = nilPtr }
| form_arity < act_arity
= (app, e_state, checkError symbol.symb_name " used with too many arguments" error)
= (app, e_state, error)
checkIdentExpression :: !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!Expression, ![FreeVar], !*ExpressionState, !u:ExpressionInfo, !*CheckState)
checkIdentExpression is_expr_list free_vars id=:{id_info} e_input e_state e_info cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
= check_id_expression entry is_expr_list free_vars id e_input e_state e_info cs
where
check_id_expression :: !SymbolTableEntry !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!Expression, ![FreeVar], !*ExpressionState, !u:ExpressionInfo, !*CheckState)
check_id_expression {ste_kind = STE_Empty} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error}
= (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id " undefined" cs_error })
check_id_expression {ste_kind = STE_Variable info_ptr,ste_def_level} is_expr_list free_vars id e_input=:{ei_fun_level} e_state=:{es_expression_heap} e_info cs
| ste_def_level < ei_fun_level
# free_var = { fv_def_level = ste_def_level, fv_name = id, fv_info_ptr = info_ptr, fv_count = 0 }
(free_var_added, free_vars) = newFreeVariable free_var free_vars
= (FreeVar free_var, free_vars, e_state, e_info, cs)
#! (var_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap
= (Var {var_name = id, var_info_ptr = info_ptr, var_expr_ptr = var_expr_ptr}, free_vars,
{e_state & es_expression_heap = es_expression_heap}, e_info, cs)
check_id_expression entry is_expr_list free_vars id=:{id_info} e_input e_state e_info cs
# (symb_kind, arity, priority, is_a_function, e_state, e_info, cs) = determine_info_of_symbol entry id_info e_input e_state e_info cs
symbol = { symb_name = id, symb_kind = symb_kind, symb_arity = 0 }
| is_expr_list
= (Constant symbol arity priority is_a_function, free_vars, e_state, e_info, cs)
# (app_expr, e_state, cs_error) = buildApplication symbol arity 0 is_a_function [] e_state cs.cs_error
= (app_expr, free_vars, e_state, e_info, { cs & cs_error = cs_error })
determine_info_of_symbol :: !SymbolTableEntry !SymbolPtr !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState
-> (!SymbKind, !Int, !Priority, !Bool, !*ExpressionState, !u:ExpressionInfo,!*CheckState)
determine_info_of_symbol entry=:{ste_kind=STE_FunctionOrMacro calls,ste_index,ste_def_level} symb_info
e_input=:{ei_fun_index, ei_mod_index} e_state=:{es_fun_defs,es_calls} e_info cs=:{cs_symbol_table}
#! {fun_symb,fun_arity,fun_kind,fun_priority} = es_fun_defs.[ste_index]
# index = { glob_object = ste_index, glob_module = cIclModIndex }
| is_called_before ei_fun_index calls
| fun_kind == FK_Macro
= (SK_Macro index, fun_arity, fun_priority, cIsNotAFunction, e_state, e_info, cs)
= (SK_Function index, fun_arity, fun_priority, cIsAFunction, e_state, e_info, cs)
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_FunctionOrMacro [ ei_fun_index : calls ]})}
e_state = { e_state & es_calls = [{ fc_index = ste_index, fc_level = ste_def_level} : es_calls ]}
= (if (fun_kind == FK_Macro) (SK_Macro index) (SK_Function index), fun_arity, fun_priority, cIsAFunction, e_state, e_info, cs)
// ---> ("determine_info_of_symbol", ei_fun_index, fun_symb, ptrToInt symb_info, ste_index)
where
is_called_before caller_index []
= False
is_called_before caller_index [called_index : calls]
= caller_index == called_index || is_called_before caller_index calls
determine_info_of_symbol entry=:{ste_kind=STE_Imported kind mod_index,ste_index} symb_index e_input e_state e_info=:{ef_modules} cs
#! mod_def = ef_modules.[mod_index]
# (kind, arity, priotity, is_fun) = ste_kind_to_symbol_kind kind ste_index mod_index mod_def
= (kind, arity, priotity, is_fun, e_state, e_info, cs)
where
ste_kind_to_symbol_kind :: !STE_Kind !Index !Index !DclModule -> (!SymbKind, !Int, !Priority, !Bool);
ste_kind_to_symbol_kind STE_DclFunction def_index mod_index {dcl_functions,dcl_conversions}
#! {ft_type={st_arity},ft_priority} = dcl_functions.[def_index]
# def_index = convertIndex def_index (toInt STE_DclFunction) dcl_conversions
= (SK_Function { glob_object = def_index, glob_module = mod_index }, st_arity, ft_priority, cIsAFunction)
ste_kind_to_symbol_kind STE_Member def_index mod_index {dcl_common={com_member_defs},dcl_conversions}
#! {me_type={st_arity},me_priority} = com_member_defs.[def_index]
# def_index = convertIndex def_index (toInt STE_Member) dcl_conversions
= (SK_OverloadedFunction { glob_object = def_index, glob_module = mod_index }, st_arity, me_priority, cIsAFunction)
ste_kind_to_symbol_kind STE_Constructor def_index mod_index {dcl_common={com_cons_defs},dcl_conversions}
#! {cons_type={st_arity},cons_priority} = com_cons_defs.[def_index]
# def_index = convertIndex def_index (toInt STE_Constructor) dcl_conversions
= (SK_Constructor { glob_object = def_index, glob_module = mod_index }, st_arity, cons_priority, cIsNotAFunction)
determine_info_of_symbol {ste_kind=STE_Member, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_member_defs} cs
#! {me_type={st_arity},me_priority} = ef_member_defs.[ste_index]
= (SK_OverloadedFunction { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, me_priority, cIsAFunction, e_state, e_info, cs)
determine_info_of_symbol {ste_kind=STE_Constructor, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_cons_defs} cs
#! {cons_type={st_arity},cons_priority} = ef_cons_defs.[ste_index]
= (SK_Constructor { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, cIsNotAFunction, e_state, e_info, cs)
determine_info_of_symbol {ste_kind=STE_DclFunction, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_modules} cs
#! mod_def = ef_modules.[ei_mod_index]
# {ft_type={st_arity},ft_priority} = mod_def.dcl_functions.[ste_index]
def_index = convertIndex ste_index (toInt STE_DclFunction) mod_def.dcl_conversions
= (SK_Function { glob_object = def_index, glob_module = ei_mod_index}, st_arity, ft_priority, cIsAFunction, e_state, e_info, cs)
:: RecordKind = RK_Constructor | RK_Update | RK_UpdateToConstructor ![AuxiliaryPattern]
cEndWithUpdate :== True
cEndWithSelection :== False
checkExpression :: ![FreeVar] !ParsedExpr !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState
-> *(!Expression, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState);
checkExpression free_vars (PE_List exprs) e_input e_state e_info cs
# (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs
(expr, e_state, cs_error) = build_expression exprs e_state cs.cs_error
= (expr, free_vars, e_state, e_info, { cs & cs_error = cs_error })
where
check_expressions free_vars [expr : exprs] e_input e_state e_info cs
# (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs
= case expr of
PE_Ident id
# (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsInExpressionList free_vars id e_input e_state e_info cs
-> ([expr : exprs], free_vars, e_state, e_info, cs)
_
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
-> ([expr : exprs], free_vars, e_state, e_info, cs)
check_expressions free_vars [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
build_expression [Constant symb arity _ is_fun] e_state cs_error
= buildApplication symb arity 0 is_fun [] e_state cs_error
build_expression [expr] e_state cs_error
= (expr, e_state, cs_error)
build_expression [expr : exprs] e_state cs_error
# (opt_opr, left, e_state, cs_error) = split_at_operator [expr] exprs e_state cs_error
(left_expr, e_state, cs_error) = combine_expressions left [] 0 e_state cs_error
= case opt_opr of
Yes (symb, prio, is_fun, right)
-> build_operator_expression [] left_expr (symb, prio, is_fun) right e_state cs_error
No
-> (left_expr, e_state, cs_error)
where
split_at_operator left [Constant symb arity NoPrio is_fun : exprs] e_state cs_error
# (appl_exp, e_state, cs_error) = buildApplication symb arity 0 is_fun [] e_state cs_error
= split_at_operator [appl_exp : left] exprs e_state cs_error
split_at_operator left [Constant symb arity prio is_fun] e_state cs_error
# (appl_exp, e_state, cs_error) = buildApplication symb arity 0 is_fun [] e_state cs_error
= (No, [appl_exp : left], e_state, cs_error)
split_at_operator left [expr=:(Constant symb _ prio is_fun) : exprs] e_state cs_error
= (Yes (symb, prio, is_fun, exprs), left, e_state, cs_error)
split_at_operator left [expr : exprs] e_state cs_error
= split_at_operator [expr : left] exprs e_state cs_error
split_at_operator exp [] e_state cs_error
= (No, exp, e_state, cs_error)
combine_expressions [first_expr] args arity e_state cs_error
= case first_expr of
Constant symb form_arity _ is_fun
# (app_exp, e_state, cs_error) = buildApplication symb form_arity arity is_fun args e_state cs_error
-> (app_exp, e_state, cs_error)
_
| arity == 0
-> (first_expr, e_state, cs_error)
-> (first_expr @ args, e_state, cs_error)
combine_expressions [rev_arg : rev_args] args arity e_state cs_error
= combine_expressions rev_args [rev_arg : args] (inc arity) e_state cs_error
build_operator_expression left_appls left1 (symb1, prio1, is_fun1) [re : res] e_state cs_error
# (opt_opr, left2, e_state, cs_error) = split_at_operator [re] res e_state cs_error
= case opt_opr of
Yes (symb2, prio2, is_fun2, right)
# optional_prio = determinePriority prio1 prio2
-> case optional_prio of
Yes priority
| priority
# (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
(new_left, e_state, cs_error) = buildApplication symb1 2 2 is_fun1 [left1,middle_exp] e_state cs_error
(left_appls, new_left, e_state, cs_error) = build_left_operand left_appls prio2 new_left e_state cs_error
-> build_operator_expression left_appls new_left (symb2, prio2, is_fun2) right e_state cs_error
# (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
-> build_operator_expression [(symb1, prio1, is_fun1, left1) : left_appls]
middle_exp (symb2, prio2, is_fun2) right e_state cs_error
No
-> (EE, e_state, checkError symb1.symb_name "conflicting priorities" cs_error)
No
# (right, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error
(result_expr, e_state, cs_error) = buildApplication symb1 2 2 is_fun1 [left1,right] e_state cs_error
-> build_final_expression left_appls result_expr e_state cs_error
build_left_operand [] _ result_expr e_state cs_error
= ([], result_expr, e_state, cs_error)
build_left_operand la=:[(symb, priol, is_fun, left) : left_appls] prior result_expr e_state cs_error
# optional_prio = determinePriority priol prior
= case optional_prio of
Yes priority
| priority
# (result_expr, e_state, cs_error) = buildApplication symb 2 2 is_fun [left,result_expr] e_state cs_error
-> build_left_operand left_appls prior result_expr e_state cs_error
-> (la, result_expr, e_state, cs_error)
No
-> (la, EE, e_state, checkError symb.symb_name "conflicting priorities" cs_error)
build_final_expression [] result_expr e_state cs_error
= (result_expr, e_state, cs_error)
build_final_expression [(symb, _, is_fun, left) : left_appls] result_expr e_state cs_error
# (result_expr, e_state, cs_error) = buildApplication symb 2 2 is_fun [left,result_expr] e_state cs_error
= build_final_expression left_appls result_expr e_state cs_error
checkExpression free_vars (PE_Let strict let_locals expr) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# ei_expr_level = inc ei_expr_level
(loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index let_locals e_state e_info cs
e_input = { e_input & ei_expr_level = ei_expr_level }
(let_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(let_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs let_expr e_input e_state e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index ei_expr_level let_locals e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs
(es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level var_env let_locals es_fun_defs cs.cs_symbol_table
= (let_expr, free_vars, { e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expression_heap = heaps.hp_expression_heap,
es_type_heaps = heaps.hp_type_heaps }, e_info, { cs & cs_symbol_table = cs_symbol_table })
checkExpression free_vars (PE_Case case_ident expr alts) e_input e_state e_info cs
# (pattern_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(guards, pattern_variables, defaul, free_vars, e_state, e_info, cs) = check_guarded_expressions free_vars alts [] e_input e_state e_info cs
(pattern_expr, binds, es_expression_heap) = bind_pattern_variables pattern_variables pattern_expr e_state.es_expression_heap
(case_expr, es_expression_heap) = build_case guards defaul pattern_expr case_ident es_expression_heap
(result_expr, es_expression_heap) = buildLetExpression binds cIsNotStrict case_expr es_expression_heap
= (result_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs)
where
check_guarded_expressions free_vars [g] pattern_variables e_input=:{ei_expr_level} e_state e_info cs
# e_input = { e_input & ei_expr_level = inc ei_expr_level }
= check_guarded_expression free_vars g NoPattern pattern_variables No e_input e_state e_info cs
check_guarded_expressions free_vars [g : gs] pattern_variables e_input=:{ei_expr_level} e_state e_info cs
# e_input = { e_input & ei_expr_level = inc ei_expr_level }
(gs, pattern_variables, defaul, free_vars, e_state, e_info, cs)
= check_guarded_expressions free_vars gs pattern_variables e_input e_state e_info cs
= check_guarded_expression free_vars g gs pattern_variables defaul e_input e_state e_info cs
check_guarded_expression free_vars {calt_pattern,calt_rhs={rhs_alts,rhs_locals}} patterns pattern_variables defaul e_input=:{ei_expr_level,ei_mod_index}
e_state=:{es_fun_defs,es_var_heap} e_info cs
# (pattern, var_env, {ps_fun_defs,ps_var_heap}, e_info, cs)
= checkPattern calt_pattern No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } []
{ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs
e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs}
(expr, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
(guarded_expr, pattern_variables, defaul, es_var_heap, es_expression_heap, dynamics_in_patterns, cs)
= transform_pattern pattern patterns pattern_variables defaul expr es_var_heap es_expression_heap es_dynamics { cs & cs_symbol_table = cs_symbol_table }
= (guarded_expr, pattern_variables, defaul, free_vars,
{ e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap, es_dynamics = dynamics_in_patterns },
e_info, cs)
transform_pattern :: !AuxiliaryPattern !CasePatterns !(Env Ident VarInfoPtr) !(Optional (Optional FreeVar, Expression)) !Expression
!*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState
-> (!CasePatterns, !Env Ident VarInfoPtr, !Optional (Optional FreeVar,Expression), !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState)
transform_pattern (AP_Algebraic cons_symbol type_index args opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
# (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs
type_symbol = { glob_module = cons_symbol.glob_module, glob_object = type_index}
pattern = { ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr}
pattern_variables = cons_optional opt_var pattern_variables
= case patterns of
AlgebraicPatterns alg_type alg_patterns
| type_symbol == alg_type
-> (AlgebraicPatterns type_symbol [pattern : alg_patterns], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error })
NoPattern
-> (AlgebraicPatterns type_symbol [pattern], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error })
transform_pattern (AP_Basic basic_val opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
# pattern = { bp_value = basic_val, bp_expr = result_expr}
pattern_variables = cons_optional opt_var pattern_variables
(type_symbol, cs) = typeOfBasicValue basic_val cs
= case patterns of
BasicPatterns basic_type basic_patterns
| type_symbol == basic_type
-> (BasicPatterns basic_type [pattern : basic_patterns], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
-> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError basic_val "incompatible types of patterns" cs.cs_error })
NoPattern
-> (BasicPatterns type_symbol [pattern], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
_
-> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError basic_val "illegal combination of patterns" cs.cs_error})
transform_pattern (AP_Dynamic pattern type opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
pattern = { dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty }
pattern_variables = cons_optional opt_var pattern_variables
= case patterns of
DynamicPatterns dyn_patterns
-> (DynamicPatterns [pattern : dyn_patterns], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs)
NoPattern
-> (DynamicPatterns [pattern], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs)
_
-> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError "<dynamic pattern>""illegal combination of patterns" cs.cs_error })
transform_pattern (AP_Variable name var_info opt_var) NoPattern pattern_variables No result_expr var_store expr_heap opt_dynamics cs
= (NoPattern, cons_optional opt_var pattern_variables, Yes (Yes { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr),
var_store, expr_heap, opt_dynamics, cs)
transform_pattern (AP_Variable name var_info opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
= (patterns, cons_optional opt_var pattern_variables, defaul, var_store, expr_heap, opt_dynamics,
{ cs & cs_error = checkError name "illegal combination of patterns" cs.cs_error })
transform_pattern (AP_WildCard _) NoPattern pattern_variables No result_expr var_store expr_heap opt_dynamics cs
= (NoPattern, pattern_variables, Yes (No, result_expr), var_store, expr_heap, opt_dynamics, cs)
transform_pattern (AP_WildCard _) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
= (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError "_" "illegal combination of patterns" cs.cs_error })
transform_pattern (AP_Empty name) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs
= (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs)
build_case NoPattern defaul expr case_ident expr_heap
= case defaul of
Yes (opt_var, result)
-> case opt_var of
Yes var
# (let_expression, expr_heap) = bind_default_variable expr var result expr_heap
-> (let_expression, expr_heap)
No
-> (result, expr_heap)
No
-> (abort "incorrect case expression in build_case", expr_heap)
build_case (DynamicPatterns patterns) defaul expr case_ident expr_heap
= case defaul of
Yes (opt_var, result)
-> case opt_var of
Yes var
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = var.fv_name, var_info_ptr = var.fv_info_ptr, var_expr_ptr = var_expr_ptr }
result = buildTypeCase (Var bound_var) patterns (Yes result) type_case_info_ptr
(case_expression, expr_heap) = bind_default_variable expr var result expr_heap
-> (case_expression, expr_heap)
No
# (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (buildTypeCase expr patterns (Yes result) type_case_info_ptr, expr_heap)
No
# (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (buildTypeCase expr patterns No type_case_info_ptr, expr_heap)
build_case patterns (Yes (defaul,result)) expr case_ident expr_heap
= case defaul of
Yes var
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = var.fv_name, var_info_ptr = var.fv_info_ptr, var_expr_ptr = var_expr_ptr }
result = Case {case_expr = Var bound_var, case_guards = patterns, case_default = Yes result,
case_ident = Yes case_ident, case_info_ptr = case_expr_ptr}
(case_expression, expr_heap) = bind_default_variable expr var result expr_heap
-> (case_expression, expr_heap)
No
# (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Case {case_expr = expr, case_guards = patterns, case_default = Yes result,
case_ident = Yes case_ident, case_info_ptr = case_expr_ptr }, expr_heap)
build_case patterns No expr case_ident expr_heap
# (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Case {case_expr = expr, case_guards = patterns, case_default = No, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr }, expr_heap)
bind_default_variable bind_src bind_dst result_expr expr_heap
# (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Let {let_strict = cIsNotStrict, let_binds = [{ bind_src = bind_src, bind_dst = bind_dst }], let_expr = result_expr, let_info_ptr = let_expr_ptr }, expr_heap)
cons_optional (Yes var) variables
= [ var : variables ]
cons_optional No variables
= variables
bind_pattern_variables [] pattern_expr expr_heap
= (pattern_expr, [], expr_heap)
bind_pattern_variables [{bind_src,bind_dst} : variables] this_pattern_expr expr_heap
# free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
(pattern_expr, binds, expr_heap) = bind_pattern_variables variables (Var bound_var) expr_heap
= (pattern_expr, [{bind_src = this_pattern_expr, bind_dst = free_var} : binds], expr_heap)
checkExpression free_vars (PE_Selection is_unique expr [PS_Array index_expr]) e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
| is_unique
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_UnqArraySelectFun PD_StdArray STE_Member 2 cs
(selector, free_vars, e_state, e_info, cs) = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
= (Selection No expr [selector], free_vars, e_state, e_info, cs)
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs
(selector, free_vars, e_state, e_info, cs) = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
= (Selection No expr [selector], free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Selection is_unique expr selectors) e_input e_state e_info cs
# (selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithSelection free_vars selectors e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
| is_unique
# (tuple_type, cs) = getPredefinedGlobalSymbol (GetTupleTypeIndex 2) PD_PredefinedModule STE_Type 2 cs
= (Selection (Yes tuple_type) expr selectors, free_vars, e_state, e_info, cs)
= (Selection No expr selectors, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Update expr1 selectors expr2) e_input e_state e_info cs
# (expr1, free_vars, e_state, e_info, cs) = checkExpression free_vars expr1 e_input e_state e_info cs
(selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithUpdate free_vars selectors e_input e_state e_info cs
(expr2, free_vars, e_state, e_info, cs) = checkExpression free_vars expr2 e_input e_state e_info cs
= (Update expr1 selectors expr2, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Tuple exprs) e_input e_state e_info cs
# (exprs, arity, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs
({glob_object={ds_ident,ds_index, ds_arity},glob_module}, cs)
= getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs
= (App { app_symb = { symb_name = ds_ident, symb_arity = ds_arity,
symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }},
app_args = exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs)
where
check_expression_list free_vars [] e_input e_state e_info cs
= ([], 0, free_vars, e_state, e_info, cs)
check_expression_list free_vars [expr : exprs] e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs
(exprs, length, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs
= ([expr : exprs], inc length, free_vars, e_state, e_info, cs)
checkExpression free_vars rec=:(PE_Record record opt_type fields) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (opt_record_and_fields, e_info, cs) = checkFields ei_mod_index fields opt_type e_info cs
= case opt_record_and_fields of
Yes (cons=:{glob_module, glob_object}, _, new_fields)
# {ds_ident,ds_index,ds_arity} = glob_object
rec_cons = { symb_name = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }, symb_arity = ds_arity }
-> case record of
PE_Empty
# (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Constructor e_input e_state e_info cs
-> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs)
_
# (rec_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars record e_input e_state e_info cs
-> case rec_expr of
Var {var_info_ptr,var_name}
# (var_info, es_var_heap) = readPtr var_info_ptr e_state.es_var_heap
e_state = { e_state & es_var_heap = es_var_heap }
-> case var_info of
VI_Record fields
# (exprs, free_vars, e_state, e_info, cs)
= check_field_exprs free_vars new_fields 0 (RK_UpdateToConstructor fields) e_input e_state e_info cs
-> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs)
_
# (exprs, free_vars, e_state, e_info, cs)
= check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs
-> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs)
_
# (exprs, free_vars, e_state, e_info, cs)
= check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs
-> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs)
No
-> (EE, free_vars, e_state, e_info, cs)
where
remove_fields binds = [ bind_src \\ {bind_src} <- binds ]
check_field_exprs free_vars [] field_nr record_kind e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
check_field_exprs free_vars [field_expr : field_exprs] field_nr record_kind e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= check_field_expr free_vars field_expr field_nr record_kind e_input e_state e_info cs
(exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars field_exprs (inc field_nr) record_kind e_input e_state e_info cs
= ([expr : exprs], free_vars, e_state, e_info, cs)
check_field_expr free_vars field=:{bind_src = PE_Empty, bind_dst={glob_object={fs_var,fs_name,fs_index},glob_module}} field_nr record_kind e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= checkIdentExpression cIsNotInExpressionList free_vars fs_var e_input e_state e_info cs
= ({ field & bind_src = expr }, free_vars, e_state, e_info, cs)
check_field_expr free_vars field=:{bind_src = PE_WildCard, bind_dst={glob_object=fs_name}} field_nr RK_Constructor e_input e_state e_info cs
= ({ field & bind_src = EE }, free_vars, e_state, e_info, { cs & cs_error = checkError fs_name "field not specified" cs.cs_error })
check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr RK_Update e_input e_state e_info cs
= ({ field & bind_src = EE }, free_vars, e_state, e_info, cs)
check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr (RK_UpdateToConstructor fields) e_input e_state=:{es_expression_heap} e_info cs
# (var_name, var_info_ptr) = get_field_var (fields !! field_nr)
(var_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap
= ({ field & bind_src = Var { var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }}, free_vars,
{ e_state & es_expression_heap = es_expression_heap }, e_info, cs)
check_field_expr free_vars field=:{bind_src} field_nr upd_record e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs)
= checkExpression free_vars bind_src e_input e_state e_info cs
= ({ field & bind_src = expr }, free_vars, e_state, e_info, cs)
get_field_var (AP_Algebraic _ _ _ (Yes {bind_src,bind_dst}))
= (bind_src, bind_dst)
get_field_var (AP_Basic _ (Yes {bind_src,bind_dst}))
= (bind_src, bind_dst)
get_field_var (AP_Dynamic _ _ (Yes {bind_src,bind_dst}))
= (bind_src, bind_dst)
get_field_var (AP_Variable id var_ptr _)
= (id, var_ptr)
get_field_var (AP_WildCard (Yes {bind_src,bind_dst}))
= (bind_src, bind_dst)
get_field_var _
= ({ id_name = "** ERRONEOUS **", id_info = nilPtr }, nilPtr)
checkExpression free_vars (PE_Dynamic expr opt_type) e_input e_state=:{es_expression_heap,es_dynamics} e_info cs
# (dyn_info_ptr, es_expression_heap) = newPtr (EI_Dynamic opt_type) es_expression_heap
(dyn_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input
{e_state & es_dynamics = [dyn_info_ptr : es_dynamics], es_expression_heap = es_expression_heap } e_info cs
= (DynamicExpr { dyn_expr = dyn_expr, dyn_opt_type = opt_type, dyn_info_ptr = dyn_info_ptr, dyn_type_code = TCE_Empty, dyn_uni_vars = [] },
free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Basic basic_value) e_input e_state e_info cs
# (basic_type, cs) = typeOfBasicValue basic_value cs
= (BasicExpr basic_value basic_type, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_ABC_Code code_sequence do_inline) e_input e_state e_info cs
= (ABCCodeExpr code_sequence do_inline, free_vars, e_state, e_info, cs)
checkExpression free_vars (PE_Any_Code ins outs code_sequence) e_input e_state e_info cs
# (ins, (free_vars, e_state, e_info, cs)) = check_in_parameters e_input ins (free_vars, e_state, e_info, cs)
(new_outs, (e_state, cs)) = check_out_parameters e_input.ei_expr_level outs (e_state, cs)
cs_symbol_table = remove_out_parameters_from_symbol_table e_input.ei_expr_level outs cs.cs_symbol_table
= (AnyCodeExpr ins new_outs code_sequence, free_vars, e_state, e_info, { cs & cs_symbol_table = cs_symbol_table })
where
check_in_parameters e_input params fv_es_ei_cs
= mapSt (check_in_parameter e_input) params fv_es_ei_cs
check_in_parameter e_input { bind_src, bind_dst } (free_vars, e_state, e_info, cs)
# (id_expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars bind_dst e_input e_state e_info cs
= case id_expr of
Var var
-> ({ bind_dst = var, bind_src = bind_src }, (free_vars, e_state, e_info, cs))
_
-> ({ bind_dst = { var_name = bind_dst, var_info_ptr = nilPtr, var_expr_ptr = nilPtr }, bind_src = bind_src }, (free_vars, e_state, e_info,
{ cs & cs_error = checkError bind_src "bound variable expected" cs.cs_error }))
check_out_parameters expr_level params es_cs
= mapSt (check_out_parameter expr_level) params es_cs
check_out_parameter expr_level bind=:{ bind_src, bind_dst } (e_state, cs)
| isLowerCaseName bind_dst.id_name
#! entry = sreadPtr bind_dst.id_info cs.cs_symbol_table
# (new_info_ptr, es_var_heap) = newPtr VI_Empty e_state.es_var_heap
cs = checkPatternVariable expr_level entry bind_dst new_info_ptr cs
= ( { bind & bind_dst = { fv_def_level = expr_level, fv_name = bind_dst, fv_info_ptr = new_info_ptr, fv_count = 0 }},
( { e_state & es_var_heap = es_var_heap }, cs))
= ( { bind & bind_dst = { fv_def_level = expr_level, fv_name = bind_dst, fv_info_ptr = nilPtr, fv_count = 0 }},
( e_state, { cs & cs_error = checkError bind_src "variable expected" cs.cs_error }))
remove_out_parameters_from_symbol_table expr_level idents symbol_table
= foldSt (\{bind_dst} -> removeIdentFromSymbolTable expr_level bind_dst) idents symbol_table
checkExpression free_vars (PE_Ident id) e_input e_state e_info cs
= checkIdentExpression cIsNotInExpressionList free_vars id e_input e_state e_info cs
checkExpression free_vars expr e_input e_state e_info cs
= abort "checkExpression (check.icl, line 1433)" // <<- expr
:: LastSelection = LS_Update | LS_Selction | LS_UniqueSelection
checkSelectors end_with_update free_vars [ selector : selectors ] e_input e_state e_info cs
| isEmpty selectors
# (selector, free_vars, e_state, e_info, cs) = check_selector end_with_update free_vars selector e_input e_state e_info cs
= ([ selector ], free_vars, e_state, e_info, cs)
# (selector, free_vars, e_state, e_info, cs) = check_selector cEndWithSelection free_vars selector e_input e_state e_info cs
(selectors, free_vars, e_state, e_info, cs) = checkSelectors end_with_update free_vars selectors e_input e_state e_info cs
= ([ selector : selectors ], free_vars, e_state, e_info, cs)
where
check_selector _ free_vars (PS_Record selector=:{id_info,id_name} opt_type) e_input=:{ei_mod_index} e_state
e_info=:{ef_selector_defs, ef_modules} cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
# selectors = retrieveSelectorIndexes ei_mod_index entry
(field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs)
= get_field_nr ei_mod_index selector opt_type selectors ef_selector_defs ef_modules cs
= (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state,
{e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs)
where
get_field_nr :: !Index !Ident !(Optional Ident) ![Global Index] !u:{#SelectorDef} !v:{# DclModule} !*CheckState
-> (!Index, !Index, !Index, u:{#SelectorDef}, v:{#DclModule}, !*CheckState)
get_field_nr mod_index sel_id _ [] selector_defs modules cs=:{cs_error}
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name " selector not defined" cs_error })
get_field_nr mod_index sel_id (Yes type_id=:{id_info}) selectors selector_defs modules cs=:{cs_symbol_table,cs_error}
#! entry = sreadPtr id_info cs_symbol_table
# (type_index, type_module) = retrieveGlobalDefinition entry STE_Type mod_index
| type_index <> NotFound
#! (selector_index, selector_offset, selector_defs, modules)
= determine_selector mod_index type_module type_index selectors selector_defs modules
| selector_offset <> NoIndex
= (type_module, selector_index, selector_offset, selector_defs, modules, cs)
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name " selector not defined" cs_error })
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError type_id " type not defined" cs_error })
get_field_nr mod_index sel_id No [{glob_object,glob_module}] selector_defs modules cs
| mod_index == glob_module
#! selector_offset = selector_defs.[glob_object].sd_field_nr
= (glob_module, glob_object, selector_offset, selector_defs, modules, cs)
#! selector_offset = modules.[glob_module].dcl_common.com_selector_defs.[glob_object].sd_field_nr
= (glob_module, glob_object, selector_offset, selector_defs, modules, cs)
get_field_nr mod_index sel_id No _ selector_defs modules cs=:{cs_error}
= (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError sel_id " ambiguous selector specified" cs_error })
determine_selector :: !Index !Index !Index ![Global Index] !u:{# SelectorDef} !v:{# DclModule} -> (!Int, !Int, !u:{# SelectorDef}, !v:{# DclModule})
determine_selector mod_index type_mod_index type_index [] selector_defs modules
= (NoIndex, NoIndex, selector_defs, modules)
determine_selector mod_index type_mod_index type_index [{glob_module, glob_object} : selectors] selector_defs modules
| type_mod_index == glob_module
| type_mod_index == mod_index
#! selector_def = selector_defs.[glob_object]
| selector_def.sd_type_index == type_index
= (glob_object, selector_def.sd_field_nr, selector_defs, modules)
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
#! {dcl_common={com_selector_defs}} = modules.[glob_module]
#! selector_def = com_selector_defs.[glob_object]
| selector_def.sd_type_index == type_index
= (glob_object, selector_def.sd_field_nr, selector_defs, modules)
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
= determine_selector mod_index type_mod_index type_index selectors selector_defs modules
check_selector end_with_update free_vars (PS_Array index_expr) e_input e_state e_info cs
| end_with_update
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArrayUpdateFun PD_StdArray STE_Member 3 cs
= checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
# (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs
= checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs
# (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars index_expr e_input e_state e_info cs
(new_info_ptr, es_expression_heap) = newPtr EI_Empty e_state.es_expression_heap
= (ArraySelection glob_select_symb new_info_ptr index_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs)
buildLetExpression :: !(Env Expression FreeVar) !Bool !Expression !*ExpressionHeap -> (!Expression, !*ExpressionHeap)
buildLetExpression [] is_strict expr expr_heap
= (expr, expr_heap)
buildLetExpression binds is_strict expr expr_heap
# (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Let {let_strict = is_strict, let_binds = binds, let_expr = expr, let_info_ptr = let_expr_ptr }, expr_heap)
checkLhssOfLocalDefs def_level mod_index (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_nodes}) e_state=:{es_var_heap,es_fun_defs} e_info cs
# (loc_defs, var_env, {ps_fun_defs,ps_var_heap}, e_info, cs)
= check_patterns loc_nodes {pi_def_level = def_level, pi_mod_index = mod_index, pi_is_node_pattern = True } []
{ps_fun_defs = es_fun_defs, ps_var_heap = es_var_heap} e_info cs
(es_fun_defs, cs_symbol_table, cs_error) = addLocalFunctionDefsToSymbolTable def_level ir_from ir_to ps_fun_defs cs.cs_symbol_table cs.cs_error
= (loc_defs, var_env, { e_state & es_fun_defs = es_fun_defs, es_var_heap = ps_var_heap }, e_info, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error })
where
check_patterns [ (_,node_def) : node_defs ] p_input var_env var_store e_info cs
# (pattern, var_env, var_store, e_info, cs) = checkPattern node_def.nd_dst No p_input var_env var_store e_info cs
(patterns, var_env, var_store, e_info, cs) = check_patterns node_defs p_input var_env var_store e_info cs
= ([{ node_def & nd_dst = pattern } : patterns], var_env, var_store, e_info, cs)
check_patterns [] p_input var_env var_store e_info cs
= ([], var_env, var_store, e_info, cs)
checkRhssAndTransformLocalDefs free_vars [] rhs_expr e_input e_state e_info cs
= (rhs_expr, free_vars, e_state, e_info, cs)
checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs
# (binds, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars loc_defs e_input e_state e_info cs
(rhs_expr, es_expression_heap) = buildLetExpression binds cIsNotStrict rhs_expr e_state.es_expression_heap
= (rhs_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs)
checkAndTransformPatternIntoBind free_vars [{nd_dst,nd_alts,nd_locals} : local_defs] e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (bind_src, free_vars, e_state, e_info, cs) = checkRhs free_vars nd_alts nd_locals e_input e_state e_info cs
(binds_of_bind, es_var_heap, es_expression_heap, e_info, cs)
= transfromPatternIntoBind ei_mod_index ei_expr_level nd_dst bind_src e_state.es_var_heap e_state.es_expression_heap e_info cs
e_state = { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap }
(binds_of_local_defs, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars local_defs e_input e_state e_info cs
= (binds_of_bind ++ binds_of_local_defs, free_vars, e_state, e_info, cs)
checkAndTransformPatternIntoBind free_vars [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
transfromPatternIntoBind :: !Index !Level !AuxiliaryPattern !Expression !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState
-> *(![Bind Expression FreeVar], !*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState)
transfromPatternIntoBind mod_index def_level (AP_Variable name var_info _) src_expr var_store expr_heap e_info cs
# bind = {bind_src = src_expr, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }}
= ([bind], var_store, expr_heap, e_info, cs)
transfromPatternIntoBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} type_index args opt_var)
src_expr var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs
# (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr var_store expr_heap
| ds_arity == 0
= ([], var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident " constant not allowed in a node pattern" cs.cs_error})
# (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs
| is_tuple
# (tuple_var, tuple_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind var_store expr_heap
= transform_sub_patterns mod_index def_level args ds_cons 0 tuple_var tuple_bind var_store expr_heap e_info cs
# ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index glob_module type_index ef_type_defs ef_modules
e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules }
= case td_rhs of
RecordType {rt_fields}
| size rt_fields == 1
-> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 src_expr opt_var_bind var_store expr_heap e_info cs
# (record_var, record_bind, var_store, expr_heap)
= bind_match_expr src_expr opt_var_bind var_store expr_heap
-> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 record_var record_bind var_store expr_heap e_info cs
_
| ds_arity == 1
# (binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr No cons_symbol src_expr) var_store expr_heap e_info cs
-> (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs)
# (tuple_type, cs) = getPredefinedGlobalSymbol (GetTupleTypeIndex ds_arity) PD_PredefinedModule STE_Type ds_arity cs
(tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs
(match_var, match_bind, var_store, expr_heap)
= bind_match_expr (MatchExpr (Yes tuple_type) cons_symbol src_expr) opt_var_bind var_store expr_heap
-> transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind var_store expr_heap e_info cs
where
get_type_def mod_index type_mod_index type_index ef_type_defs ef_modules
| mod_index == type_mod_index
# (type_def, ef_type_defs) = ef_type_defs![type_index]
= (type_def, ef_type_defs, ef_modules)
# ({dcl_common}, ef_modules) = ef_modules![type_mod_index]
= (dcl_common.com_type_defs.[type_index], ef_type_defs, ef_modules)
is_tuple_symbol cons_module cons_index cs
# (tuple_2_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs
= (tuple_2_symbol.glob_module == cons_module &&
tuple_2_symbol.glob_object.ds_index <= cons_index && cons_index <= tuple_2_symbol.glob_object.ds_index + 30, cs)
transform_sub_patterns mod_index def_level [pattern : patterns] tup_id tup_index arg_var all_binds var_store expr_heap e_info cs
# match_expr = TupleSelect tup_id tup_index arg_var
(binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level pattern match_expr var_store expr_heap e_info cs
= transform_sub_patterns mod_index def_level patterns tup_id (inc tup_index) arg_var (binds ++ all_binds) var_store expr_heap e_info cs
transform_sub_patterns mod_index _ [] _ _ _ binds var_store expr_heap e_info cs
= (binds, var_store, expr_heap, e_info, cs)
transform_sub_patterns_of_record mod_index def_level [pattern : patterns] fields field_module field_index record_expr
all_binds var_store expr_heap e_info cs
# {fs_name, fs_index} = fields.[field_index]
selector = { glob_module = field_module, glob_object = MakeDefinedSymbol fs_name fs_index 1}
(binds, var_store, expr_heap, e_info, cs)
= transfromPatternIntoBind mod_index def_level pattern (Selection No record_expr [ RecordSelection selector field_index ])
var_store expr_heap e_info cs
= transform_sub_patterns_of_record mod_index def_level patterns fields field_module (inc field_index) record_expr
(binds ++ all_binds) var_store expr_heap e_info cs
transform_sub_patterns_of_record mod_index _ [] _ _ _ _ binds var_store expr_heap e_info cs
= (binds, var_store, expr_heap, e_info, cs)
bind_opt_var (Yes {bind_src,bind_dst}) src_expr var_heap expr_heap
# free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
= (Var bound_var, [{bind_src = src_expr, bind_dst = free_var}], var_heap <:= (bind_dst, VI_Empty), expr_heap)
bind_opt_var No src_expr var_heap expr_heap
= (src_expr, [], var_heap, expr_heap)
bind_match_expr var_expr=:(Var var) opt_var_bind var_heap expr_heap
= (var_expr, opt_var_bind, var_heap, expr_heap)
bind_match_expr match_expr opt_var_bind var_heap expr_heap
# new_name = newVarId "_x"
(var_info_ptr, var_heap) = newPtr VI_Empty var_heap
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }
free_var = { fv_name = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 }
= (Var bound_var, [{bind_src = match_expr, bind_dst = free_var} : opt_var_bind], var_heap, expr_heap)
transfromPatternIntoBind mod_index def_level (AP_WildCard _) src_expr var_store expr_heap e_info cs
= ([], var_store, expr_heap, e_info, cs)
transfromPatternIntoBind _ _ pattern src_expr var_store expr_heap e_info cs
= ([], var_store, expr_heap, e_info, { cs & cs_error = checkError "<pattern>" " illegal node pattern" cs.cs_error})
checkLocalFunctions mod_index level (CollectedLocalDefs {loc_functions={ir_from,ir_to}}) fun_defs e_info heaps cs
= checkFunctions mod_index level ir_from ir_to fun_defs e_info heaps cs
checkRhs free_vars rhs_alts rhs_locals e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# ei_expr_level = inc ei_expr_level
(loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index rhs_locals e_state e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index ei_expr_level rhs_locals e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs
(rhs_expr, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars rhs_alts { e_input & ei_expr_level = ei_expr_level }
{ e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expression_heap = heaps.hp_expression_heap,
es_type_heaps = heaps.hp_type_heaps } e_info cs
(expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs
(es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level var_env rhs_locals e_state.es_fun_defs cs.cs_symbol_table
= (expr, free_vars, { e_state & es_fun_defs = es_fun_defs}, e_info, { cs & cs_symbol_table = cs_symbol_table })
where
check_opt_guarded_alts free_vars (GuardedAlts guarded_alts default_expr) e_input e_state e_info cs
# (let_vars_list, rev_guarded_exprs, last_expr_level, free_vars, e_state, e_info, cs)
= check_guarded_expressions free_vars guarded_alts [] [] e_input e_state e_info cs
(default_expr, free_vars, e_state, e_info, cs)
= check_default_expr free_vars default_expr { e_input & ei_expr_level = last_expr_level } e_state e_info cs
cs = { cs & cs_symbol_table = remove_seq_let_vars e_input.ei_expr_level let_vars_list cs.cs_symbol_table }
(result_expr, es_expression_heap) = convert_guards_to_cases rev_guarded_exprs default_expr e_state.es_expression_heap
= (result_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs)
check_opt_guarded_alts free_vars (UnGuardedExpr unguarded_expr) e_input e_state e_info cs
= check_unguarded_expression free_vars unguarded_expr e_input e_state e_info cs
check_default_expr free_vars (Yes default_expr) e_input e_state e_info cs
# (expr, free_vars, e_state, e_info, cs) = check_unguarded_expression free_vars default_expr e_input e_state e_info cs
= (Yes expr, free_vars, e_state, e_info, cs)
check_default_expr free_vars No e_input e_state e_info cs
= (No, free_vars, e_state, e_info, cs)
convert_guards_to_cases [(let_binds, guard, expr)] result_expr es_expression_heap
# (case_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap
case_expr = Case { case_expr = guard, case_guards = BasicPatterns BT_Bool [{bp_value = (BVB True), bp_expr = expr}],
case_default = result_expr, case_ident = No, case_info_ptr = case_expr_ptr }
= build_sequential_lets let_binds case_expr es_expression_heap
convert_guards_to_cases [(let_binds, guard, expr) : rev_guarded_exprs] result_expr es_expression_heap
# (case_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap
case_expr = Case { case_expr = guard, case_guards = BasicPatterns BT_Bool [{bp_value = (BVB True), bp_expr = expr}],
case_default = result_expr, case_ident = No, case_info_ptr = case_expr_ptr }
(result_expr, es_expression_heap) = build_sequential_lets let_binds case_expr es_expression_heap
= convert_guards_to_cases rev_guarded_exprs (Yes result_expr) es_expression_heap
check_guarded_expressions free_vars [gexpr : gexprs] let_vars_list rev_guarded_exprs e_input e_state e_info cs
# (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs)
= check_guarded_expression free_vars gexpr let_vars_list rev_guarded_exprs e_input e_state e_info cs
= check_guarded_expressions free_vars gexprs let_vars_list rev_guarded_exprs { e_input & ei_expr_level = ei_expr_level } e_state e_info cs
check_guarded_expressions free_vars [] let_vars_list rev_guarded_exprs {ei_expr_level} e_state e_info cs
= (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs)
check_guarded_expression free_vars {alt_nodes,alt_guard,alt_expr}
let_vars_list rev_guarded_exprs e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (let_binds, let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars alt_nodes let_vars_list
{ e_input & ei_expr_level = inc ei_expr_level } e_state e_info cs
e_input = { e_input & ei_expr_level = ei_expr_level }
(guard, free_vars, e_state, e_info, cs) = checkExpression free_vars alt_guard e_input e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars alt_expr e_input e_state e_info cs
= (let_vars_list, [(let_binds, guard, expr) : rev_guarded_exprs], ei_expr_level, free_vars, e_state, e_info, cs )
check_unguarded_expression free_vars {ewl_nodes,ewl_expr,ewl_locals} e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# this_expr_level = inc ei_expr_level
(loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs this_expr_level ei_mod_index ewl_locals e_state e_info cs
(binds, let_vars_list, rhs_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars ewl_nodes [] { e_input & ei_expr_level = this_expr_level } e_state e_info cs
(expr, free_vars, e_state, e_info, cs) = checkExpression free_vars ewl_expr { e_input & ei_expr_level = rhs_expr_level } e_state e_info cs
cs = { cs & cs_symbol_table = remove_seq_let_vars rhs_expr_level let_vars_list cs.cs_symbol_table }
(expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs
(es_fun_defs, e_info, heaps, cs)
= checkLocalFunctions ei_mod_index rhs_expr_level ewl_locals e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs
(es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable this_expr_level var_env ewl_locals es_fun_defs cs.cs_symbol_table
(seq_let_expr, es_expression_heap) = build_sequential_lets binds expr heaps.hp_expression_heap
= (seq_let_expr, free_vars, {e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap,
es_expression_heap = es_expression_heap, es_type_heaps = heaps.hp_type_heaps }, e_info, { cs & cs_symbol_table = cs_symbol_table} )
remove_seq_let_vars level [] symbol_table
= symbol_table
remove_seq_let_vars level [let_vars : let_vars_list] symbol_table
= remove_seq_let_vars (dec level) let_vars_list (removeLocalIdentsFromSymbolTable level let_vars symbol_table)
check_sequential_lets free_vars [seq_let:seq_lets] let_vars_list e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# ei_expr_level = inc ei_expr_level
e_input = { e_input & ei_expr_level = ei_expr_level }
(src_expr, pattern_expr, let_vars, free_vars, e_state, e_info, cs) = check_sequential_let free_vars seq_let e_input e_state e_info cs
(binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs)
= check_sequential_lets free_vars seq_lets [let_vars : let_vars_list] e_input e_state e_info cs
(let_binds, es_var_heap, es_expression_heap, e_info, cs)
= transfromPatternIntoBind ei_mod_index ei_expr_level pattern_expr src_expr e_state.es_var_heap e_state.es_expression_heap e_info cs
= ([(seq_let.ndwl_strict, let_binds) : binds], loc_envs, max_expr_level, free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap }, e_info, cs)
check_sequential_lets free_vars [] let_vars_list e_input=:{ei_expr_level} e_state e_info cs
= ([], let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs)
check_sequential_let free_vars {ndwl_def={bind_src,bind_dst},ndwl_locals} e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs
# (loc_defs, loc_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index ndwl_locals e_state e_info cs
(src_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs
(src_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs src_expr e_input e_state e_info cs
(es_fun_defs, e_info, {hp_var_heap,hp_expression_heap,hp_type_heaps}, cs)
= checkLocalFunctions ei_mod_index ei_expr_level ndwl_locals e_state.es_fun_defs e_info
{ hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs
(es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level loc_env ndwl_locals es_fun_defs cs.cs_symbol_table
(pattern, let_vars, {ps_fun_defs,ps_var_heap}, e_info, cs)
= checkPattern bind_dst No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = True } []
{ps_var_heap = hp_var_heap, ps_fun_defs = es_fun_defs } e_info { cs & cs_symbol_table = cs_symbol_table }
= (src_expr, pattern, let_vars, free_vars,
{ e_state & es_var_heap = ps_var_heap, es_expression_heap = hp_expression_heap, es_type_heaps = hp_type_heaps, es_fun_defs = ps_fun_defs },
e_info, cs)
build_sequential_lets :: ![(Bool,[Bind Expression FreeVar])] !Expression !*ExpressionHeap -> (!Expression, !*ExpressionHeap)
build_sequential_lets [] expr expr_heap
= (expr, expr_heap)
build_sequential_lets [(nd_strict,[]) : seq_lets] expr expr_heap
= build_sequential_lets seq_lets expr expr_heap
build_sequential_lets [(nd_strict,binds) : seq_lets] expr expr_heap
# (let_expr, expr_heap) = build_sequential_lets seq_lets expr expr_heap
= buildLetExpression binds nd_strict let_expr expr_heap
newVarId name = { id_name = name, id_info = nilPtr }
determinePatternVariable (Yes bind) var_heap
= (bind, var_heap)
determinePatternVariable No var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ bind_src = newVarId "_x", bind_dst = new_info_ptr }, var_heap)
convertSubPatterns [] result_expr var_store expr_heap opt_dynamics cs
= ([], result_expr, var_store, expr_heap, opt_dynamics, cs)
convertSubPatterns [pattern : patterns] result_expr var_store expr_heap opt_dynamics cs
# (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns patterns result_expr var_store expr_heap opt_dynamics cs
(var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs
= ([var_arg : var_args], result_expr, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Variable name var_info (Yes {bind_src,bind_dst})) result_expr var_store expr_heap opt_dynamics cs
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }
free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }
(let_expr, expr_heap) = buildLetExpression [{ bind_src = Var bound_var,
bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}] cIsNotStrict result_expr expr_heap
= (free_var, let_expr, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Variable name var_info No) result_expr var_store expr_heap opt_dynamics cs
= ({ fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Algebraic cons_symbol type_index args opt_var) result_expr var_store expr_heap opt_dynamics cs
# (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs
type_symbol = { glob_module = cons_symbol.glob_module, glob_object = type_index }
case_guards = AlgebraicPatterns type_symbol [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr }]
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
Case { case_expr = Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr },
case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr }, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Basic basic_val opt_var) result_expr var_store expr_heap opt_dynamics cs
# (basic_type, cs) = typeOfBasicValue basic_val cs
case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr }]
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
Case { case_expr = Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr },
case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr}, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern (AP_Dynamic pattern type opt_var) result_expr var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs
({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
(var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty }]
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 },
buildTypeCase (Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }) type_case_patterns No type_case_info_ptr,
var_store, expr_heap, [dynamic_info_ptr], cs)
convertSubPattern (AP_WildCard opt_var) result_expr var_store expr_heap opt_dynamics cs
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, result_expr, var_store, expr_heap, opt_dynamics, cs)
convertSubPattern ap result_expr var_store expr_heap opt_dynamics cs
= abort ("convertSubPattern: unknown pattern " ---> ap)
typeOfBasicValue :: !BasicValue !*CheckState -> (!BasicType, !*CheckState)
typeOfBasicValue (BVI _) cs = (BT_Int, cs)
typeOfBasicValue (BVC _) cs = (BT_Char, cs)
typeOfBasicValue (BVB _) cs = (BT_Bool, cs)
typeOfBasicValue (BVR _) cs = (BT_Real, cs)
typeOfBasicValue (BVS _) cs
# ({glob_module,glob_object={ds_ident,ds_index,ds_arity}}, cs) = getPredefinedGlobalSymbol PD_StringType PD_PredefinedModule STE_Type 0 cs
= (BT_String (TA (MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity) []), cs)
checkFunctionBodies (ParsedBody [{pb_args,pb_rhs={rhs_alts,rhs_locals}} : bodies]) e_input=:{ei_expr_level,ei_mod_index}
e_state=:{es_var_heap, es_fun_defs} e_info cs
# (aux_patterns, var_env, {ps_var_heap, ps_fun_defs}, e_info, cs)
= check_patterns pb_args {pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False} []
{ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs
# (rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs)
= checkRhs [] rhs_alts rhs_locals e_input { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs } e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
(cb_args, es_var_heap) = mapSt determine_function_arg aux_patterns e_state.es_var_heap
(rhss, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs)
= check_function_bodies free_vars cb_args bodies e_input { e_state & es_var_heap = es_var_heap, es_dynamics = [] } e_info
{ cs & cs_symbol_table = cs_symbol_table }
(rhs, es_var_heap, es_expression_heap, dynamics_in_patterns, cs)
= transform_patterns_into_cases aux_patterns cb_args rhs_expr es_var_heap es_expression_heap dynamics_in_rhs cs
= (CheckedBody { cb_args = cb_args, cb_rhs = [rhs : rhss] }, free_vars,
{ e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs)
where
check_patterns [pattern : patterns] p_input var_env var_store e_info cs
# (aux_pat, var_env, var_store, e_info, cs) = checkPattern pattern No p_input var_env var_store e_info cs
(aux_pats, var_env, var_store, e_info, cs) = check_patterns patterns p_input var_env var_store e_info cs
= ([aux_pat : aux_pats], var_env, var_store, e_info, cs)
check_patterns [] p_input var_env var_store e_info cs
= ([], var_env, var_store, e_info, cs)
determine_function_arg (AP_Variable name var_info (Yes {bind_src, bind_dst})) var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Variable name var_info No) var_store
= ({ fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Algebraic _ _ _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Basic _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg (AP_Dynamic _ _ opt_var) var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
determine_function_arg _ var_store
# ({bind_src,bind_dst}, var_store) = determinePatternVariable No var_store
= ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store)
check_function_bodies free_vars fun_args [{pb_args,pb_rhs={rhs_alts,rhs_locals}} : bodies] e_input=:{ei_expr_level,ei_mod_index}
e_state=:{es_var_heap,es_fun_defs} e_info cs
# (aux_patterns, var_env, {ps_var_heap, ps_fun_defs}, e_info, cs)
= check_patterns pb_args { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } []
{ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs
e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs}
(rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs
cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table
(rhs_exprs, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs)
= check_function_bodies free_vars fun_args bodies e_input { e_state & es_dynamics = [] } e_info { cs & cs_symbol_table = cs_symbol_table }
(rhs_expr, es_var_heap, es_expression_heap, dynamics_in_patterns, cs)
= transform_patterns_into_cases aux_patterns fun_args rhs_expr es_var_heap es_expression_heap dynamics_in_rhs cs
= ([rhs_expr : rhs_exprs], free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap,
es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs)
check_function_bodies free_vars fun_args [] e_input e_state e_info cs
= ([], free_vars, e_state, e_info, cs)
transform_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr var_store expr_heap opt_dynamics cs
# (patterns_expr, var_store, expr_heap, opt_dynamics, cs)
= transform_succeeding_patterns_into_cases patterns fun_args result_expr var_store expr_heap opt_dynamics cs
= transform_pattern_into_cases pattern fun_arg patterns_expr var_store expr_heap opt_dynamics cs
where
transform_succeeding_patterns_into_cases [] _ result_expr var_store expr_heap opt_dynamics cs
= (result_expr, var_store, expr_heap, opt_dynamics, cs)
transform_succeeding_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr var_store expr_heap opt_dynamics cs
# (patterns_expr, var_store, expr_heap, opt_dynamics, cs)
= transform_succeeding_patterns_into_cases patterns fun_args result_expr var_store expr_heap opt_dynamics cs
= transform_pattern_into_cases pattern fun_arg patterns_expr var_store expr_heap opt_dynamics cs
transform_patterns_into_cases [] _ result_expr var_store expr_heap opt_dynamics cs
= (result_expr, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases :: !AuxiliaryPattern !FreeVar !Expression !*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState
-> (!Expression, !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState)
transform_pattern_into_cases (AP_Variable name var_info opt_var) fun_arg=:{fv_info_ptr,fv_name} result_expr var_store expr_heap opt_dynamics cs
= case opt_var of
Yes {bind_src, bind_dst}
| bind_dst == fv_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict = cIsStrict, let_binds = [
{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr },
bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}],
let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs)
# (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap
(var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict = cIsStrict, let_binds = [
{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 },
bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }},
{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 },
bind_dst = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }}],
let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs)
No
| var_info == fv_info_ptr
-> (result_expr, var_store, expr_heap, opt_dynamics, cs)
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> (Let { let_strict = cIsStrict, let_binds =
[{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr },
bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}],
let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Algebraic cons_symbol type_index args opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs
# (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs
type_symbol = {glob_module = cons_symbol.glob_module, glob_object = type_index}
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
case_guards = AlgebraicPatterns type_symbol [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr }]
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr },
var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Basic basic_val opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs
# (basic_type, cs) = typeOfBasicValue basic_val cs
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr }]
(case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr },
var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Dynamic pattern type opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs
# (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs
(type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap
(act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap
type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty }]
= (buildTypeCase act_var type_case_patterns No type_case_info_ptr, var_store, expr_heap, [dynamic_info_ptr], cs)
transform_pattern_into_cases (AP_WildCard _) fun_arg result_expr var_store expr_heap opt_dynamics cs
= (result_expr, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_into_cases (AP_Empty name) fun_arg result_expr var_store expr_heap opt_dynamics cs
= (result_expr, var_store, expr_heap, opt_dynamics, cs)
transform_pattern_variable :: !FreeVar !(Optional !(Bind Ident VarInfoPtr)) !Expression !*ExpressionHeap
-> (!Expression, !Expression, !*ExpressionHeap)
transform_pattern_variable {fv_info_ptr,fv_name} (Yes {bind_src,bind_dst}) result_expr expr_heap
| bind_dst == fv_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap)
# (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap
(var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap
(let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 },
Let { let_strict = cIsNotStrict, let_binds =
[{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 },
bind_dst = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }}],
let_expr = result_expr, let_info_ptr = let_expr_ptr}, expr_heap)
transform_pattern_variable {fv_info_ptr,fv_name} No result_expr expr_heap
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap)
initializeContextVariables :: ![TypeContext] !*VarHeap -> (![TypeContext], !*VarHeap)
initializeContextVariables contexts var_heap
= mapSt add_variable_to_context contexts var_heap
where
add_variable_to_context context var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ context & tc_var = new_info_ptr}, var_heap)
checkFunction :: !Index !Index !Level !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef},!*ExpressionInfo, !*Heaps, !*CheckState);
checkFunction mod_index fun_index def_level fun_defs
e_info=:{ef_type_defs,ef_modules,ef_class_defs,ef_is_macro_fun} heaps=:{hp_var_heap,hp_expression_heap,hp_type_heaps} cs=:{cs_error}
#! fun_def = fun_defs.[fun_index]
# {fun_symb,fun_pos,fun_body,fun_type} = fun_def
position = newPosition fun_symb fun_pos
cs = { cs & cs_error = pushErrorAdmin position cs_error }
(fun_type, ef_type_defs, ef_class_defs, ef_modules, hp_var_heap, hp_type_heaps, cs)
= check_function_type fun_type mod_index ef_type_defs ef_class_defs ef_modules hp_var_heap hp_type_heaps cs
e_info = { e_info & ef_type_defs = ef_type_defs, ef_class_defs = ef_class_defs, ef_modules = ef_modules }
e_state = { es_var_heap = hp_var_heap, es_expression_heap = hp_expression_heap, es_type_heaps = hp_type_heaps,
es_dynamics = [], es_calls = [], es_fun_defs = fun_defs }
e_input = { ei_expr_level = inc def_level, ei_fun_index = fun_index, ei_fun_level = inc def_level, ei_mod_index = mod_index }
(fun_body, free_vars, e_state, e_info, cs) = checkFunctionBodies fun_body e_input e_state e_info cs
# {es_fun_defs,es_calls,es_var_heap,es_expression_heap,es_type_heaps,es_dynamics} = e_state
(ef_type_defs, ef_modules, es_type_heaps, es_expression_heap, cs) =
checkDynamicTypes mod_index es_dynamics fun_type e_info.ef_type_defs e_info.ef_modules es_type_heaps es_expression_heap cs
cs = { cs & cs_error = popErrorAdmin cs.cs_error }
fun_info = { fun_def.fun_info & fi_calls = es_calls, fi_def_level = def_level, fi_free_vars = free_vars, fi_dynamics = es_dynamics,
fi_is_macro_fun = ef_is_macro_fun }
fun_defs = { es_fun_defs & [fun_index] = { fun_def & fun_body = fun_body, fun_index = fun_index, fun_info = fun_info, fun_type = fun_type}}
(fun_defs, cs_symbol_table) = remove_calls_from_symbol_table fun_index def_level es_calls fun_defs cs.cs_symbol_table
= (fun_defs,
{ e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules },
{ heaps & hp_var_heap = es_var_heap, hp_expression_heap = es_expression_heap, hp_type_heaps = es_type_heaps },
{ cs & cs_symbol_table = cs_symbol_table })
where
check_function_type (Yes ft) module_index type_defs class_defs modules var_heap type_heaps cs
# (ft, _, type_defs, class_defs, modules, type_heaps, cs) = checkSymbolType module_index ft SP_None type_defs class_defs modules type_heaps cs
(st_context, var_heap) = initializeContextVariables ft.st_context var_heap
= (Yes { ft & st_context = st_context } , type_defs, class_defs, modules, var_heap, type_heaps, cs)
check_function_type No module_index type_defs class_defs modules var_heap type_heaps cs
= (No, type_defs, class_defs, modules, var_heap, type_heaps, cs)
remove_calls_from_symbol_table fun_index fun_level [{fc_index, fc_level} : fun_calls] fun_defs symbol_table
| fc_level <= fun_level
#! {fun_symb=fun_symb=:{id_info}} = fun_defs.[fc_index]
#! entry = sreadPtr id_info symbol_table
// ---> ("remove_calls_from_symbol_table", fun_symb, ptrToInt id_info, fc_index)
# (c,cs) = get_calls entry.ste_kind
| fun_index == c
= remove_calls_from_symbol_table fun_index fun_level fun_calls fun_defs (symbol_table <:= (id_info,{ entry & ste_kind = STE_FunctionOrMacro cs}))
= abort " Error in remove_calls_from_symbol_table"
= remove_calls_from_symbol_table fun_index fun_level fun_calls fun_defs symbol_table
remove_calls_from_symbol_table fun_index fun_level [] fun_defs symbol_table
= (fun_defs, symbol_table)
get_calls (STE_FunctionOrMacro [x:xs]) = (x,xs)
get_calls ste_kind = abort "get_calls (check.icl)" // <<- ste_kind
checkFunctions :: !Index !Level !Index !Index !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef}, !*ExpressionInfo, !*Heaps, !*CheckState)
checkFunctions mod_index level from_index to_index fun_defs e_info heaps cs
| from_index == to_index
= (fun_defs, e_info, heaps, cs)
# (fun_defs, e_info, heaps, cs) = checkFunction mod_index from_index level fun_defs e_info heaps cs
= checkFunctions mod_index level (inc from_index) to_index fun_defs e_info heaps cs
checkMacros :: !Index !IndexRange !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState
-> (!*{#FunDef}, !*ExpressionInfo, !*Heaps, !*CheckState);
checkMacros mod_index range fun_defs e_info=:{ef_is_macro_fun=ef_is_macro_fun_old} heaps cs
# (fun_defs, e_info, heaps=:{hp_var_heap, hp_expression_heap}, cs=:{cs_symbol_table,cs_error})
= checkFunctions mod_index cGlobalScope range.ir_from range.ir_to fun_defs { e_info & ef_is_macro_fun=True } heaps cs
(e_info=:{ef_modules}) = { e_info & ef_is_macro_fun=ef_is_macro_fun_old }
(fun_defs, ef_modules, hp_var_heap, hp_expression_heap, cs_symbol_table, cs_error)
= partitionateMacros range mod_index fun_defs ef_modules hp_var_heap hp_expression_heap cs_symbol_table cs_error
= (fun_defs, { e_info & ef_modules = ef_modules }, {heaps & hp_var_heap = hp_var_heap, hp_expression_heap = hp_expression_heap},
{ cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error })
checkInstanceBodies :: !IndexRange !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef},!*ExpressionInfo,!*Heaps, !*CheckState);
checkInstanceBodies {ir_from, ir_to} fun_defs e_info heaps cs
= checkFunctions cIclModIndex cGlobalScope ir_from ir_to fun_defs e_info heaps cs
instance < FunDef
where
(<) fd1 fd2 = fd1.fun_symb.id_name < fd2.fun_symb.id_name
createCommonDefinitions {def_types,def_constructors,def_selectors,def_macros,def_classes,def_members,def_instances}
= { com_type_defs = { type \\ type <- def_types }
, com_cons_defs = { cons \\ cons <- def_constructors }
, com_selector_defs = { sel \\ sel <- def_selectors }
, com_class_defs = { class_def \\ class_def <- def_classes }
, com_member_defs = { member \\ member <- def_members }
, com_instance_defs = { next_instance \\ next_instance <- def_instances }
}
IsMainDclMod is_dcl module_index :== is_dcl && module_index == cIclModIndex
checkCommonDefinitions :: !Bool !Index !*CommonDefs !*{# DclModule} !*TypeHeaps !*VarHeap !*CheckState
-> (!*CommonDefs, !*{# DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState)
checkCommonDefinitions is_dcl module_index common modules type_heaps var_heap cs
# (com_type_defs, com_cons_defs, com_selector_defs, modules, var_heap, type_heaps, cs)
= checkTypeDefs (IsMainDclMod is_dcl module_index) common.com_type_defs module_index
common.com_cons_defs common.com_selector_defs modules var_heap type_heaps cs
(com_class_defs, com_member_defs, com_type_defs, modules, type_heaps, cs)
= checkTypeClasses 0 module_index common.com_class_defs common.com_member_defs com_type_defs modules type_heaps cs
(com_member_defs, com_type_defs, com_class_defs, modules, type_heaps, var_heap, cs)
= checkMemberTypes module_index com_member_defs com_type_defs com_class_defs modules type_heaps var_heap cs
(com_instance_defs, com_type_defs, com_class_defs, com_member_defs, modules, type_heaps, cs)
= checkInstanceDefs module_index common.com_instance_defs com_type_defs com_class_defs com_member_defs modules type_heaps cs
(com_class_defs, modules, new_type_defs, new_selector_defs, new_cons_defs, th_vars, var_heap, cs)
= createClassDictionaries module_index com_class_defs modules (size com_type_defs) (size com_selector_defs)
(size com_cons_defs) type_heaps.th_vars var_heap cs
com_type_defs = { type_def \\ type_def <- [ type_def \\ type_def <-: com_type_defs ] ++ new_type_defs }
com_selector_defs = { sel_def \\ sel_def <- [ sel_def \\ sel_def <-: com_selector_defs ] ++ new_selector_defs }
com_cons_defs = { cons_def \\ cons_def <- [ cons_def \\ cons_def <-: com_cons_defs ] ++ new_cons_defs }
= ({common & com_type_defs = com_type_defs, com_cons_defs = com_cons_defs, com_selector_defs = com_selector_defs, com_class_defs = com_class_defs,
com_member_defs = com_member_defs, com_instance_defs = com_instance_defs }, modules, { type_heaps & th_vars = th_vars }, var_heap, cs)
collectCommonfinitions :: !(CollectedDefinitions ClassInstance a) -> (!*{# Int}, ![Declaration])
collectCommonfinitions {def_types,def_constructors,def_selectors,def_macros,def_classes,def_members,def_instances}
# sizes = createArray cConversionTableSize 0
(size, defs) = foldSt type_def_to_dcl def_types (0, [])
sizes = { sizes & [cTypeDefs] = size }
(size, defs) = foldSt cons_def_to_dcl def_constructors (0, defs)
sizes = { sizes & [cConstructorDefs] = size }
(size, defs) = foldSt selector_def_to_dcl def_selectors (0, defs)
sizes = { sizes & [cSelectorDefs] = size }
(size, defs) = foldSt class_def_to_dcl def_classes (0, defs)
sizes = { sizes & [cClassDefs] = size }
(size, defs) = foldSt member_def_to_dcl def_members (0, defs)
sizes = { sizes & [cMemberDefs] = size }
(size, defs) = foldSt instance_def_to_dcl def_instances (0, defs)
sizes = { sizes & [cInstanceDefs] = size }
= (sizes, defs)
where
type_def_to_dcl {td_name, td_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = td_name, dcl_pos = td_pos, dcl_kind = STE_Type, dcl_index = dcl_index } : decls])
cons_def_to_dcl {cons_symb, cons_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = cons_symb, dcl_pos = cons_pos, dcl_kind = STE_Constructor, dcl_index = dcl_index } : decls])
selector_def_to_dcl {sd_symb, sd_field, sd_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = sd_field, dcl_pos = sd_pos, dcl_kind = STE_Field sd_symb, dcl_index = dcl_index } : decls])
class_def_to_dcl {class_name, class_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = class_name, dcl_pos = class_pos, dcl_kind = STE_Class, dcl_index = dcl_index } : decls])
member_def_to_dcl {me_symb, me_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = me_symb, dcl_pos = me_pos, dcl_kind = STE_Member, dcl_index = dcl_index } : decls])
instance_def_to_dcl {ins_ident, ins_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = ins_ident, dcl_pos = ins_pos, dcl_kind = STE_Instance, dcl_index = dcl_index } : decls])
collectMacros {ir_from,ir_to} macro_defs sizes_defs
= collectGlobalFunctions cMacroDefs ir_from ir_to macro_defs sizes_defs
collectFunctionTypes fun_types (sizes, defs)
# (size, defs) = foldSt fun_type_to_dcl fun_types (0, defs)
= ({ sizes & [cFunctionDefs] = size }, defs)
where
fun_type_to_dcl {ft_symb, ft_pos} (dcl_index, decls)
= (inc dcl_index, [{ dcl_ident = ft_symb, dcl_pos = ft_pos, dcl_kind = STE_DclFunction, dcl_index = dcl_index } : decls])
collectGlobalFunctions def_index from_index to_index fun_defs (sizes, defs)
# (defs, fun_defs) = iFoldSt fun_def_to_dcl from_index to_index (defs, fun_defs)
= (fun_defs, ({ sizes & [def_index] = to_index - from_index }, defs))
where
fun_def_to_dcl dcl_index (defs, fun_defs)
# ({fun_symb, fun_pos}, fun_defs) = fun_defs![dcl_index]
= ([{ dcl_ident = fun_symb, dcl_pos = fun_pos, dcl_kind = STE_FunctionOrMacro [], dcl_index = dcl_index } : defs], fun_defs)
combineDclAndIclModule MK_Main modules icl_decl_symbols icl_definitions icl_sizes cs
= (modules, icl_decl_symbols, icl_definitions, icl_sizes, cs)
combineDclAndIclModule _ modules icl_decl_symbols icl_definitions icl_sizes cs
# (dcl_mod=:{dcl_declared={dcls_local},dcl_macros, dcl_sizes, dcl_common}, modules) = modules![cIclModIndex]
cs = addGlobalDefinitionsToSymbolTable icl_decl_symbols cs
(moved_dcl_defs, conversion_table, icl_sizes, icl_decl_symbols, cs)
= foldSt (add_to_conversion_table dcl_macros.ir_from) dcls_local ([], { createArray size NoIndex \\ size <-: dcl_sizes }, icl_sizes, icl_decl_symbols, cs)
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
= foldSt (add_dcl_definition dcl_common) moved_dcl_defs ([], [], [], [], [], cs)
cs_symbol_table = removeDeclarationsFromSymbolTable icl_decl_symbols cGlobalScope cs.cs_symbol_table
= ( { modules & [cIclModIndex] = { dcl_mod & dcl_conversions = Yes conversion_table }}
, icl_decl_symbols
, { icl_definitions
& def_types = my_append icl_definitions.def_types new_type_defs
, def_constructors = my_append icl_definitions.def_constructors new_cons_defs
, def_selectors = my_append icl_definitions.def_selectors new_selector_defs
, def_classes = my_append icl_definitions.def_classes new_class_defs
, def_members = my_append icl_definitions.def_members new_member_defs
}
, icl_sizes
, { cs & cs_symbol_table = cs_symbol_table }
)
where
add_to_conversion_table first_macro_index decl=:{dcl_ident=dcl_ident=:{id_info},dcl_kind,dcl_index,dcl_pos}
(moved_dcl_defs, conversion_table, icl_sizes, icl_defs, cs)
# (entry=:{ste_kind,ste_index,ste_def_level}, cs_symbol_table) = readPtr id_info cs.cs_symbol_table
| ste_kind == STE_Empty
# def_index = toInt dcl_kind
| can_be_only_in_dcl def_index
# (conversion_table, icl_sizes, icl_defs, cs_symbol_table)
= add_dcl_declaration id_info entry decl def_index dcl_index (conversion_table, icl_sizes, icl_defs, cs_symbol_table)
= ([ decl : moved_dcl_defs ], conversion_table, icl_sizes, icl_defs, { cs & cs_symbol_table = cs_symbol_table })
| def_index == cMacroDefs
# (conversion_table, icl_defs, cs_symbol_table)
= add_macro_declaration id_info entry decl def_index (dcl_index - first_macro_index) dcl_index
(conversion_table, icl_defs, cs_symbol_table)
= ([ decl : moved_dcl_defs ], conversion_table, icl_sizes, icl_defs, { cs & cs_symbol_table = cs_symbol_table })
# cs_error = checkError "definition module" "undefined in implementation module" (setErrorAdmin (newPosition dcl_ident dcl_pos) cs.cs_error)
= (moved_dcl_defs, conversion_table, icl_sizes, icl_defs, { cs & cs_error = cs_error, cs_symbol_table = cs_symbol_table })
| ste_def_level == cGlobalScope && ste_kind == dcl_kind
# def_index = toInt dcl_kind
dcl_index = if (def_index == cMacroDefs) (dcl_index - first_macro_index) dcl_index
= (moved_dcl_defs, { conversion_table & [def_index].[dcl_index] = ste_index }, icl_sizes, icl_defs, { cs & cs_symbol_table = cs_symbol_table })
# cs_error = checkError "definition module" "conflicting definition in implementation module"
(setErrorAdmin (newPosition dcl_ident dcl_pos) cs.cs_error)
= (moved_dcl_defs, conversion_table, icl_sizes, icl_defs, { cs & cs_error = cs_error, cs_symbol_table = cs_symbol_table })
/* To be done : cClassDefs and cMemberDefs */
can_be_only_in_dcl def_kind
= def_kind == cTypeDefs || def_kind == cConstructorDefs || def_kind == cSelectorDefs
|| def_kind == cClassDefs || def_kind == cMemberDefs
add_dcl_declaration info_ptr entry dcl def_index dcl_index (conversion_table, icl_sizes, icl_defs, symbol_table)
# (icl_index, icl_sizes) = icl_sizes![def_index]
= ( { conversion_table & [def_index].[dcl_index] = icl_index }
, { icl_sizes & [def_index] = inc icl_index }
, [ { dcl & dcl_index = icl_index } : icl_defs ]
, NewEntry symbol_table info_ptr dcl.dcl_kind icl_index cGlobalScope entry
)
add_macro_declaration info_ptr entry dcl def_index dcl_index icl_index (conversion_table, icl_defs, symbol_table)
= ( { conversion_table & [def_index].[dcl_index] = icl_index }
, [ { dcl & dcl_index = icl_index } : icl_defs ]
, NewEntry symbol_table info_ptr dcl.dcl_kind icl_index cGlobalScope entry
)
add_dcl_definition {com_type_defs} dcl=:{dcl_kind = STE_Type, dcl_index}
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
# type_def = com_type_defs.[dcl_index]
(new_type_defs, cs) = add_type_def type_def new_type_defs cs
= (new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
where
add_type_def td=:{td_pos, td_rhs = AlgType conses} new_type_defs cs
# (conses, cs) = mapSt (redirect_defined_symbol STE_Constructor td_pos) conses cs
= ([ { td & td_rhs = AlgType conses} : new_type_defs ], cs)
add_type_def td=:{td_pos, td_rhs = RecordType rt=:{rt_constructor,rt_fields}} new_type_defs cs
# (rt_constructor, cs) = redirect_defined_symbol STE_Constructor td_pos rt_constructor cs
(rt_fields, cs) = redirect_field_symbols td_pos rt_fields cs
= ([ { td & td_rhs = RecordType { rt & rt_constructor = rt_constructor, rt_fields = rt_fields }} : new_type_defs ], cs)
add_type_def td=:{td_name, td_pos, td_rhs = AbstractType _} new_type_defs cs
# cs_error = checkError "definition module" "abstract type not defined in implementation module"
(setErrorAdmin (newPosition td_name td_pos) cs.cs_error)
= (new_type_defs, { cs & cs_error = cs_error })
add_type_def td new_type_defs cs
= ([td : new_type_defs], cs)
redirect_field_symbols pos fields cs
# new_fields = { field \\ field <-: fields }
= iFoldSt (redirect_field_symbol pos fields) 0 (size fields) (new_fields, cs)
where
redirect_field_symbol pos fields field_nr (new_fields, cs)
# field = fields.[field_nr]
({ste_kind,ste_index}, cs_symbol_table) = readPtr field.fs_name.id_info cs.cs_symbol_table
| is_field ste_kind
= ({ new_fields & [field_nr] = { field & fs_index = ste_index }}, { cs & cs_symbol_table = cs_symbol_table })
# cs_error = checkError "definition module" "conflicting definition in implementation module"
(setErrorAdmin (newPosition field.fs_name pos) cs.cs_error)
= (new_fields, { cs & cs_error = cs_error, cs_symbol_table = cs_symbol_table })
is_field (STE_Field _) = True
is_field _ = False
add_dcl_definition {com_cons_defs} dcl=:{dcl_kind = STE_Constructor, dcl_index}
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
= (new_type_defs, new_class_defs, [ com_cons_defs.[dcl_index] : new_cons_defs ], new_selector_defs, new_member_defs, cs)
add_dcl_definition {com_selector_defs} dcl=:{dcl_kind = STE_Field _, dcl_index}
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
= (new_type_defs, new_class_defs, new_cons_defs, [ com_selector_defs.[dcl_index] : new_selector_defs ], new_member_defs, cs)
add_dcl_definition {com_class_defs} dcl=:{dcl_kind = STE_Class, dcl_index, dcl_pos}
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
# class_def = com_class_defs.[dcl_index]
(new_class_defs, cs) = add_class_def dcl_pos class_def new_class_defs cs
= (new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
where
add_class_def dcl_pos cd=:{class_members} new_class_defs cs
# (new_class_members, cs) = mapSt (redirect_defined_symbol STE_Member dcl_pos) [ cm \\ cm<-:class_members ] cs
= ([{cd & class_members={cm \\ cm<-new_class_members}}:new_class_defs], cs)
add_dcl_definition {com_member_defs} dcl=:{dcl_kind = STE_Member, dcl_index, dcl_pos}
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
# member_def = com_member_defs.[dcl_index]
= (new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, [member_def:new_member_defs], cs)
add_dcl_definition _ _
(new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
= (new_type_defs, new_class_defs, new_cons_defs, new_selector_defs, new_member_defs, cs)
redirect_defined_symbol req_kind pos ds=:{ds_ident} cs
# ({ste_kind,ste_index}, cs_symbol_table) = readPtr ds_ident.id_info cs.cs_symbol_table
| ste_kind == req_kind
= ({ ds & ds_index = ste_index }, { cs & cs_symbol_table = cs_symbol_table })
# cs_error = checkError "definition module" "conflicting definition in implementation module"
(setErrorAdmin (newPosition ds_ident pos) cs.cs_error)
= ({ ds & ds_index = ste_index }, { cs & cs_error = cs_error, cs_symbol_table = cs_symbol_table })
my_append front []
= front
my_append front back
= front ++ back
(<=<) infixl
(<=<) state fun :== fun state
checkModule :: !ScannedModule !Int ![FunDef] !ScannedModule !ScannedModule ![ScannedModule] !*PredefinedSymbols !*SymbolTable !*File
-> (!Bool, !*IclModule, *{# DclModule}, *{! Group}, !(Optional {# Index}), !*Heaps, !*PredefinedSymbols, !*SymbolTable, *File)
checkModule {mod_type,mod_name,mod_imports,mod_imported_objects,mod_defs = cdefs} nr_of_global_funs fun_defs dcl_mod pre_def_mod scanned_modules predef_symbols symbol_table err_file
# error = {ea_file = err_file, ea_loc = [], ea_ok = True }
first_inst_index = length fun_defs
(inst_fun_defs, def_instances) = convert_class_instances cdefs.def_instances first_inst_index
icl_functions = { next_fun \\ next_fun <- fun_defs ++ inst_fun_defs }
cdefs = { cdefs & def_instances = def_instances }
#! nr_of_functions = size icl_functions
# sizes_and_local_defs = collectCommonfinitions cdefs
(icl_functions, sizes_and_local_defs) = collectGlobalFunctions cFunctionDefs 0 nr_of_global_funs icl_functions sizes_and_local_defs
(icl_functions, (sizes, local_defs)) = collectMacros cdefs.def_macros icl_functions sizes_and_local_defs
(scanned_modules, icl_functions, cs)
= add_modules_to_symbol_table [ dcl_mod, pre_def_mod : scanned_modules ] 0 icl_functions
{ cs_symbol_table = symbol_table, cs_predef_symbols = predef_symbols, cs_error = error }
init_dcl_modules = [ initialDclModule scanned_module \\ scanned_module <- scanned_modules ]
(dcl_modules, local_defs, cdefs, sizes, cs)
= combineDclAndIclModule mod_type { dcl_module \\ dcl_module <- init_dcl_modules } local_defs cdefs sizes cs
icl_common = createCommonDefinitions cdefs
heaps = { hp_var_heap = newHeap, hp_expression_heap = newHeap, hp_type_heaps = { th_vars = newHeap, th_attrs = newHeap }}
(dcl_modules, icl_functions, heaps, cs)
= check_predefined_module pre_def_mod.mod_name dcl_modules icl_functions heaps cs
iinfo = { ii_modules = dcl_modules, ii_funs_and_macros = icl_functions, ii_next_num = 0, ii_deps = [] }
(iinfo, heaps, cs) = check_dcl_module iinfo heaps cs
(_, {ii_modules,ii_funs_and_macros = icl_functions}, heaps, cs) = checkImports mod_imports iinfo heaps cs
(nr_of_modules, (f_consequences, ii_modules, icl_functions, hp_expression_heap, cs))
= check_completeness_of_all_dcl_modules ii_modules icl_functions heaps.hp_expression_heap cs
(dcls_explicit, dcl_modules, cs) = addImportsToSymbolTable mod_imports [] ii_modules cs
cs = addGlobalDefinitionsToSymbolTable local_defs cs
(_, dcl_modules, icl_functions, hp_expression_heap, cs)
= check_completeness_of_module nr_of_modules dcls_explicit (mod_name.id_name+++".icl")
(f_consequences, dcl_modules, icl_functions, hp_expression_heap, cs)
heaps = { heaps & hp_expression_heap=hp_expression_heap }
(main_dcl_module, dcl_modules) = dcl_modules![cIclModIndex]
(icl_common, dcl_modules, hp_type_heaps, hp_var_heap, cs)
= checkCommonDefinitions cIsNotADclModule cIclModIndex icl_common dcl_modules heaps.hp_type_heaps heaps.hp_var_heap cs
(instance_types, icl_common, dcl_modules, hp_var_heap, hp_type_heaps, cs)
= checkInstances cIclModIndex icl_common dcl_modules hp_var_heap hp_type_heaps cs
heaps = { heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap }
e_info = { ef_type_defs = icl_common.com_type_defs, ef_selector_defs = icl_common.com_selector_defs, ef_class_defs = icl_common.com_class_defs,
ef_cons_defs = icl_common.com_cons_defs, ef_member_defs = icl_common.com_member_defs, ef_modules = dcl_modules,
ef_is_macro_fun = False }
(icl_functions, e_info, heaps, cs) = checkMacros cIclModIndex cdefs.def_macros icl_functions e_info heaps cs
(icl_functions, e_info, heaps, cs) = checkFunctions cIclModIndex cGlobalScope 0 nr_of_global_funs icl_functions e_info heaps cs
(icl_functions, e_info, heaps, {cs_symbol_table, cs_predef_symbols, cs_error})
= checkInstanceBodies {ir_from = first_inst_index, ir_to = nr_of_functions} icl_functions e_info heaps cs
(icl_imported, dcl_modules, cs_symbol_table) = retrieveImportsFromSymbolTable mod_imports [] e_info.ef_modules cs_symbol_table
| cs_error.ea_ok
# {hp_var_heap,hp_type_heaps,hp_expression_heap} = heaps
(spec_functions, dcl_modules, class_instances, icl_functions, new_nr_of_functions, dcl_icl_conversions, var_heap, th_vars, expr_heap)
= collect_specialized_functions_in_dcl_module dcl_modules icl_common.com_instance_defs icl_functions nr_of_functions
hp_var_heap hp_type_heaps.th_vars hp_expression_heap
icl_global_function_range = {ir_from = 0, ir_to = nr_of_global_funs}
icl_instances = {ir_from = first_inst_index, ir_to = nr_of_functions}
icl_specials = {ir_from = nr_of_functions, ir_to = new_nr_of_functions}
icl_functions = copy_instance_types instance_types { icl_fun \\ icl_fun <- [ icl_fun \\ icl_fun <-: icl_functions ] ++ spec_functions }
(dcl_modules, class_instances, icl_functions, cs_predef_symbols)
= adjust_instance_types_of_array_functions_in_std_array_icl dcl_modules class_instances icl_functions cs_predef_symbols
(groups, icl_functions, dcl_modules, var_heap, expr_heap, cs_symbol_table, cs_error)
= partitionateAndLiftFunctions [icl_global_function_range, icl_instances] cIclModIndex icl_functions
dcl_modules var_heap expr_heap cs_symbol_table cs_error
icl_common = { icl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs,
com_cons_defs = e_info.ef_cons_defs, com_member_defs = e_info.ef_member_defs, com_instance_defs = class_instances }
icl_mod = { icl_name = mod_name, icl_functions = icl_functions, icl_common = icl_common, icl_instances = icl_instances, icl_specials = icl_specials,
icl_imported_objects = mod_imported_objects,
icl_declared = {dcls_local = local_defs, dcls_import = icl_imported, dcls_explicit = dcls_explicit} }
= (cs_error.ea_ok, icl_mod, dcl_modules, groups, dcl_icl_conversions,
{ heaps & hp_var_heap = var_heap, hp_expression_heap = expr_heap, hp_type_heaps = { hp_type_heaps & th_vars = th_vars }},
cs_predef_symbols, cs_symbol_table, cs_error.ea_file)
# icl_common = { icl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs,
com_cons_defs = e_info.ef_cons_defs, com_member_defs = e_info.ef_member_defs }
icl_mod = { icl_name = mod_name, icl_functions = icl_functions, icl_common = icl_common,
icl_instances = {ir_from = first_inst_index, ir_to = nr_of_functions},
icl_specials = {ir_from = nr_of_functions, ir_to = nr_of_functions},
icl_imported_objects = mod_imported_objects,
icl_declared = {dcls_local = local_defs, dcls_import = icl_imported, dcls_explicit = dcls_explicit} }
= (False, icl_mod, dcl_modules, {}, No, heaps, cs_predef_symbols, cs_symbol_table, cs_error.ea_file)
where
convert_class_instances [pi=:{pi_members} : pins] next_fun_index
# ins_members = sort pi_members
(member_symbols, next_fun_index) = determine_indexes_of_members ins_members next_fun_index
(next_fun_defs, cins) = convert_class_instances pins next_fun_index
= (ins_members ++ next_fun_defs, [ParsedInstanceToClassInstance pi { member \\ member <- member_symbols} : cins])
convert_class_instances [] next_fun_index
= ([], [])
determine_indexes_of_members [{fun_symb,fun_arity}:members] next_fun_index
#! (member_symbols, last_fun_index) = determine_indexes_of_members members (inc next_fun_index)
= ([{ds_ident = fun_symb, ds_index = next_fun_index, ds_arity = fun_arity} : member_symbols], last_fun_index)
determine_indexes_of_members [] next_fun_index
= ([], next_fun_index)
add_modules_to_symbol_table [] mod_index macro_and_fun_defs cs=:{cs_predef_symbols,cs_symbol_table}
# (cs_predef_symbols, cs_symbol_table) = (cs_predef_symbols, cs_symbol_table)
<=< adjust_predefined_module_symbol PD_StdArray
<=< adjust_predefined_module_symbol PD_StdEnum
<=< adjust_predefined_module_symbol PD_StdBool
<=< adjust_predefined_module_symbol PD_StdDynamics
<=< adjust_predefined_module_symbol PD_PredefinedModule
= ([], macro_and_fun_defs, { cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table})
where
adjust_predefined_module_symbol :: !Index !(!*PredefinedSymbols, !*SymbolTable) -> (!*PredefinedSymbols, !*SymbolTable)
adjust_predefined_module_symbol predef_index (pre_def_symbols, symbol_table)
# (mod_symb, pre_def_symbols) = pre_def_symbols![predef_index]
#! mod_entry = sreadPtr mod_symb.pds_ident.id_info symbol_table
= case mod_entry.ste_kind of
STE_Module _
-> ({ pre_def_symbols & [predef_index] = { mod_symb & pds_module = cIclModIndex, pds_def = mod_entry.ste_index }}, symbol_table)
_
-> (pre_def_symbols, symbol_table)
add_modules_to_symbol_table [mod=:{mod_defs} : mods] mod_index macro_and_fun_defs cs=:{cs_predef_symbols,cs_symbol_table, cs_error}
# def_instances = convert_class_instances mod_defs.def_instances
mod_defs = { mod_defs & def_instances = def_instances }
sizes_and_defs = collectFunctionTypes mod_defs.def_funtypes (collectCommonfinitions mod_defs)
(macro_and_fun_defs, (sizes, defs)) = collectMacros mod_defs.def_macros macro_and_fun_defs sizes_and_defs
mod = { mod & mod_defs = mod_defs }
(cs_symbol_table, cs_error) = addDefToSymbolTable cGlobalScope mod_index mod.mod_name (STE_Module mod) cs_symbol_table cs_error
(mods, macro_and_fun_defs, cs)
= add_modules_to_symbol_table mods (inc mod_index) macro_and_fun_defs { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }
= ([(mod, sizes, defs) : mods], macro_and_fun_defs, cs)
where
convert_class_instances :: ![ParsedInstance a] -> [ClassInstance]
convert_class_instances [pi : pins]
= [ParsedInstanceToClassInstance pi {} : convert_class_instances pins]
convert_class_instances []
= []
check_predefined_module {id_info} modules macro_and_fun_defs heaps cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (id_info, { entry & ste_kind = STE_ClosedModule })}
{ste_kind = STE_Module mod, ste_index} = entry
(modules, macro_and_fun_defs, heaps, cs)
= checkDclModule mod ste_index modules macro_and_fun_defs heaps cs
({dcl_declared={dcls_import,dcls_local}}, modules) = modules![ste_index]
= (modules, macro_and_fun_defs, heaps, addDeclaredSymbolsToSymbolTable cIsADclModule ste_index dcls_local dcls_import cs)
check_dcl_module iinfo=:{ii_modules} heaps cs=:{cs_symbol_table}
#! dcl_mod = ii_modules.[cIclModIndex]
# dcl_info = dcl_mod.dcl_name.id_info
#! entry = sreadPtr dcl_info cs_symbol_table
# (_, iinfo, heaps, cs) = checkImport dcl_info entry iinfo heaps cs
= (iinfo, heaps, cs)
collect_specialized_functions_in_dcl_module :: !w:{# DclModule} !v:{# ClassInstance} !u:{# FunDef} !Index !*VarHeap !*TypeVarHeap !*ExpressionHeap
-> (![FunDef], !w:{# DclModule}, !v:{# ClassInstance}, !u:{# FunDef}, !Index, !(Optional {# Index}), !*VarHeap, !*TypeVarHeap, !*ExpressionHeap)
collect_specialized_functions_in_dcl_module modules icl_instances icl_functions first_free_index var_heap type_var_heap expr_heap
#! dcl_mod = modules.[cIclModIndex]
# {dcl_specials,dcl_functions,dcl_common,dcl_class_specials,dcl_conversions} = dcl_mod
= case dcl_conversions of
Yes conversion_table
# (new_conversion_table, icl_instances)
= build_conversion_table_for_instances_of_dcl_mod dcl_specials first_free_index
dcl_functions dcl_common.com_instance_defs conversion_table icl_instances
(spec_fun_defs, (icl_functions, last_index, (var_heap, type_var_heap, expr_heap)))
= collect_specialized_functions dcl_specials.ir_from dcl_specials.ir_to dcl_functions new_conversion_table
(icl_functions, first_free_index, (var_heap, type_var_heap, expr_heap))
-> (spec_fun_defs, modules, icl_instances, icl_functions, last_index, Yes new_conversion_table, var_heap, type_var_heap, expr_heap)
No
-> ([], modules, icl_instances, icl_functions, first_free_index, No, var_heap, type_var_heap, expr_heap)
where
build_conversion_table_for_instances_of_dcl_mod {ir_from,ir_to} first_free_index dcl_functions dcl_instances conversion_table icl_instances
#! nr_of_dcl_functions = size dcl_functions
# dcl_instances_table = conversion_table.[toInt STE_Instance]
dcl_function_table = conversion_table.[toInt STE_DclFunction]
new_table = { createArray nr_of_dcl_functions NoIndex & [i] = icl_index \\ icl_index <-: dcl_function_table & i <- [0..] }
index_diff = first_free_index - ir_from
new_table = { new_table & [i] = i + index_diff \\ i <- [ir_from .. ir_to - 1] }
= build_conversion_table_for_instances 0 dcl_instances dcl_instances_table icl_instances new_table
build_conversion_table_for_instances dcl_class_inst_index dcl_instances class_instances_table icl_instances new_table
| dcl_class_inst_index < size class_instances_table
# icl_index = class_instances_table.[dcl_class_inst_index]
#! icl_instance = icl_instances.[icl_index]
dcl_instance = dcl_instances.[dcl_class_inst_index]
# new_table = build_conversion_table_for_instances_of_members 0 dcl_instance.ins_members icl_instance.ins_members new_table
= build_conversion_table_for_instances (inc dcl_class_inst_index) dcl_instances class_instances_table icl_instances new_table
= (new_table, icl_instances)
build_conversion_table_for_instances_of_members mem_index dcl_members icl_members new_table
| mem_index < size dcl_members
# dcl_member = dcl_members.[mem_index]
icl_member = icl_members.[mem_index]
= build_conversion_table_for_instances_of_members (inc mem_index) dcl_members icl_members
{ new_table & [dcl_member.ds_index] = icl_member.ds_index }
= new_table
collect_specialized_functions spec_index last_index dcl_fun_types conversion_table (icl_functions, next_fun_index, heaps)
| spec_index < last_index
# {ft_type,ft_specials = SP_FunIndex dcl_index} = dcl_fun_types.[spec_index]
icl_index = conversion_table.[dcl_index]
#! icl_fun = icl_functions.[icl_index]
(new_fun_def, heaps) = build_function next_fun_index icl_fun ft_type heaps
(new_fun_defs, funs_index_heaps)
= collect_specialized_functions (inc spec_index) last_index dcl_fun_types conversion_table (icl_functions, inc next_fun_index, heaps)
= ([new_fun_def : new_fun_defs], funs_index_heaps)
= ([], (icl_functions, next_fun_index, heaps))
build_function new_fun_index fun_def=:{fun_symb, fun_arity, fun_index, fun_body = CheckedBody {cb_args}, fun_info} fun_type
(var_heap, type_var_heap, expr_heap)
# (tb_args, var_heap) = mapSt new_free_var cb_args var_heap
(app_args, expr_heap) = mapSt new_bound_var tb_args expr_heap
(app_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
tb_rhs = App { app_symb = { symb_name = fun_symb, symb_arity = fun_arity,
symb_kind = SK_Function { glob_module = cIclModIndex, glob_object = fun_index }},
app_args = app_args,
app_info_ptr = app_info_ptr }
= ({ fun_def & fun_index = new_fun_index, fun_body = TransformedBody {tb_args = tb_args, tb_rhs = tb_rhs}, fun_type = Yes fun_type,
fun_info = { EmptyFunInfo & fi_calls = [ { fc_index = fun_index, fc_level = cGlobalScope }] }},
(var_heap, type_var_heap, expr_heap))
new_bound_var :: !FreeVar !*ExpressionHeap -> (!Expression, !*ExpressionHeap)
new_bound_var {fv_name,fv_info_ptr} expr_heap
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
= (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, expr_heap)
new_free_var :: !FreeVar *VarHeap -> (!FreeVar, !*VarHeap)
new_free_var fv var_heap
# (fv_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({ fv & fv_info_ptr = fv_info_ptr, fv_def_level = NotALevel, fv_count = 0}, var_heap)
copy_instance_types :: [(Index,SymbolType)] !*{# FunDef} -> !*{# FunDef}
copy_instance_types types fun_defs
= foldl copy_instance_type fun_defs types
copy_instance_type fun_defs (index, symbol_type)
#! inst_def = fun_defs.[index]
= { fun_defs & [index] = { inst_def & fun_type = Yes symbol_type }}
adjust_instance_types_of_array_functions_in_std_array_icl dcl_modules class_instances fun_defs predef_symbols
# ({pds_def}, predef_symbols) = predef_symbols![PD_StdArray]
| pds_def == cIclModIndex
#! nr_of_instances = size class_instances
# ({dcl_common, dcl_conversions = Yes conversion_table}, dcl_modules) = dcl_modules![cIclModIndex]
({pds_def}, predef_symbols) = predef_symbols![PD_ArrayClass]
(offset_table, _, predef_symbols) = arrayFunOffsetToPD_IndexTable dcl_common.com_member_defs predef_symbols
array_class_index = conversion_table.[cClassDefs].[pds_def]
(class_instances, fun_defs, predef_symbols)
= iFoldSt (adjust_instance_types_of_array_functions array_class_index offset_table) 0 nr_of_instances
(class_instances, fun_defs, predef_symbols)
= (dcl_modules, class_instances, fun_defs, predef_symbols)
= (dcl_modules, class_instances, fun_defs, predef_symbols)
where
adjust_instance_types_of_array_functions array_class_index offset_table inst_index (class_instances, fun_defs, predef_symbols)
# ({ins_class={glob_module,glob_object={ds_index}},ins_type,ins_members}, class_instances) = class_instances![inst_index]
| glob_module == cIclModIndex && ds_index == array_class_index && elemTypeIsStrict ins_type.it_types predef_symbols
# fun_defs = iFoldSt (make_instance_strict ins_members offset_table) 0 (size ins_members) fun_defs
= (class_instances, fun_defs, predef_symbols)
= (class_instances, fun_defs, predef_symbols)
make_instance_strict instances offset_table ins_offset instance_defs
# {ds_index} = instances.[ins_offset]
(inst_def, instance_defs) = instance_defs![ds_index]
(Yes symbol_type) = inst_def.fun_type
= { instance_defs & [ds_index] = { inst_def & fun_type = Yes (makeElemTypeOfArrayFunctionStrict symbol_type ins_offset offset_table) } }
arrayFunOffsetToPD_IndexTable member_defs predef_symbols
# nr_of_array_functions = size member_defs
= iFoldSt offset_to_PD_index PD_CreateArrayFun (PD_CreateArrayFun + nr_of_array_functions)
(createArray nr_of_array_functions NoIndex, member_defs, predef_symbols)
where
offset_to_PD_index pd_index (table, member_defs, predef_symbols)
# ({pds_def}, predef_symbols) = predef_symbols![pd_index]
#! {me_offset} = member_defs.[pds_def]
= ({ table & [me_offset] = pd_index }, member_defs, predef_symbols)
elemTypeIsStrict [TA {type_index={glob_object,glob_module}} _ : _] predef_symbols
= glob_module == predef_symbols.[PD_PredefinedModule].pds_def &&
(glob_object == predef_symbols.[PD_StrictArrayType].pds_def || glob_object == predef_symbols.[PD_UnboxedArrayType].pds_def)
makeElemTypeOfArrayFunctionStrict st=:{st_args,st_result} me_offset offset_table
# array_fun_kind = offset_table.[me_offset]
| array_fun_kind == PD_UnqArraySelectFun
# (TA tuple [elem : res_array]) = st_result.at_type
= { st & st_result = { st_result & at_type = TA tuple [{ elem & at_annotation = AN_Strict } : res_array]}}
| array_fun_kind == PD_ArrayUpdateFun
# [array, index, elem: _] = st_args
= { st & st_args = [array, index, { elem & at_annotation = AN_Strict }] }
| array_fun_kind == PD_CreateArrayFun
# [array, elem: _] = st_args
= { st & st_args = [array, { elem & at_annotation = AN_Strict }] }
| array_fun_kind == PD_ArrayReplaceFun
# [arg_array, index, elem: _] = st_args
(TA tuple [elem : res_array]) = st_result.at_type
= { st & st_args = [arg_array, index, { elem & at_annotation = AN_Strict }],
st_result = { st_result & at_type = TA tuple [{ elem & at_annotation = AN_Strict } : res_array]}}
= st
:: ImportInfo =
{ ii_modules :: !.{# DclModule}
, ii_funs_and_macros :: !.{# FunDef}
, ii_next_num :: !Int
, ii_deps :: ![SymbolPtr]
}
checkImports :: ![ParsedImport] !*ImportInfo !*Heaps !*CheckState -> (!Int, !*ImportInfo, !*Heaps, !*CheckState)
checkImports [] iinfo=:{ii_modules,ii_deps} heaps cs
#! mod_num = size ii_modules
= (mod_num, iinfo, heaps, cs)
checkImports [ {import_module = {id_info}}: mods ] iinfo heaps cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
# (min_mod_num1, iinfo, heaps, cs) = checkImport id_info entry iinfo heaps cs
(min_mod_num2, iinfo, heaps, cs) = checkImports mods iinfo heaps cs
= (min min_mod_num1 min_mod_num2, iinfo, heaps, cs)
checkImport :: SymbolPtr SymbolTableEntry *ImportInfo *Heaps *CheckState -> *(Int,*ImportInfo,*Heaps,*CheckState)
checkImport module_id_info entry=:{ste_kind = STE_OpenModule mod_num _} iinfo heaps cs
= (mod_num, iinfo, heaps, cs)
checkImport module_id_info entry=:{ste_kind = STE_ClosedModule} iinfo=:{ii_modules} heaps cs
#! mod_num = size ii_modules
= (mod_num, iinfo, heaps, cs)
checkImport module_id_info entry=:{ste_kind = STE_Module mod, ste_index} iinfo=:{ii_next_num,ii_deps} heaps cs=:{cs_symbol_table}
# entry = { entry & ste_kind = STE_OpenModule ii_next_num mod}
cs = { cs & cs_symbol_table = cs_symbol_table <:= (module_id_info,entry) }
iinfo = { iinfo & ii_next_num = inc ii_next_num, ii_deps = [module_id_info : ii_deps] }
(min_mod_num, iinfo, heaps, cs) = checkImports mod.mod_imports iinfo heaps cs
| ii_next_num <= min_mod_num
# {ii_deps,ii_modules,ii_funs_and_macros} = iinfo
(ii_deps, ii_modules, ii_funs_and_macros, heaps, cs)
= check_component module_id_info ii_deps ii_modules ii_funs_and_macros heaps cs
#! max_mod_num = size ii_modules
= (max_mod_num, { iinfo & ii_deps = ii_deps, ii_modules = ii_modules, ii_funs_and_macros = ii_funs_and_macros }, heaps, cs)
= (min_mod_num, iinfo, heaps, cs)
where
check_component lowest_mod_info [mod_info : ds] modules macro_and_fun_defs heaps cs=:{cs_symbol_table}
#! entry = sreadPtr mod_info cs_symbol_table
# {ste_kind=STE_OpenModule _ mod,ste_index} = entry
(modules, macro_and_fun_defs, heaps, cs) = checkDclModule mod ste_index modules macro_and_fun_defs heaps cs
cs = { cs & cs_symbol_table = cs.cs_symbol_table <:= (mod_info, { entry & ste_kind = STE_ClosedModule })}
| lowest_mod_info == mod_info
= (ds, modules, macro_and_fun_defs, heaps, cs)
= check_component lowest_mod_info ds modules macro_and_fun_defs heaps cs
initialDclModule ({mod_name, mod_defs=mod_defs=:{def_funtypes,def_macros}, mod_type}, sizes, all_defs)
# dcl_common= createCommonDefinitions mod_defs
= { dcl_name = mod_name
, dcl_functions = { function \\ function <- mod_defs.def_funtypes }
, dcl_macros = def_macros
, dcl_instances = { ir_from = 0, ir_to = 0 }
, dcl_class_specials = { ir_from = 0, ir_to = 0 }
, dcl_specials = { ir_from = 0, ir_to = 0 }
, dcl_common = dcl_common
, dcl_sizes = sizes
, dcl_declared =
{ dcls_import = []
, dcls_local = all_defs
, dcls_explicit = []
}
, dcl_conversions = No
, dcl_is_system = case mod_type of
MK_System -> True
_ -> False
}
checkDclModule {mod_name,mod_imports,mod_defs} mod_index modules icl_functions heaps=:{hp_var_heap, hp_type_heaps} cs
#! dcl_mod = modules.[mod_index]
# dcl_defined = dcl_mod.dcl_declared.dcls_local
// createCommonDefinitions only converts lists into arrays
dcl_common = createCommonDefinitions mod_defs
dcl_macros = mod_defs.def_macros
(imports, modules, cs) = collect_imported_symbols mod_imports [] modules cs
// imports :: [(Index,Declarations)]
# cs = add_imported_symbols_to_symbol_table imports cs
cs = addGlobalDefinitionsToSymbolTable dcl_defined cs
nr_of_dcl_functions = size dcl_mod.dcl_functions
(dcl_common, modules, hp_type_heaps, hp_var_heap, cs)
= checkCommonDefinitions cIsADclModule mod_index dcl_common modules hp_type_heaps hp_var_heap cs
(memb_inst_defs, nr_of_dcl_functions_and_instances, rev_spec_class_inst, dcl_common, modules, hp_type_heaps, hp_var_heap, cs)
= determineTypesOfInstances nr_of_dcl_functions mod_index dcl_common modules hp_type_heaps hp_var_heap cs
(nr_of_dcl_funs_insts_and_specs, rev_function_list, rev_special_defs, com_type_defs, com_class_defs, modules, heaps, cs)
= checkDclFunctions mod_index nr_of_dcl_functions_and_instances mod_defs.def_funtypes
dcl_common.com_type_defs dcl_common.com_class_defs modules { heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap } cs
(nr_of_dcl_funs_insts_and_specs, new_class_instances, rev_special_defs, all_spec_types, heaps, cs_error)
= checkSpecialsOfInstances mod_index nr_of_dcl_functions rev_spec_class_inst nr_of_dcl_funs_insts_and_specs []
rev_special_defs { mem \\ mem <- memb_inst_defs } { [] \\ mem <- memb_inst_defs } heaps cs.cs_error
dcl_functions = { function \\ function <- revAppend rev_function_list
( [ { mem_inst & ft_specials = if (isEmpty spec_types) SP_None (SP_ContextTypes spec_types) } \\
mem_inst <- memb_inst_defs & spec_types <-: all_spec_types ] ++
reverse rev_special_defs) }
e_info = { ef_type_defs = com_type_defs, ef_selector_defs = dcl_common.com_selector_defs, ef_class_defs = com_class_defs,
ef_cons_defs = dcl_common.com_cons_defs, ef_member_defs = dcl_common.com_member_defs, ef_modules = modules,
ef_is_macro_fun = False }
(icl_functions, e_info, heaps, cs)
= checkMacros mod_index dcl_macros icl_functions e_info heaps { cs & cs_error = cs_error }
com_instance_defs = dcl_common.com_instance_defs
com_instance_defs = { inst_def \\ inst_def <- [ inst_def \\ inst_def <-: com_instance_defs ] ++ new_class_instances }
(ef_member_defs, com_instance_defs, dcl_functions, cs)
= adjust_predefined_symbols mod_index e_info.ef_member_defs com_instance_defs dcl_functions cs
first_special_class_index = size com_instance_defs
last_special_class_index = first_special_class_index + length new_class_instances
dcl_common = { dcl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs,
com_instance_defs = com_instance_defs, com_cons_defs = e_info.ef_cons_defs, com_member_defs = ef_member_defs }
(dcl_imported, cs_symbol_table) = retrieveAndRemoveImportsFromSymbolTable imports [] cs.cs_symbol_table
cs_symbol_table = removeDeclarationsFromSymbolTable dcl_defined cModuleScope cs_symbol_table
dcls_explicit = flatten [dcls_explicit \\ (_,{dcls_explicit})<-imports]
dcl_mod = { dcl_mod & dcl_declared = { dcl_mod.dcl_declared & dcls_import = dcl_imported, dcls_explicit = dcls_explicit },
dcl_common = dcl_common, dcl_functions = dcl_functions,
dcl_instances = { ir_from = nr_of_dcl_functions, ir_to = nr_of_dcl_functions_and_instances },
dcl_specials = { ir_from = nr_of_dcl_functions_and_instances, ir_to = nr_of_dcl_funs_insts_and_specs },
dcl_class_specials = { ir_from = first_special_class_index, ir_to = last_special_class_index }}
= ({ e_info.ef_modules & [ mod_index ] = dcl_mod }, icl_functions, heaps, { cs & cs_symbol_table = cs_symbol_table })
where
collect_imported_symbols [{import_module={id_info},import_symbols,import_file_position} : mods ] all_decls modules cs=:{cs_symbol_table}
#! entry = sreadPtr id_info cs_symbol_table
# (decls_of_imported_module, modules, cs) = collect_declarations_of_module id_info entry [] modules cs
(imported_decls, modules, cs) = possibly_filter_decls
import_symbols decls_of_imported_module import_file_position modules cs
= collect_imported_symbols mods (imported_decls++all_decls) modules cs
collect_imported_symbols [] all_decls modules cs
= (all_decls, modules, cs)
collect_declarations_of_module module_id_info entry=:{ste_index, ste_kind= old_kind=:STE_OpenModule mod_num {mod_imports} }
all_decls modules cs=:{cs_symbol_table}
# cs = { cs & cs_symbol_table = cs_symbol_table <:= (module_id_info, { entry & ste_kind = STE_LockedModule })}
(imported_decls, modules, cs) = collect_imported_symbols mod_imports [] modules cs
#! dcl_mod = modules.[ste_index]
# (declared, cs) = determine_declared_symbols ste_index dcl_mod.dcl_declared.dcls_local imported_decls cs
= ( [(ste_index, declared) : all_decls]
, modules
, { cs & cs_symbol_table = cs.cs_symbol_table <:= (module_id_info, { entry & ste_kind = old_kind })}
)
collect_declarations_of_module module_id_info entry=:{ste_index, ste_kind= STE_ClosedModule} all_decls modules cs
#! {dcl_declared} = modules.[ste_index]
= ([(ste_index, dcl_declared) : all_decls], modules, cs)
collect_declarations_of_module module_id_info entry=:{ste_kind= STE_LockedModule} all_decls modules cs
= (all_decls, modules, cs)
determine_declared_symbols mod_index definitions imported_decls cs
# cs = addGlobalDefinitionsToSymbolTable definitions (add_imported_symbols_to_symbol_table imported_decls cs)
(dcls_import, cs_symbol_table) = retrieveAndRemoveImportsFromSymbolTable imported_decls [] cs.cs_symbol_table
cs_symbol_table = removeDeclarationsFromSymbolTable definitions cModuleScope cs_symbol_table
= ( {dcls_import = dcls_import, dcls_local = definitions, dcls_explicit = []}, { cs & cs_symbol_table = cs_symbol_table })
add_imported_symbols_to_symbol_table [(mod_index, {dcls_import,dcls_local}) : imports] cs
= add_imported_symbols_to_symbol_table imports (addDeclaredSymbolsToSymbolTable cIsADclModule mod_index dcls_local dcls_import cs)
add_imported_symbols_to_symbol_table [] cs
= cs
adjust_predefined_symbols mod_index class_members class_instances fun_types cs=:{cs_predef_symbols}
#! pre_mod = cs_predef_symbols.[PD_StdArray]
| pre_mod.pds_def == mod_index
# cs = cs
<=< adjust_predef_symbols PD_CreateArrayFun PD_UnqArraySizeFun mod_index STE_Member
<=< adjust_predef_symbol PD_ArrayClass mod_index STE_Class
(class_members, class_instances, fun_types, cs_predef_symbols)
= adjust_instance_types_of_array_functions_in_std_array_dcl mod_index class_members class_instances fun_types cs.cs_predef_symbols
= (class_members, class_instances, fun_types, { cs & cs_predef_symbols = cs_predef_symbols })
#! pre_mod = cs_predef_symbols.[PD_PredefinedModule]
| pre_mod.pds_def == mod_index
= (class_members, class_instances, fun_types, cs
<=< adjust_predef_symbols PD_ListType PD_UnboxedArrayType mod_index STE_Type
<=< adjust_predef_symbols PD_ConsSymbol PD_Arity32TupleSymbol mod_index STE_Constructor
<=< adjust_predef_symbol PD_TypeCodeClass mod_index STE_Class
<=< adjust_predef_symbol PD_TypeCodeMember mod_index STE_Member)
#! pre_mod = cs_predef_symbols.[PD_StdBool]
| pre_mod.pds_def == mod_index
= (class_members, class_instances, fun_types, cs
<=< adjust_predef_symbol PD_AndOp mod_index STE_DclFunction
<=< adjust_predef_symbol PD_OrOp mod_index STE_DclFunction)
#! pre_mod = cs_predef_symbols.[PD_StdDynamics]
| pre_mod.pds_def == mod_index
= (class_members, class_instances, fun_types, cs
<=< adjust_predef_symbol PD_TypeObjectType mod_index STE_Type
<=< adjust_predef_symbol PD_TypeConsSymbol mod_index STE_Constructor
<=< adjust_predef_symbol PD_variablePlaceholder mod_index STE_Constructor
<=< adjust_predef_symbol PD_unify mod_index STE_DclFunction
<=< adjust_predef_symbol PD_undo_indirections mod_index STE_DclFunction)
= (class_members, class_instances, fun_types, cs)
where
adjust_predef_symbols next_symb last_symb mod_index symb_kind cs=:{cs_predef_symbols, cs_symbol_table, cs_error}
| next_symb > last_symb
= cs
= cs
<=< adjust_predef_symbol next_symb mod_index symb_kind
<=< adjust_predef_symbols (inc next_symb) last_symb mod_index symb_kind
adjust_predef_symbol predef_index mod_index symb_kind cs=:{cs_predef_symbols,cs_symbol_table,cs_error}
#! pre_symb = cs_predef_symbols.[predef_index]
# pre_id = pre_symb.pds_ident
#! pre_index = determine_index_of_symbol (sreadPtr pre_id.id_info cs_symbol_table) symb_kind
| pre_index <> NoIndex
= { cs & cs_predef_symbols = {cs_predef_symbols & [predef_index] = { pre_symb & pds_def = pre_index, pds_module = mod_index }}}
= { cs & cs_error = checkError pre_id " function not defined" cs_error }
where
determine_index_of_symbol {ste_kind, ste_index} symb_kind
| ste_kind == symb_kind
= ste_index
= NoIndex
adjust_instance_types_of_array_functions_in_std_array_dcl array_mod_index class_members class_instances fun_types predef_symbols
#! nr_of_instances = size class_instances
# ({pds_def}, predef_symbols) = predef_symbols![PD_ArrayClass]
(offset_table, class_members, predef_symbols) = arrayFunOffsetToPD_IndexTable class_members predef_symbols
(class_instances, fun_types, predef_symbols)
= iFoldSt (adjust_instance_types_of_array_functions array_mod_index pds_def offset_table) 0 nr_of_instances
(class_instances, fun_types, predef_symbols)
= (class_members, class_instances, fun_types, predef_symbols)
where
adjust_instance_types_of_array_functions array_mod_index array_class_index offset_table inst_index (class_instances, fun_types, predef_symbols)
# ({ins_class={glob_module,glob_object={ds_index}},ins_type,ins_members}, class_instances) = class_instances![inst_index]
| glob_module == array_mod_index && ds_index == array_class_index && elemTypeIsStrict ins_type.it_types predef_symbols
# fun_types = iFoldSt (make_instance_strict ins_members offset_table) 0 (size ins_members) fun_types
= (class_instances, fun_types, predef_symbols)
= (class_instances, fun_types, predef_symbols)
make_instance_strict instances offset_table ins_offset instance_defs
# {ds_index} = instances.[ins_offset]
(inst_def, instance_defs) = instance_defs![ds_index]
(Yes symbol_type) = inst_def.ft_type
= { instance_defs & [ds_index] = { inst_def & ft_type = makeElemTypeOfArrayFunctionStrict inst_def.ft_type ins_offset offset_table } }
NewEntry symbol_table symb_ptr def_kind def_index level previous :==
symbol_table <:= (symb_ptr,{ ste_kind = def_kind, ste_index = def_index, ste_def_level = level, ste_previous = previous })
addImportsToSymbolTable :: ![ParsedImport] ![(!Declaration, !LineNr)] !*{# DclModule} !*CheckState
-> (![(!Declaration, !LineNr)], !*{# DclModule}, !*CheckState)
addImportsToSymbolTable [{import_module={id_info},import_symbols, import_file_position} : mods ]
explicit_akku modules cs=:{cs_symbol_table}
#! {ste_index} = sreadPtr id_info cs_symbol_table
#! {dcl_declared=decls_of_imported_module} = modules.[ste_index]
(imported_decls, modules, cs) = possibly_filter_decls import_symbols
[(ste_index, decls_of_imported_module)] import_file_position modules cs
| isEmpty imported_decls
= addImportsToSymbolTable mods explicit_akku modules cs
#! (_,{dcls_import,dcls_local,dcls_explicit}) = hd imported_decls
= addImportsToSymbolTable mods (dcls_explicit++explicit_akku)
modules (addDeclaredSymbolsToSymbolTable cIsNotADclModule ste_index dcls_local dcls_import cs)
addImportsToSymbolTable [] explicit_akku modules cs
= (explicit_akku, modules, cs)
file_and_status {ea_file,ea_ok}
= (ea_file, ea_ok)
instance <<< FunCall
where
(<<<) file {fc_index} = file <<< fc_index
instance <<< AuxiliaryPattern
where
(<<<) file (AP_Algebraic symbol index patterns var)
= file <<< symbol <<< ' ' <<< patterns
(<<<) file (AP_Variable ident var_ptr var)
= file <<< ident
(<<<) file (AP_Basic val var)
= file <<< val
(<<<) file (AP_Constant kind symbol prio)
= file <<< symbol
(<<<) file (AP_WildCard _)
= file <<< '_'
(<<<) file (AP_Empty ident)
= file <<< "<?" <<< ident <<< "?>"
instance <<< Priority
where
(<<<) file (Prio ass prio) = file <<< "##" <<< prio <<< ass <<< "##"
(<<<) file NoPrio = file <<< "#"
instance <<< Assoc
where
(<<<) file LeftAssoc = file <<< 'L'
(<<<) file RightAssoc = file <<< 'R'
(<<<) file _ = file
instance <<< DefinedSymbol
where
(<<<) file { ds_index, ds_ident } = file <<< ds_ident <<< '.' <<< ds_index
instance <<< FreeVar
where
(<<<) file { fv_name } = file <<< fv_name
instance <<< FieldSymbol
where
(<<<) file { fs_var } = file <<< fs_var
instance <<< Declarations
where
(<<<) file { dcls_import, dcls_local } = file <<< "I:" <<< dcls_import <<< "L:" <<< dcls_local
instance <<< Specials
where
(<<<) file (SP_ParsedSubstitutions _) = file <<< "SP_ParsedSubstitutions"
(<<<) file (SP_Substitutions substs) = file <<< "SP_Substitutions " <<< substs
(<<<) file (SP_ContextTypes specials) = file <<< "SP_ContextTypes " <<< specials
(<<<) file (SP_FunIndex _) = file <<< "SP_ParsedSubstitutions"
(<<<) file SP_None = file <<< "SP_None"
instance <<< Special
where
(<<<) file {spec_types} = file <<< spec_types
instance <<< SpecialSubstitution
where
(<<<) file {ss_environ} = file <<< ss_environ
instance <<< Declaration
where
(<<<) file { dcl_ident } = file <<< dcl_ident
instance <<< Ptr a
where
(<<<) file ptr = file <<< "[[" <<< ptrToInt ptr <<< "]]"
instance <<< LocalDefs
where
(<<<) file (CollectedLocalDefs { loc_functions={ir_from,ir_to} }) = file <<< ir_from <<< '-' <<< ir_to
retrieveGlobalDefinition :: !SymbolTableEntry !STE_Kind !Index -> (!Index, !Index)
retrieveGlobalDefinition {ste_kind = STE_Imported kind dcl_index, ste_def_level, ste_index} requ_kind mod_index
| kind == requ_kind
= (ste_index, dcl_index)
= (NotFound, mod_index)
retrieveGlobalDefinition {ste_kind,ste_def_level,ste_index} requ_kind mod_index
| ste_kind == requ_kind && ste_def_level == cGlobalScope
= (ste_index, mod_index)
= (NotFound, mod_index)
|