1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
|
implementation module analtypes
import StdEnv
import syntax, checksupport, checktypes, typesupport, utilities, analunitypes
:: TypeGroups :== [[GlobalIndex]]
:: PartitioningInfo =
{ pi_marks :: !.{# .{# Int}}
, pi_type_defs :: ! {# {# CheckedTypeDef}}
, pi_type_def_infos :: !.TypeDefInfos
, pi_next_num :: !Int
, pi_next_group_num :: !Int
, pi_groups :: !TypeGroups
, pi_deps :: ![GlobalIndex]
, pi_error :: !.ErrorAdmin
}
cNotPartitionated :== -1
cChecking :== -1
partionateAndExpandTypes :: !NumberSet !Index !*CommonDefs !*{#DclModule} !*TypeHeaps !*ErrorAdmin
-> (!TypeGroups, !*{# CommonDefs}, !*TypeDefInfos, !*CommonDefs,!*{#DclModule},!*TypeHeaps,!*ErrorAdmin)
partionateAndExpandTypes used_module_numbers main_dcl_module_index icl_common=:{com_type_defs,com_cons_defs,com_class_defs} dcl_modules type_heaps error
#! nr_of_modules = size dcl_modules
#! n_exported_dictionaries = size dcl_modules.[main_dcl_module_index].dcl_common.com_class_defs
#! index_of_first_not_exported_type_or_dictionary = size dcl_modules.[main_dcl_module_index].dcl_common.com_type_defs
#! n_exported_icl_types = index_of_first_not_exported_type_or_dictionary - n_exported_dictionaries
#! n_types_without_not_exported_dictionaries = size com_type_defs - (size com_class_defs - n_exported_dictionaries)
# (dcl_type_defs,dcl_modules) = dcl_modules![main_dcl_module_index].dcl_common.com_type_defs
# (dcl_modules, type_defs, new_marks, type_def_infos)
= create_type_defs_marks_and_infos used_module_numbers main_dcl_module_index n_types_without_not_exported_dictionaries nr_of_modules (com_type_defs, dcl_modules)
pi = {pi_marks = new_marks, pi_type_defs = type_defs, pi_type_def_infos = type_def_infos,
pi_next_num = 0, pi_deps = [], pi_next_group_num = 0, pi_groups = [], pi_error = error }
{pi_error,pi_groups,pi_type_defs,pi_type_def_infos} = iFoldSt partionate_type_defs 0 nr_of_modules pi
with
partionate_type_defs mod_index pi=:{pi_marks}
#! nr_of_typedefs_to_be_examined = size pi_marks.[mod_index]
| mod_index == main_dcl_module_index
# pi = iFoldSt (partitionate_type_def mod_index) 0 n_exported_icl_types pi
= iFoldSt (partitionate_type_def mod_index) index_of_first_not_exported_type_or_dictionary nr_of_typedefs_to_be_examined pi
= iFoldSt (partitionate_type_def mod_index) 0 nr_of_typedefs_to_be_examined pi
where
partitionate_type_def module_index type_index pi=:{pi_marks}
# mark = pi_marks.[module_index, type_index]
| mark == cNotPartitionated
# (_, pi) = partitionateTypeDef {gi_module = module_index, gi_index = type_index} pi
= pi
= pi
# icl_type_defs = pi_type_defs.[main_dcl_module_index]
icl_type_defs = { icl_type_def \\ icl_type_def <-: icl_type_defs}
new_type_defs = { {} \\ module_n <- [0..nr_of_modules-1] }
icl_cons_defs = com_cons_defs
new_cons_defs = { {} \\ module_n <- [0..nr_of_modules-1] }
(new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
= expand_synonym_types_of_groups main_dcl_module_index pi_groups
(new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, pi_error)
icl_common = {icl_common & com_type_defs = icl_type_defs, com_cons_defs = icl_cons_defs}
(dcl_modules, common_defs) = update_modules_and_create_commondefs used_module_numbers new_type_defs new_cons_defs nr_of_modules dcl_modules
= (reverse pi_groups, common_defs, pi_type_def_infos, icl_common, dcl_modules, type_heaps, error)
where
create_type_defs_marks_and_infos :: NumberSet Int Int Int (*{#CheckedTypeDef},*{#DclModule}) -> (!*{#DclModule},!*{#*{#CheckedTypeDef}},!*{#*{#Int}},!*TypeDefInfos)
create_type_defs_marks_and_infos used_module_numbers main_dcl_module_index n_types_without_not_exported_dictionaries nr_of_modules (icl_type_defs, dcl_modules)
# type_defs = { {} \\ module_nr <- [0..nr_of_modules-1] }
marks = { {} \\ module_nr <- [0..nr_of_modules-1] }
type_def_infos = { {} \\ module_nr <- [0..nr_of_modules-1] }
= iFoldSt (create_type_defs_marks_and_infos_for_module used_module_numbers main_dcl_module_index n_types_without_not_exported_dictionaries icl_type_defs)
0 nr_of_modules (dcl_modules, type_defs, marks, type_def_infos)
where
create_type_defs_marks_and_infos_for_module used_module_numbers main_dcl_module_index n_types_without_not_exported_dictionaries icl_type_defs module_index
(dcl_modules, type_defs, marks, type_def_infos)
| inNumberSet module_index used_module_numbers
# ({com_type_defs,com_class_defs}, dcl_modules) = dcl_modules![module_index].dcl_common
| module_index == main_dcl_module_index
= ( dcl_modules,
{ type_defs & [module_index] = icl_type_defs },
{ marks & [module_index] = createArray n_types_without_not_exported_dictionaries cNotPartitionated },
{ type_def_infos & [module_index] = createArray n_types_without_not_exported_dictionaries EmptyTypeDefInfo })
# nr_of_types = size com_type_defs - size com_class_defs
= ( dcl_modules,
{ type_defs & [module_index] = com_type_defs },
{ marks & [module_index] = createArray nr_of_types cNotPartitionated },
{ type_def_infos & [module_index] = createArray nr_of_types EmptyTypeDefInfo })
= (dcl_modules, type_defs, marks,type_def_infos)
expand_synonym_types_of_groups main_dcl_module_index pi_groups (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
| error.ea_ok
= foldSt (expand_synonym_types_of_group main_dcl_module_index) pi_groups (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
= (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
expand_synonym_types_of_group main_dcl_module_index group_members (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
= foldSt (expand_synonym_type main_dcl_module_index) group_members (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
where
expand_synonym_type main_dcl_module_index gi=:{gi_module,gi_index} (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
| gi_module<>main_dcl_module_index
= expand_synonym_type_not_in_icl_module main_dcl_module_index gi (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
# (td=:{td_rhs,td_attribute}, icl_type_defs) = icl_type_defs![gi_index]
= case td_rhs of
SynType type
# (opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_synonym_type type td_attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
-> case opt_type of
Yes type
# icl_type_defs = { icl_type_defs & [gi_index] = { td & td_rhs = SynType type}}
| gi_index < size dcl_modules.[main_dcl_module_index].dcl_common.com_type_defs
-> expand_synonym_type_not_in_icl_module main_dcl_module_index gi (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
NewType {ds_index}
-> expand_new_type_rhs gi_module ds_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
_
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
expand_synonym_type_not_in_icl_module main_dcl_module_index gi=:{gi_module,gi_index} (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
| size new_type_defs.[gi_module]==0
# (td=:{td_rhs,td_attribute}, dcl_modules) = dcl_modules![gi_module].dcl_common.com_type_defs.[gi_index]
= case td_rhs of
SynType type
# (opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_synonym_type type td_attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
-> case opt_type of
Yes type
# (com_type_defs,dcl_modules) = dcl_modules![gi_module].dcl_common.com_type_defs
# new_module_type_defs = { { type_def \\ type_def<-:com_type_defs} & [gi_index] = { td & td_rhs = SynType type}}
# new_type_defs = {new_type_defs & [gi_module] = new_module_type_defs}
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
NewType {ds_index}
-> expand_new_type_rhs gi_module ds_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
_
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
# (td=:{td_rhs,td_attribute}, new_type_defs) = new_type_defs![gi_module,gi_index]
= case td_rhs of
SynType type
# (opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_synonym_type type td_attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
-> case opt_type of
Yes type
# new_type_defs = {new_type_defs & [gi_module,gi_index] = { td & td_rhs = SynType type}}
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
NewType {ds_index}
-> expand_new_type_rhs gi_module ds_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
_
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
expand_new_type_rhs gi_module constructor_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
| gi_module<>main_dcl_module_index
= expand_new_type_rhs_not_in_icl_module gi_module constructor_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
# (cons_type,icl_cons_defs) = icl_cons_defs![constructor_index].cons_type
(opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_new_type_constructor_arg cons_type new_type_defs icl_type_defs type_heaps dcl_modules
= case opt_type of
Yes type
# icl_cons_defs = {icl_cons_defs & [constructor_index].cons_type.st_args = [type]}
| constructor_index < size dcl_modules.[main_dcl_module_index].dcl_common.com_cons_defs
-> expand_new_type_rhs_not_in_icl_module gi_module constructor_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
expand_new_type_rhs_not_in_icl_module gi_module constructor_index new_type_defs icl_type_defs new_cons_defs icl_cons_defs type_heaps dcl_modules error
| size new_cons_defs.[gi_module]==0
# (cons_type,dcl_modules) = dcl_modules![gi_module].dcl_common.com_cons_defs.[constructor_index].cons_type
(opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_new_type_constructor_arg cons_type new_type_defs icl_type_defs type_heaps dcl_modules
= case opt_type of
Yes type
# (com_cons_defs,dcl_modules) = dcl_modules![gi_module].dcl_common.com_cons_defs
# new_module_cons_defs = { { cons_def \\ cons_def<-:com_cons_defs} & [constructor_index].cons_type.st_args = [type]}
# new_cons_defs = {new_cons_defs & [gi_module] = new_module_cons_defs}
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
# (cons_type,new_cons_defs) = new_cons_defs![gi_module,constructor_index].cons_type
(opt_type, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_new_type_constructor_arg cons_type new_type_defs icl_type_defs type_heaps dcl_modules
= case opt_type of
Yes type
# new_cons_defs = {new_cons_defs & [gi_module,constructor_index].cons_type.st_args = [type]}
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
No
-> (new_type_defs, icl_type_defs, new_cons_defs, icl_cons_defs, type_heaps, dcl_modules, error)
try_to_expand_new_type_constructor_arg {st_args=[type=:{at_attribute}]} new_type_defs icl_type_defs type_heaps dcl_modules
= try_to_expand_synonym_type type at_attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
try_to_expand_synonym_type type=:{at_type = TA {type_index={glob_object,glob_module}} types} attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_synonym_type_for_TA glob_object glob_module types type attribute new_type_defs icl_type_defs type_heaps dcl_modules
try_to_expand_synonym_type type=:{at_type = TAS {type_index={glob_object,glob_module}} types _} attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= try_to_expand_synonym_type_for_TA glob_object glob_module types type attribute new_type_defs icl_type_defs type_heaps dcl_modules
try_to_expand_synonym_type type attribute (new_type_defs, icl_type_defs, type_heaps, dcl_modules)
= (No, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
try_to_expand_synonym_type_for_TA glob_object glob_module types type attribute new_type_defs icl_type_defs type_heaps dcl_modules
| glob_module==main_dcl_module_index
# ({td_rhs,td_attribute,td_args}, icl_type_defs) = icl_type_defs![glob_object]
= try_to_expand td_rhs td_attribute td_args attribute new_type_defs icl_type_defs type_heaps dcl_modules
| size new_type_defs.[glob_module]==0
# ({td_rhs,td_attribute,td_args}, dcl_modules) = dcl_modules![glob_module].dcl_common.com_type_defs.[glob_object]
= try_to_expand td_rhs td_attribute td_args attribute new_type_defs icl_type_defs type_heaps dcl_modules
# ({td_rhs,td_attribute,td_args}, new_type_defs) = new_type_defs![glob_module,glob_object]
= try_to_expand td_rhs td_attribute td_args attribute new_type_defs icl_type_defs type_heaps dcl_modules
where
try_to_expand (SynType {at_type}) td_attribute td_args attribute new_type_defs icl_type_defs type_heaps dcl_modules
# (subst_rhs, type_heaps) = substituteType td_attribute attribute td_args types at_type type_heaps
= (Yes {type & at_type = subst_rhs }, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
try_to_expand _ td_attribute td_args attribute new_type_defs icl_type_defs type_heaps dcl_modules
= (No, new_type_defs, icl_type_defs, type_heaps, dcl_modules)
update_modules_and_create_commondefs :: NumberSet *{*{#CheckedTypeDef}} *{#*{#ConsDef}} Int *{#DclModule} -> (!*{#DclModule},!*{#CommonDefs})
update_modules_and_create_commondefs used_module_numbers new_type_defs new_cons_defs nr_of_modules dcl_modules
# (arbitrary_value_for_initializing, dcl_modules) = dcl_modules![0].dcl_common
initial_common_defs = createArray nr_of_modules arbitrary_value_for_initializing
= iFoldSt (copy_commondefs_and_adjust_type_defs used_module_numbers new_type_defs new_cons_defs) 0 nr_of_modules (dcl_modules, initial_common_defs)
where
copy_commondefs_and_adjust_type_defs used_module_numbers new_type_defs new_cons_defs module_index (dcl_modules, common_defs)
| inNumberSet module_index used_module_numbers
# (dcl_module=:{dcl_common}, dcl_modules) = dcl_modules![module_index]
| size new_type_defs.[module_index]<>0
| size new_cons_defs.[module_index]<>0
# dcl_common = { dcl_common & com_type_defs = new_type_defs.[module_index], com_cons_defs = new_cons_defs.[module_index]}
= ({ dcl_modules & [module_index].dcl_common = dcl_common}, { common_defs & [module_index] = dcl_common })
# dcl_common = { dcl_common & com_type_defs = new_type_defs.[module_index]}
= ({ dcl_modules & [module_index].dcl_common = dcl_common}, { common_defs & [module_index] = dcl_common })
| size new_cons_defs.[module_index]<>0
# dcl_common = { dcl_common & com_cons_defs = new_cons_defs.[module_index]}
= ({ dcl_modules & [module_index].dcl_common = dcl_common}, { common_defs & [module_index] = dcl_common })
= (dcl_modules, { common_defs & [module_index] = dcl_common })
= (dcl_modules, common_defs)
partitionateTypeDef gi=:{gi_module,gi_index} pi=:{pi_type_defs}
# {td_ident,td_pos,td_used_types} = pi_type_defs.[gi_module].[gi_index]
pi = push_on_dep_stack gi pi
(min_dep, pi) = foldSt visit_type td_used_types (cMAXINT, pi)
= try_to_close_group gi min_dep pi
where
visit_type gi=:{gi_module,gi_index} (min_dep, pi=:{pi_marks})
#! mark = pi_marks.[gi_module].[gi_index]
| mark == cNotPartitionated
# (ldep, pi) = partitionateTypeDef gi pi
= (min min_dep ldep, pi)
= (min min_dep mark, pi)
push_on_dep_stack type_index=:{gi_module,gi_index} pi=:{pi_deps,pi_marks,pi_next_num}
= { pi & pi_deps = [type_index : pi_deps], pi_marks = { pi_marks & [gi_module].[gi_index] = pi_next_num }, pi_next_num = inc pi_next_num }
try_to_close_group this_type=:{gi_module,gi_index} ldep pi=:{pi_deps,pi_marks,pi_next_group_num,pi_groups,pi_type_defs,pi_error,pi_type_def_infos}
#! my_mark = pi_marks.[gi_module].[gi_index]
| (ldep == cMAXINT || ldep == my_mark)
# (pi_deps, group_members) = close_group this_type pi_deps []
(reorganised_group_members, pi_marks, pi_error) = check_cyclic_type_defs group_members pi_type_defs [] pi_marks pi_error
pi_type_def_infos = update_type_def_infos pi_next_group_num reorganised_group_members group_members pi_type_def_infos
= (cMAXINT, { pi & pi_marks = pi_marks, pi_deps = pi_deps, pi_next_group_num = inc pi_next_group_num, pi_error = pi_error,
pi_type_def_infos = pi_type_def_infos,
pi_groups = [reorganised_group_members : pi_groups ]})
// ---> ("try_to_close_group", reorganised_group_members, group_members)
= (min my_mark ldep, pi)
where
close_group first_type [td : tds] group
| first_type == td
= (tds, [td : group])
= close_group first_type tds [td : group]
check_cyclic_type_defs tds type_defs group marks error
= foldSt check_cyclic_type_def tds (group, marks, error)
where
check_cyclic_type_def td=:{gi_module,gi_index} (group, marks, error)
# (mark, marks) = marks![gi_module,gi_index]
# {td_ident,td_pos,td_used_types,td_rhs} = type_defs.[gi_module].[gi_index]
| mark == cChecking
= (group, marks, typeSynonymError td_ident "cyclic dependency between type synonyms" error)
| mark < cMAXINT
| is_synonym_or_new_type td_rhs
# marks = { marks & [gi_module,gi_index] = cChecking }
error = pushErrorAdmin (newPosition td_ident td_pos) error
(group, marks, error) = check_cyclic_type_defs td_used_types type_defs [td : group] marks error
error = popErrorAdmin error
= (group, { marks & [gi_module,gi_index] = cMAXINT }, error)
= ([td : group], { marks & [gi_module,gi_index] = cMAXINT }, error)
= (group, marks, error)
is_synonym_or_new_type (SynType _) = True
is_synonym_or_new_type (NewType _) = True
is_synonym_or_new_type _ = False
update_type_def_infos group_nr group_members tds type_def_infos
# (_, type_def_infos) = foldSt (update_type_def_info group_nr group_members) tds (0, type_def_infos)
= type_def_infos
where
update_type_def_info group_nr group_members {gi_module,gi_index} (index_in_group, type_def_infos)
# (info, type_def_infos) = type_def_infos![gi_module,gi_index]
= (inc index_in_group,
{ type_def_infos & [gi_module,gi_index] = { info & tdi_group_nr = group_nr, tdi_index_in_group = index_in_group, tdi_group = group_members}})
typeSynonymError type_symb msg error
= checkError type_symb msg error
:: UnifyKindsInfo =
{ uki_kind_heap ::!.KindHeap
, uki_error ::!.ErrorAdmin
}
AS_NotChecked :== -1
kindError kind1 kind2 error
= checkError "conflicting kinds: " (toString kind1 +++ " and " +++ toString kind2) error
skipIndirections (KI_Var kind_info_ptr) kind_heap
# (kind, kind_heap) = readPtr kind_info_ptr kind_heap
= skip_indirections kind_info_ptr kind kind_heap
where
skip_indirections this_info_ptr kind=:(KI_Var kind_info_ptr) kind_heap
| this_info_ptr == kind_info_ptr
= (kind, kind_heap)
# (kind, kind_heap) = readPtr kind_info_ptr kind_heap
= skip_indirections kind_info_ptr kind kind_heap
skip_indirections this_info_ptr kind kind_heap
= (kind, kind_heap)
skipIndirections kind kind_heap
= (kind, kind_heap)
unifyKinds :: !KindInfo !KindInfo !*UnifyKindsInfo -> *UnifyKindsInfo
unifyKinds kind1 kind2 uni_info=:{uki_kind_heap}
# (kind1, uki_kind_heap) = skipIndirections kind1 uki_kind_heap
# (kind2, uki_kind_heap) = skipIndirections kind2 uki_kind_heap
= unify_kinds kind1 kind2 { uni_info & uki_kind_heap = uki_kind_heap }
where
unify_kinds kind1=:(KI_Var info_ptr1) kind2 uni_info
= case kind2 of
KI_Var info_ptr2
| info_ptr1 == info_ptr2
-> uni_info
-> { uni_info & uki_kind_heap = uni_info.uki_kind_heap <:= (info_ptr1, kind2) }
_
# (found, uki_kind_heap) = contains_kind_ptr info_ptr1 kind2 uni_info.uki_kind_heap
| found
-> { uni_info & uki_kind_heap = uki_kind_heap, uki_error = kindError kind1 kind2 uni_info.uki_error }
-> { uni_info & uki_kind_heap = uki_kind_heap <:= (info_ptr1, kind2) }
where
contains_kind_ptr info_ptr (KI_Arrow kind1 kind2) kind_heap
# (kind1, kind_heap) = skipIndirections kind1 kind_heap
# (found, kind_heap) = contains_kind_ptr info_ptr kind1 kind_heap
| found
= (True, kind_heap)
# (kind2, kind_heap) = skipIndirections kind2 kind_heap
= contains_kind_ptr info_ptr kind2 kind_heap
contains_kind_ptr info_ptr (KI_Var kind_info_ptr) kind_heap
= (info_ptr == kind_info_ptr, kind_heap)
contains_kind_ptr info_ptr (KI_Const) kind_heap
= (False, kind_heap)
unify_kinds kind k1=:(KI_Var info_ptr1) uni_info
= unify_kinds k1 kind uni_info
unify_kinds kind1=:(KI_Arrow x1 y1) kind2=:(KI_Arrow x2 y2) uni_info
= unifyKinds x1 x2 (unifyKinds y1 y2 uni_info)
unify_kinds KI_Const KI_Const uni_info
= uni_info
unify_kinds kind1 kind2 uni_info=:{uki_error}
= { uni_info & uki_error = kindError kind1 kind2 uki_error }
kindToKindInfo (KindVar info_ptr)
= KI_Var info_ptr
kindToKindInfo KindConst
= KI_Const
kindToKindInfo (KindArrow ks)
= kindArrowToKindInfo ks
kindArrowToKindInfo []
= KI_Const
kindArrowToKindInfo [k : ks]
= KI_Arrow (kindToKindInfo k) (kindArrowToKindInfo ks)
kindInfoToKind kind_info kind_heap
# (kind_info, kind_heap) = skipIndirections kind_info kind_heap
= case kind_info of
KI_Arrow x y
# (x, kind_heap) = kindInfoToKind x kind_heap
# (y, kind_heap) = kindInfoToKind y kind_heap
-> case y of
KindArrow ks
-> (KindArrow [x:ks], kind_heap)
_
-> (KindArrow [x], kind_heap)
_
-> (KindConst, kind_heap)
:: VarBind =
{ vb_var :: !KindInfoPtr
, vb_vars :: ![KindInfoPtr]
}
:: Conditions =
{ con_top_var_binds :: ![KindInfoPtr]
, con_var_binds :: ![VarBind]
}
:: AnalyseState =
{ as_td_infos :: !.TypeDefInfos
, as_type_var_heap :: !.TypeVarHeap
, as_kind_heap :: !.KindHeap
, as_error :: !.ErrorAdmin
}
:: TypeProperties :== BITVECT
combineTypeProperties prop1 prop2 :== (combineHyperstrictness prop1 prop2) bitor (combineCoercionProperties prop1 prop2)
addHyperstrictness prop1 prop2 :== prop1 bitor (combineHyperstrictness prop1 prop2)
condCombineTypeProperties has_root_attr prop1 prop2
| has_root_attr
= combineTypeProperties prop1 prop2
= combineTypeProperties prop1 (prop2 bitand (bitnot cIsNonCoercible))
combineCoercionProperties prop1 prop2 :== (prop1 bitor prop2) bitand cIsNonCoercible
combineHyperstrictness prop1 prop2 :== (prop1 bitand prop2) bitand cIsHyperStrict
class analTypes type :: !Bool !{#CommonDefs} ![KindInfoPtr] !type !(!Conditions, !*AnalyseState)
-> (!KindInfo, !TypeProperties, !(!Conditions, !*AnalyseState))
freshKindVar kind_heap
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
# kind_var = KI_Var kind_info_ptr
= (kind_var, kind_heap <:= (kind_info_ptr, kind_var))
instance analTypes AType
where
analTypes _ modules form_tvs atype=:{at_attribute,at_type} conds_as
= analTypes (has_root_attr at_attribute) modules form_tvs at_type conds_as
where
has_root_attr (TA_RootVar _) = True
has_root_attr _ = False
instance analTypes TypeVar
where
analTypes has_root_attr modules form_tvs {tv_info_ptr} (conds=:{con_var_binds}, as=:{as_type_var_heap, as_kind_heap})
# (TVI_TypeKind kind_info_ptr, as_type_var_heap) = readPtr tv_info_ptr as_type_var_heap
(kind_info, as_kind_heap) = readPtr kind_info_ptr as_kind_heap
(kind_info, as_kind_heap) = skipIndirections kind_info as_kind_heap
| isEmpty form_tvs
= (kind_info, cIsHyperStrict, (conds, { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap }))
= (kind_info, cIsHyperStrict, ({ conds & con_var_binds = [{vb_var = kind_info_ptr, vb_vars = form_tvs } : con_var_binds] },
{ as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap }))
analTypes_for_TA :: Ident Int Int Int [AType] !Bool !{#CommonDefs} ![KindInfoPtr] !Conditions !*AnalyseState
-> (!KindInfo, !TypeProperties, !(!Conditions, !*AnalyseState))
analTypes_for_TA type_ident glob_module glob_object type_arity types has_root_attr modules form_tvs conds as
# {td_arity, td_ident} = modules.[glob_module].com_type_defs.[glob_object]
({tdi_kinds, tdi_properties}, as) = as!as_td_infos.[glob_module].[glob_object]
| type_arity <= td_arity
# kind = kindArrowToKindInfo (drop type_arity tdi_kinds)
| tdi_properties bitand cIsAnalysed == 0
# (type_properties, conds_as) = anal_types_of_rec_type_cons modules form_tvs types tdi_kinds (conds, as)
= (kind, type_properties, conds_as)
# (type_properties, conds_as) = anal_types_of_type_cons modules form_tvs types tdi_kinds (conds, as)
new_properties = condCombineTypeProperties has_root_attr type_properties tdi_properties
= (kind, new_properties, conds_as)
// ---> ("analTypes_for_TA", td_ident, type_properties, tdi_properties, new_properties, has_root_attr)
= (KI_Const, tdi_properties, (conds, { as & as_error = checkError type_ident type_appl_error as.as_error }))
where
anal_types_of_rec_type_cons modules form_tvs [] _ conds_as
= (cIsHyperStrict, conds_as)
anal_types_of_rec_type_cons modules form_tvs [type : types] [KindVar kind_info_ptr : tvs] conds_as
# (type_kind, type_props, (conds, as=:{as_kind_heap,as_error})) = analTypes has_root_attr modules [ kind_info_ptr : form_tvs ] type conds_as
(kind, as_kind_heap) = readPtr kind_info_ptr as_kind_heap
{uki_kind_heap, uki_error} = unifyKinds type_kind kind {uki_kind_heap = as_kind_heap, uki_error = as_error}
| is_type_var type
# (other_type_props, conds_as)
= anal_types_of_rec_type_cons modules form_tvs types tvs (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error})
= (combineTypeProperties type_props other_type_props, conds_as)
# conds & con_top_var_binds = [kind_info_ptr : conds.con_top_var_binds]
# (other_type_props, conds_as)
= anal_types_of_rec_type_cons modules form_tvs types tvs (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error})
= (combineTypeProperties type_props other_type_props, conds_as)
where
is_type_var {at_type = TV _}
= True
is_type_var _
= False
anal_types_of_type_cons modules form_tvs [] _ conds_as
= (cIsHyperStrict, conds_as)
anal_types_of_type_cons modules form_tvs [type : types] [tk : tks] conds_as
# (type_kind, type_props, (conds, as=:{as_kind_heap,as_error})) = analTypes has_root_attr modules form_tvs type conds_as
{uki_kind_heap, uki_error} = unifyKinds type_kind (kindToKindInfo tk) {uki_kind_heap = as_kind_heap, uki_error = as_error}
as = { as & as_kind_heap = uki_kind_heap, as_error = uki_error }
(other_type_props, conds_as) = anal_types_of_type_cons modules form_tvs types tks (conds, as)
= (combineTypeProperties type_props other_type_props, conds_as)
anal_types_of_type_cons modules form_tvs types tks conds_as
= abort ("anal_types_of_type_cons (analtypes.icl)" ---> (types, tks))
instance analTypes Type
where
analTypes has_root_attr modules form_tvs (TV tv) conds_as
= analTypes has_root_attr modules form_tvs tv conds_as
analTypes has_root_attr modules form_tvs type=:(TA {type_ident,type_index={glob_module,glob_object},type_arity} types) (conds, as)
= analTypes_for_TA type_ident glob_module glob_object type_arity types has_root_attr modules form_tvs conds as
analTypes has_root_attr modules form_tvs type=:(TAS {type_ident,type_index={glob_module,glob_object},type_arity} types _) (conds, as)
= analTypes_for_TA type_ident glob_module glob_object type_arity types has_root_attr modules form_tvs conds as
analTypes has_root_attr modules form_tvs (arg_type --> res_type) conds_as
# (arg_kind, arg_type_props, conds_as) = analTypes has_root_attr modules form_tvs arg_type conds_as
(res_kind, res_type_props, (conds, as=:{as_kind_heap,as_error})) = analTypes has_root_attr modules form_tvs res_type conds_as
{uki_kind_heap, uki_error} = unifyKinds res_kind KI_Const (unifyKinds arg_kind KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error})
type_props = if has_root_attr
(combineCoercionProperties arg_type_props res_type_props bitor cIsNonCoercible)
(combineCoercionProperties arg_type_props res_type_props)
= (KI_Const, type_props, (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error }))
analTypes has_root_attr modules form_tvs TArrow conds_as
# type_props = if has_root_attr
(cIsHyperStrict bitor cIsNonCoercible)
cIsHyperStrict
= (KI_Arrow KI_Const (KI_Arrow KI_Const KI_Const), type_props, conds_as)
analTypes has_root_attr modules form_tvs (TArrow1 arg_type) conds_as
# (arg_kind, arg_type_props, conds_as) = analTypes has_root_attr modules form_tvs arg_type conds_as
# (conds, as=:{as_kind_heap,as_error}) = conds_as
# type_props = if has_root_attr
(arg_type_props bitor cIsNonCoercible)
arg_type_props
# {uki_kind_heap, uki_error} = unifyKinds arg_kind KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error}
= (KI_Arrow KI_Const KI_Const, type_props, (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error}))
analTypes has_root_attr modules form_tvs (CV tv :@: types) conds_as
# (type_kind, cv_props, (conds, as)) = analTypes has_root_attr modules form_tvs tv conds_as
(kind_var, as_kind_heap) = freshKindVar as.as_kind_heap
(type_kinds, is_non_coercible, (conds, as=:{as_kind_heap,as_error}))
= check_type_list kind_var modules form_tvs types (conds, { as & as_kind_heap = as_kind_heap })
{uki_kind_heap, uki_error} = unifyKinds type_kind type_kinds {uki_kind_heap = as_kind_heap, uki_error = as_error}
type_props = if (is_non_coercible || has_root_attr) cIsNonCoercible (cv_props bitand cIsNonCoercible)
= (kind_var, type_props, (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error }))
where
check_type_list kind_var modules form_tvs [] conds_as
= (kind_var, False, conds_as)
check_type_list kind_var modules form_tvs [type : types] conds_as
# (tk, type_props, conds_as) = analTypes has_root_attr modules form_tvs type conds_as
// {uki_kind_heap, uki_error} = unifyKinds tk KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error}
(tks, is_non_coercible, conds_as) = check_type_list kind_var modules form_tvs types conds_as
= (KI_Arrow tk tks, is_non_coercible || (type_props bitand cIsNonCoercible <> 0), conds_as)
analTypes has_root_attr modules form_tvs (TFA vars type) (conds, as=:{as_type_var_heap,as_kind_heap})
# (as_type_var_heap, as_kind_heap) = new_local_kind_variables_for_universal_vars vars as_type_var_heap as_kind_heap
as = {as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
= analTypes has_root_attr modules form_tvs type (conds,as)
analTypes has_root_attr modules form_tvs type conds_as
= (KI_Const, cIsHyperStrict, conds_as)
cDummyBool :== False
analTypesOfConstructors modules cons_defs [cons:conses] (conds, as=:{as_type_var_heap,as_kind_heap})
# (cons_properties,conds_as) = anal_types_of_constructor modules cons_defs cons (conds, as)
(other_properties, conds_as) = analTypesOfConstructors modules cons_defs conses conds_as
= (combineTypeProperties cons_properties other_properties, conds_as)
analTypesOfConstructors _ _ [] conds_as
= (cIsHyperStrict, conds_as)
analTypesOfConstructor modules cons_defs cons (conds, as)
# (cons_properties,conds_as) = anal_types_of_constructor modules cons_defs cons (conds, as)
= (combineTypeProperties cons_properties cIsHyperStrict,conds_as)
anal_types_of_constructor modules cons_defs {ds_index} (conds, as=:{as_type_var_heap,as_kind_heap})
# {cons_exi_vars,cons_type} = cons_defs.[ds_index ]
(coercible, as_type_var_heap, as_kind_heap) = new_local_kind_variables cons_exi_vars (as_type_var_heap, as_kind_heap)
(cons_properties, conds_as) = anal_types_of_cons modules cons_type.st_args cons_type.st_args_strictness 0
(conds, { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap })
= (if coercible cons_properties (cons_properties bitor cIsNonCoercible), conds_as)
where
new_local_kind_variables :: [ATypeVar] !(!*TypeVarHeap,!*KindHeap) -> (!Bool,!*TypeVarHeap,!*KindHeap)
new_local_kind_variables td_args (type_var_heap, as_kind_heap)
= foldSt new_kind td_args (True, type_var_heap, as_kind_heap)
where
new_kind :: !ATypeVar !(!Bool,!*TypeVarHeap,!*KindHeap) -> (!Bool,!*TypeVarHeap,!*KindHeap)
new_kind {atv_variable={tv_info_ptr},atv_attribute} (coercible, type_var_heap, kind_heap)
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= (coercible && is_not_a_variable atv_attribute, type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr),
kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr))
is_not_a_variable (TA_RootVar var) = False
is_not_a_variable attr = True
anal_types_of_cons modules [] args_strictness strictness_index conds_as
= (cIsHyperStrict, conds_as)
anal_types_of_cons modules [type : types] args_strictness strictness_index conds_as
# (other_type_props, conds_as) = anal_types_of_cons modules types args_strictness (strictness_index+1) conds_as
(type_kind, cv_props, (conds, as=:{as_kind_heap, as_error})) = analTypes cDummyBool modules [] type conds_as
{uki_kind_heap, uki_error} = unifyKinds type_kind KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error}
cons_props = if (arg_is_strict strictness_index args_strictness)
(combineTypeProperties cv_props other_type_props)
(combineCoercionProperties cv_props other_type_props)
= (cons_props, (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error}))
isATopConsVar cv :== cv < 0
encodeTopConsVar cv :== dec (~cv)
decodeTopConsVar cv :== ~(inc cv)
emptyIdent name :== { id_name = name, id_info = nilPtr }
analyseTypeDefs :: !{#CommonDefs} !TypeGroups !{#CheckedTypeDef} !Int !*TypeDefInfos !*TypeVarHeap !*ErrorAdmin
-> (!*TypeDefInfos,!*TypeVarHeap,!*ErrorAdmin)
analyseTypeDefs modules groups dcl_types dcl_mod_index type_def_infos type_var_heap error
# as = {as_kind_heap = newHeap, as_type_var_heap = type_var_heap, as_td_infos = type_def_infos, as_error = error}
{as_td_infos,as_type_var_heap,as_error} = foldSt (anal_type_defs_in_group modules) groups as
= check_left_root_attribution_of_typedefs modules groups as_td_infos as_type_var_heap as_error
where
anal_type_defs_in_group modules group as=:{as_td_infos,as_type_var_heap,as_kind_heap}
# (is_abstract_type, as_td_infos, as_type_var_heap, as_kind_heap)
= foldSt (init_type_def_infos modules) group (False, as_td_infos, as_type_var_heap, as_kind_heap)
as = {as & as_td_infos = as_td_infos, as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
| is_abstract_type
= as
# (type_properties, conds, as) = foldSt (anal_type_def modules) group (cIsHyperStrict, {con_top_var_binds = [], con_var_binds = []}, as)
(kinds_in_group, (as_kind_heap, as_td_infos)) = mapSt determine_kinds group (as.as_kind_heap, as.as_td_infos)
as_kind_heap = unify_var_binds conds.con_var_binds as_kind_heap
(normalized_top_vars, (kind_var_store, as_kind_heap)) = normalize_top_vars conds.con_top_var_binds 0 as_kind_heap
(as_kind_heap, as_td_infos, as_error)
= update_type_def_infos modules type_properties normalized_top_vars group kinds_in_group kind_var_store as_kind_heap as_td_infos as.as_error
as & as_kind_heap = as_kind_heap, as_td_infos = as_td_infos, as_error = as_error
= foldSt (check_dcl_properties modules dcl_types dcl_mod_index type_properties) group as
init_type_def_infos modules gi=:{gi_module,gi_index} (is_abstract_type, type_def_infos, as_type_var_heap, kind_heap)
# {td_args,td_rhs} = modules.[gi_module].com_type_defs.[gi_index]
= case td_rhs of
AbstractType properties
# type_def_infos = init_abstract_type_def properties td_args gi_module gi_index type_def_infos
-> (True, type_def_infos, as_type_var_heap, kind_heap)
AbstractSynType properties _
# type_def_infos = init_abstract_type_def properties td_args gi_module gi_index type_def_infos
-> (True, type_def_infos, as_type_var_heap, kind_heap)
ExtensibleAlgType _
# (tdi_kinds, (as_type_var_heap, kind_heap)) = newKindConstVariables td_args (as_type_var_heap, kind_heap)
-> (is_abstract_type, {type_def_infos & [gi_module].[gi_index].tdi_kinds = tdi_kinds}, as_type_var_heap, kind_heap)
AlgConses _ _
# (tdi_kinds, (as_type_var_heap, kind_heap)) = newKindConstVariables td_args (as_type_var_heap, kind_heap)
-> (is_abstract_type, {type_def_infos & [gi_module].[gi_index].tdi_kinds = tdi_kinds}, as_type_var_heap, kind_heap)
_
# (tdi_kinds, (as_type_var_heap, kind_heap)) = newKindVariables td_args (as_type_var_heap, kind_heap)
-> (is_abstract_type, {type_def_infos & [gi_module].[gi_index].tdi_kinds = tdi_kinds}, as_type_var_heap, kind_heap)
init_abstract_type_def properties td_args gi_module gi_index type_def_infos
# (tdi, type_def_infos) = type_def_infos![gi_module,gi_index]
new_tdi = { tdi & tdi_kinds = [ KindConst \\ _ <- td_args ],
tdi_group_vars = [ i \\ _ <- td_args & i <- [0..]],
tdi_properties = properties bitor cIsAnalysed }
= {type_def_infos & [gi_module].[gi_index] = new_tdi}
newKindVariables td_args (type_var_heap, as_kind_heap)
= mapSt new_kind td_args (type_var_heap, as_kind_heap)
where
new_kind :: ATypeVar *(*TypeVarHeap,*KindHeap) -> (!TypeKind,!(!*TypeVarHeap,!*KindHeap));
new_kind {atv_variable={tv_info_ptr}} (type_var_heap, kind_heap)
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= (KindVar kind_info_ptr, (type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr), kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr)))
newKindConstVariables td_args (type_var_heap, as_kind_heap)
= mapSt new_kind_const td_args (type_var_heap, as_kind_heap)
where
new_kind_const :: ATypeVar *(*TypeVarHeap,*KindHeap) -> (!TypeKind,!(!*TypeVarHeap,!*KindHeap));
new_kind_const {atv_variable={tv_info_ptr}} (type_var_heap, kind_heap)
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= (KindVar kind_info_ptr, (writePtr tv_info_ptr (TVI_TypeKind kind_info_ptr) type_var_heap, kind_heap))
anal_type_def modules gi=:{gi_module,gi_index} (group_properties, conds, as=:{as_error})
# {com_type_defs,com_cons_defs} = modules.[gi_module]
{td_ident,td_pos,td_args,td_rhs} = com_type_defs.[gi_index]
as_error = pushErrorAdmin (newPosition td_ident td_pos) as_error
(type_properties, (conds, as)) = anal_rhs_of_type_def modules com_cons_defs td_rhs (conds, {as & as_error = as_error})
= (combineTypeProperties group_properties type_properties, conds, {as & as_error = popErrorAdmin as.as_error })
where
anal_rhs_of_type_def modules com_cons_defs (AlgType conses) conds_as
= analTypesOfConstructors modules com_cons_defs conses conds_as
anal_rhs_of_type_def modules com_cons_defs (RecordType {rt_constructor}) conds_as
= analTypesOfConstructor modules com_cons_defs rt_constructor conds_as
anal_rhs_of_type_def modules _ (SynType type) conds_as
# (type_kind, cv_props, (conds, as=:{as_kind_heap, as_error})) = analTypes True /* cDummyBool */ modules [] type.at_type conds_as
{uki_kind_heap, uki_error} = unifyKinds type_kind KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error}
= (cv_props, (conds, {as & as_kind_heap = uki_kind_heap, as_error = uki_error}))
anal_rhs_of_type_def modules com_cons_defs (NewType cons) conds_as
= analTypesOfConstructor modules com_cons_defs cons conds_as
anal_rhs_of_type_def modules com_cons_defs (ExtensibleAlgType conses) conds_as
# (cons_properties, (conds,as)) = analTypesOfConstructors modules com_cons_defs conses conds_as
= ((cons_properties bitand (bitnot cIsHyperStrict)) /*bitor cIsNonCoercible*/, (conds,as))
anal_rhs_of_type_def modules com_cons_defs (AlgConses conses _) conds_as
# (cons_properties, (conds,as)) = analTypesOfConstructors modules com_cons_defs conses conds_as
= ((cons_properties bitand (bitnot cIsHyperStrict)) /*bitor cIsNonCoercible*/, (conds,as))
determine_kinds {gi_module,gi_index} (kind_heap, td_infos)
# (td_info=:{tdi_kinds}, td_infos) = td_infos![gi_module,gi_index]
(new_kinds, kind_heap) = mapSt retrieve_kind tdi_kinds kind_heap
= (new_kinds, (kind_heap, td_infos))
where
retrieve_kind (KindVar kind_info_ptr) kind_heap
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
= kindInfoToKind kind_info kind_heap
unify_var_binds :: ![VarBind] !*KindHeap -> *KindHeap
unify_var_binds binds kind_heap
= foldr unify_var_bind kind_heap binds
unify_var_bind :: !VarBind !*KindHeap -> *KindHeap
unify_var_bind {vb_var, vb_vars} kind_heap
# (kind_info, kind_heap) = readPtr vb_var kind_heap
# (vb_var, kind_heap) = determine_var_bind vb_var kind_info kind_heap
= redirect_vars vb_var vb_vars kind_heap
where
redirect_vars kind_info_ptr [var_info_ptr : var_info_ptrs] kind_heap
# (kind_info, kind_heap) = readPtr var_info_ptr kind_heap
# (var_info_ptr, kind_heap) = determine_var_bind var_info_ptr kind_info kind_heap
| kind_info_ptr == var_info_ptr
= redirect_vars kind_info_ptr var_info_ptrs kind_heap
= redirect_vars kind_info_ptr var_info_ptrs (writePtr kind_info_ptr (KI_VarBind var_info_ptr) kind_heap)
redirect_vars kind_info_ptr [] kind_heap
= kind_heap
determine_var_bind _ (KI_VarBind kind_info_ptr) kind_heap
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
= determine_var_bind kind_info_ptr kind_info kind_heap
determine_var_bind kind_info_ptr kind_info kind_heap
= (kind_info_ptr, kind_heap)
normalize_var :: !KindInfoPtr !KindInfo !(!Int,!*KindHeap) -> (!Int,!(!Int,!*KindHeap))
normalize_var orig_kind_info (KI_VarBind kind_info_ptr) (kind_store, kind_heap)
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
= normalize_var kind_info_ptr kind_info (kind_store, kind_heap)
normalize_var kind_info_ptr (KI_NormVar var_number) (kind_store, kind_heap)
= (var_number, (kind_store, kind_heap))
normalize_var kind_info_ptr kind (kind_store, kind_heap)
= (kind_store, (inc kind_store, writePtr kind_info_ptr (KI_NormVar kind_store) kind_heap))
normalize_top_vars top_vars kind_store kind_heap
= mapSt normalize_top_var top_vars (kind_store, kind_heap)
where
normalize_top_var :: !KindInfoPtr !(!Int,!*KindHeap) -> (!Int,!(!Int,!*KindHeap))
normalize_top_var kind_info_ptr (kind_store, kind_heap)
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
= normalize_var kind_info_ptr kind_info (kind_store, kind_heap)
update_type_def_infos modules type_properties top_vars group updated_kinds_of_group kind_store kind_heap td_infos error
# (_,as_kind_heap,as_td_infos,error)
= fold2St (update_type_def_info modules (type_properties bitor cIsAnalysed) top_vars) group updated_kinds_of_group (kind_store,kind_heap,td_infos,error)
= (as_kind_heap,as_td_infos,error)
where
update_type_def_info modules type_properties top_vars {gi_module,gi_index} updated_kinds
(kind_store,kind_heap,td_infos,error)
# (td_info=:{tdi_kinds}, td_infos) = td_infos![gi_module].[gi_index]
# (group_vars, cons_vars, kind_store, kind_heap) = determine_type_def_info tdi_kinds updated_kinds top_vars kind_store kind_heap
# td_info & tdi_properties = type_properties, tdi_kinds = updated_kinds, tdi_group_vars = group_vars, tdi_cons_vars = cons_vars
#! td_infos & [gi_module,gi_index] = td_info
| type_properties bitand cIsNonCoercible<>0
# type_def = modules.[gi_module].com_type_defs.[gi_index]
| not (isUniqueAttr type_def.td_attribute) && is_ExtensibleAlgType_or_AlgConses type_def.td_rhs
# error = checkErrorWithPosition type_def.td_ident type_def.td_pos "a non unique extensible algebraic data type must be coercible" error
= (kind_store, kind_heap, td_infos, error)
= (kind_store, kind_heap, td_infos, error)
= (kind_store, kind_heap, td_infos, error)
determine_type_def_info [KindVar kind_info_ptr : kind_vars] [kind : kinds] top_vars kind_store kind_heap
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
# (var_number, (kind_store, kind_heap)) = normalize_var kind_info_ptr kind_info (kind_store, kind_heap)
(group_vars, cons_vars, kind_store, kind_heap) = determine_type_def_info kind_vars kinds top_vars kind_store kind_heap
= case kind of
KindArrow _
| is_a_top_var var_number top_vars
-> ([var_number : group_vars], [encodeTopConsVar var_number : cons_vars], kind_store, kind_heap)
-> ([var_number : group_vars], [var_number : cons_vars], kind_store, kind_heap)
_
-> ([var_number : group_vars], cons_vars, kind_store, kind_heap)
determine_type_def_info [] [] top_vars kind_store kind_heap
= ([], [], kind_store, kind_heap)
is_a_top_var var_number [top_var_number : top_var_numbers]
= var_number == top_var_number || is_a_top_var var_number top_var_numbers
is_a_top_var var_number []
= False
is_ExtensibleAlgType_or_AlgConses (ExtensibleAlgType _) = True
is_ExtensibleAlgType_or_AlgConses (AlgConses _ _) = True
is_ExtensibleAlgType_or_AlgConses _ = False
check_dcl_properties modules dcl_types dcl_mod_index properties {gi_module, gi_index} as
| gi_module == dcl_mod_index && gi_index < size dcl_types
# {td_ident, td_rhs, td_args, td_pos} = dcl_types.[gi_index]
= case td_rhs of
AbstractType spec_properties
= check_abstract_type spec_properties td_ident td_args td_pos as
AbstractSynType spec_properties _
= check_abstract_type spec_properties td_ident td_args td_pos as
_
= as
with
check_abstract_type spec_properties td_ident td_args td_pos as
# as_error = pushErrorAdmin (newPosition td_ident td_pos) as.as_error
| check_coercibility spec_properties properties
| check_hyperstrictness spec_properties properties
| spec_properties bitand cIsNonCoercible == 0
# (as_type_var_heap, as_td_infos, as_error) = check_positive_sign gi_module gi_index modules td_args as.as_type_var_heap as.as_td_infos as_error
= {as & as_type_var_heap = as_type_var_heap, as_td_infos = as_td_infos, as_error = popErrorAdmin as_error}
= {as & as_error = popErrorAdmin as_error}
# as_error = checkError "abstract type as defined in the implementation module is not hyperstrict" "" as_error
= {as & as_error = popErrorAdmin as_error}
# as_error = checkError "abstract type as defined in the implementation module is not coercible" "" as_error
= {as & as_error = popErrorAdmin as_error}
= as
where
check_coercibility dcl_props icl_props
= dcl_props bitand cIsNonCoercible > 0 || icl_props bitand cIsNonCoercible == 0
check_hyperstrictness dcl_props icl_props
= dcl_props bitand cIsHyperStrict == 0 || icl_props bitand cIsHyperStrict > 0
check_positive_sign mod_index type_index modules td_args type_var_heap type_def_infos error
# top_signs = [ TopSignClass \\ _ <- td_args ]
# (signs, type_var_heap, type_def_infos) = signClassification type_index mod_index top_signs modules type_var_heap type_def_infos
| signs.sc_neg_vect == 0
= (type_var_heap, type_def_infos, error)
# error = checkError "signs of abstract type variables should be positive" "" error
= (type_var_heap, type_def_infos, error)
check_left_root_attribution_of_typedefs modules groups type_def_infos type_var_heap error
= foldSt (foldSt (checkLeftRootAttributionOfTypeDef modules)) groups (type_def_infos, type_var_heap, error)
cDummyConditions =: { con_top_var_binds = [], con_var_binds = []}
determineKind modules type as
# (type_kind, _, (_,as)) = analTypes cDummyBool modules [] type (cDummyConditions, as)
= (type_kind, as)
determine_kinds_of_type_contexts :: !{#CommonDefs} ![TypeContext] !*ClassDefInfos !*AnalyseState -> (!*ClassDefInfos, !*AnalyseState)
determine_kinds_of_type_contexts modules type_contexts class_infos as
= foldSt (determine_kinds_of_type_context modules) type_contexts (class_infos, as)
where
determine_kinds_of_type_context :: !{#CommonDefs} !TypeContext !(!*ClassDefInfos, !*AnalyseState) -> (!*ClassDefInfos, !*AnalyseState)
determine_kinds_of_type_context modules {tc_class=TCClass {glob_module,glob_object={ds_ident,ds_index}},tc_types} (class_infos, as)
# (class_kinds, class_infos) = class_infos![glob_module,ds_index]
| length class_kinds == length tc_types
# as = fold2St (verify_kind_of_type modules) class_kinds tc_types as
= (class_infos, as)
= abort ("determine_kinds_of_type_context" ---> (ds_ident, class_kinds, tc_types))
determine_kinds_of_type_context modules {tc_class=TCGeneric {gtc_generic,gtc_kind},tc_types} (class_infos, as)
| length tc_types == 1
# as = verify_kind_of_type modules gtc_kind (hd tc_types) as
= (class_infos, as)
= abort ("determine_kinds_of_type_context" ---> (gtc_generic.glob_object.ds_ident, gtc_kind, tc_types))
verify_kind_of_type modules req_kind type as
# (kind_of_type, as=:{as_kind_heap,as_error}) = determineKind modules type as
{uki_kind_heap, uki_error} = unifyKinds kind_of_type (kindToKindInfo req_kind) {uki_kind_heap = as_kind_heap, uki_error = as_error}
= { as & as_kind_heap = uki_kind_heap, as_error = uki_error }
determine_kinds_type_list :: !{#CommonDefs} [AType] !*AnalyseState -> *AnalyseState
determine_kinds_type_list modules types as
= foldSt (force_star_kind modules) types as
force_star_kind modules type as
# (off_kind, as=:{as_kind_heap,as_error}) = determineKind modules type as
{uki_kind_heap, uki_error} = unifyKinds off_kind KI_Const {uki_kind_heap = as_kind_heap, uki_error = as_error}
= { as & as_kind_heap = uki_kind_heap, as_error = uki_error }
class_def_error = "cyclic dependencies between type classes"
type_appl_error = "type constructor has too many arguments"
cyclicClassInfoMark =: [KindCycle]
determineKindsOfClasses :: !NumberSet !{#CommonDefs} !*TypeDefInfos !*TypeVarHeap !*ErrorAdmin
-> (!*ClassDefInfos, !*TypeDefInfos, !*TypeVarHeap, !*ErrorAdmin)
determineKindsOfClasses used_module_numbers modules type_def_infos type_var_heap error
#! prev_error_ok = error.ea_ok
# nr_of_modules = size modules
class_infos = {{} \\ module_nr <- [0..nr_of_modules] }
class_infos = iFoldSt (initialyse_info_for_module used_module_numbers modules) 0 nr_of_modules class_infos
as =
{ as_td_infos = type_def_infos
, as_type_var_heap = type_var_heap
, as_kind_heap = newHeap
, as_error = { error & ea_ok = True }
}
(class_infos, {as_td_infos,as_type_var_heap,as_error}) = iFoldSt (determine_kinds_of_class_in_module modules) 0 nr_of_modules (class_infos, as)
#! ok = as_error.ea_ok
= (class_infos, as_td_infos, as_type_var_heap, { as_error & ea_ok = prev_error_ok && ok })
where
initialyse_info_for_module used_module_numbers modules module_index class_infos
| inNumberSet module_index used_module_numbers
# nr_of_classes = size modules.[module_index].com_class_defs
= { class_infos & [module_index] = createArray nr_of_classes [] }
= class_infos
determine_kinds_of_class_in_module modules module_index (class_infos, as)
#! nr_of_classes = size class_infos.[module_index]
= iFoldSt (determine_kinds_of_class modules module_index) 0 nr_of_classes (class_infos, as)
determine_kinds_of_class :: !{#CommonDefs} !Index !Index !(!*ClassDefInfos, !*AnalyseState) -> (!*ClassDefInfos, !*AnalyseState)
determine_kinds_of_class modules class_module class_index (class_infos, as)
| isEmpty class_infos.[class_module,class_index]
# {com_class_defs,com_member_defs} = modules.[class_module]
{class_args,class_context,class_members,class_arity,class_pos,class_ident} = com_class_defs.[class_index]
(class_kind_vars, as_kind_heap) = fresh_kind_vars class_arity [] as.as_kind_heap
as_type_var_heap = bind_kind_vars class_args class_kind_vars as.as_type_var_heap
as_error = pushErrorAdmin (newPosition class_ident class_pos) as.as_error
class_infos = { class_infos & [class_module,class_index] = cyclicClassInfoMark }
(class_infos, as) = determine_kinds_of_context_classes class_context (class_infos,
{ as & as_kind_heap = as_kind_heap, as_type_var_heap = as_type_var_heap, as_error = as_error })
| as.as_error.ea_ok
# (class_infos, as) = determine_kinds_of_type_contexts modules class_context class_infos as
(class_infos, as) = determine_kinds_of_members modules class_members com_member_defs class_kind_vars (class_infos, as)
(class_kinds, as_kind_heap) = retrieve_class_kinds class_kind_vars as.as_kind_heap
= ({class_infos & [class_module,class_index] = class_kinds }, { as & as_kind_heap = as_kind_heap, as_error = popErrorAdmin as.as_error})
// ---> ("determine_kinds_of_class", class_ident, class_kinds)
= ({class_infos & [class_module,class_index] = [ KindConst \\ _ <- [1..class_arity]] }, { as & as_error = popErrorAdmin as.as_error })
| isCyclicClass class_infos.[class_module,class_index]
# {class_ident,class_arity} = modules.[class_module].com_class_defs.[class_index]
= ({ class_infos & [class_module,class_index] = [ KindConst \\ _ <- [1..class_arity]]},
{ as & as_error = checkError class_ident class_def_error as.as_error })
= (class_infos, as)
where
fresh_kind_vars nr_of_vars fresh_vars kind_heap
| nr_of_vars > 0
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= fresh_kind_vars (dec nr_of_vars) [ kind_info_ptr : fresh_vars] (kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr))
= (fresh_vars, kind_heap)
isCyclicClass [ KindCycle : _ ] = True
isCyclicClass _ = False
determine_kinds_of_context_classes contexts class_infos_and_as
= foldSt (determine_kinds_of_context_class modules) contexts class_infos_and_as
where
determine_kinds_of_context_class modules {tc_class=TCClass {glob_module,glob_object={ds_index}}} infos_and_as
= determine_kinds_of_class modules glob_module ds_index infos_and_as
determine_kinds_of_context_class modules {tc_class=TCGeneric {gtc_kind}} infos_and_as
= infos_and_as
bind_kind_vars type_vars kind_ptrs type_var_heap
= fold2St bind_kind_var type_vars kind_ptrs type_var_heap
where
bind_kind_var {tv_info_ptr} kind_info_ptr type_var_heap
= type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr)
clear_variables type_vars type_var_heap
= foldSt clear_variable type_vars type_var_heap
where
clear_variable {tv_info_ptr} type_var_heap
= type_var_heap <:= (tv_info_ptr, TVI_Empty)
determine_kinds_of_members modules members member_defs class_kind_vars (class_infos, as)
= iFoldSt (determine_kind_of_member modules members member_defs class_kind_vars) 0 (size members) (class_infos, as)
determine_kind_of_member modules members member_defs class_kind_vars loc_member_index class_infos_and_as
# glob_member_index = members.[loc_member_index].ds_index
{me_class_vars,me_type={st_vars,st_args,st_result,st_context}} = member_defs.[glob_member_index]
other_contexts = (tl st_context)
(class_infos, as) = determine_kinds_of_context_classes other_contexts class_infos_and_as
as_type_var_heap = clear_variables st_vars as.as_type_var_heap
as_type_var_heap = bind_kind_vars me_class_vars class_kind_vars as_type_var_heap
(as_type_var_heap, as_kind_heap) = fresh_kind_vars_for_unbound_vars st_vars as_type_var_heap as.as_kind_heap
as = determine_kinds_type_list modules [st_result:st_args] { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
= determine_kinds_of_type_contexts modules other_contexts class_infos as
where
fresh_kind_vars_for_unbound_vars type_vars type_var_heap kind_heap
= foldSt fresh_kind_vars_for_unbound_var type_vars (type_var_heap, kind_heap)
fresh_kind_vars_for_unbound_var {tv_info_ptr} (type_var_heap, kind_heap)
# (tv_info, type_var_heap) = readPtr tv_info_ptr type_var_heap
= case tv_info of
TVI_Empty
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
-> (type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr), kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr))
_
-> (type_var_heap, kind_heap)
retrieve_class_kinds class_kind_vars kind_heap
= mapSt retrieve_kind class_kind_vars kind_heap
where
retrieve_kind kind_info_ptr kind_heap
# (kind_info, kind_heap) = readPtr kind_info_ptr kind_heap
= kindInfoToKind kind_info kind_heap
new_local_kind_variables_for_universal_vars :: [ATypeVar] !*TypeVarHeap !*KindHeap -> (!*TypeVarHeap,!*KindHeap)
new_local_kind_variables_for_universal_vars type_vars type_var_heap as_kind_heap
= foldSt new_kind type_vars (type_var_heap, as_kind_heap)
where
new_kind :: !ATypeVar !(!*TypeVarHeap,!*KindHeap) -> (!*TypeVarHeap,!*KindHeap)
new_kind {atv_variable={tv_info_ptr}} (type_var_heap, kind_heap)
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= (type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr), kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr))
bindFreshKindVariablesToTypeVars :: [TypeVar] !*TypeVarHeap !*KindHeap -> (!*TypeVarHeap,!*KindHeap)
bindFreshKindVariablesToTypeVars type_vars type_var_heap as_kind_heap
= foldSt new_kind type_vars (type_var_heap, as_kind_heap)
where
new_kind :: !TypeVar !(!*TypeVarHeap,!*KindHeap) -> (!*TypeVarHeap,!*KindHeap)
new_kind {tv_info_ptr} (type_var_heap, kind_heap)
# (kind_info_ptr, kind_heap) = newPtr KI_Const kind_heap
= ( type_var_heap <:= (tv_info_ptr, TVI_TypeKind kind_info_ptr), kind_heap <:= (kind_info_ptr, KI_Var kind_info_ptr))
checkKindsOfCommonDefsAndFunctions :: !Index !Index !NumberSet ![IndexRange] !{#CommonDefs} !u:{# FunDef} !v:{#DclModule} !*TypeDefInfos !*ClassDefInfos
!*TypeVarHeap !*ExpressionHeap !*GenericHeap !*ErrorAdmin -> (!u:{# FunDef}, !v:{#DclModule}, !*TypeDefInfos, !*TypeVarHeap, !*ExpressionHeap, !*GenericHeap, !*ErrorAdmin)
checkKindsOfCommonDefsAndFunctions first_uncached_module main_module_index used_module_numbers icl_fun_def_ranges common_defs icl_fun_defs dcl_modules
type_def_infos class_infos type_var_heap expression_heap gen_heap error
# as =
{ as_td_infos = type_def_infos
, as_type_var_heap = type_var_heap
, as_kind_heap = newHeap
, as_error = error
}
# (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
= iFoldSt (check_kinds_of_module first_uncached_module main_module_index used_module_numbers icl_fun_def_ranges common_defs)
0 (size common_defs) (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
= (icl_fun_defs, dcl_modules, as.as_td_infos, as.as_type_var_heap, expression_heap, gen_heap, as.as_error)
where
check_kinds_of_module first_uncached_module main_module_index used_module_numbers icl_fun_def_ranges common_defs module_index
(icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
| inNumberSet module_index used_module_numbers
| module_index == main_module_index
# (class_infos, as) = check_kinds_of_class_instances common_defs 0 common_defs.[module_index].com_instance_defs class_infos as
# (class_infos, gen_heap, as) = check_kinds_of_generics common_defs 0 common_defs.[module_index].com_generic_defs class_infos gen_heap as
# as = check_kinds_of_gencases 0 common_defs.[module_index].com_gencase_defs as
# (icl_fun_defs, class_infos, expression_heap, as) = foldSt (check_kinds_of_icl_fuctions common_defs) icl_fun_def_ranges (icl_fun_defs, class_infos, expression_heap, as)
with
check_kinds_of_icl_fuctions common_defs {ir_from,ir_to} (icl_fun_defs, class_infos, expression_heap, as)
= iFoldSt (check_kinds_of_icl_fuction common_defs) ir_from ir_to (icl_fun_defs, class_infos, expression_heap, as)
= (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
| module_index >= first_uncached_module
# (class_infos, as) = check_kinds_of_class_instances common_defs 0 common_defs.[module_index].com_instance_defs class_infos as
# (class_infos, gen_heap, as) = check_kinds_of_generics common_defs 0 common_defs.[module_index].com_generic_defs class_infos gen_heap as
# as = check_kinds_of_gencases 0 common_defs.[module_index].com_gencase_defs as
# (dcl_modules, class_infos, as) = check_kinds_of_dcl_fuctions common_defs module_index dcl_modules class_infos as
= (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
= (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
= (icl_fun_defs, dcl_modules, class_infos, expression_heap, gen_heap, as)
check_kinds_of_class_instances common_defs instance_index instance_defs class_infos as
| instance_index == size instance_defs
= (class_infos, as)
# (class_infos, as) = check_kinds_of_class_instance common_defs instance_defs.[instance_index] class_infos as
= check_kinds_of_class_instances common_defs (inc instance_index) instance_defs class_infos as
where
check_kinds_of_class_instance :: !{#CommonDefs} !ClassInstance !*ClassDefInfos !*AnalyseState -> (!*ClassDefInfos, !*AnalyseState)
check_kinds_of_class_instance common_defs {ins_class_index,ins_class_ident={ci_ident=Ident class_ident,ci_arity},ins_ident,ins_pos,ins_type={it_vars,it_types,it_context}} class_infos
as=:{as_type_var_heap,as_kind_heap,as_error}
# as_error = pushErrorAdmin (newPosition ins_ident ins_pos) as_error
(as_type_var_heap, as_kind_heap) = bindFreshKindVariablesToTypeVars it_vars as_type_var_heap as_kind_heap
as = { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap, as_error = as_error }
ins_class = {glob_module=ins_class_index.gi_module,glob_object={ds_index=ins_class_index.gi_index,ds_ident=class_ident,ds_arity=ci_arity}}
context = {tc_class = TCClass ins_class, tc_types = it_types, tc_var = nilPtr}
(class_infos, as) = determine_kinds_of_type_contexts common_defs [context : it_context] class_infos as
= (class_infos, { as & as_error = popErrorAdmin as.as_error})
check_kinds_of_generics common_defs index generic_defs class_infos gen_heap as
| index == size generic_defs
= (class_infos, gen_heap, as)
# (class_infos, gen_heap, as) = check_kinds_of_generic common_defs generic_defs.[index] class_infos gen_heap as
= check_kinds_of_generics common_defs (inc index) generic_defs class_infos gen_heap as
where
check_kinds_of_generic :: !{#CommonDefs} !GenericDef !*ClassDefInfos !*GenericHeap !*AnalyseState -> (!*ClassDefInfos, !*GenericHeap, !*AnalyseState)
check_kinds_of_generic common_defs {gen_type, gen_ident, gen_pos, gen_vars, gen_info_ptr} class_infos gen_heap as
# as = {as & as_error = pushErrorAdmin (newPosition gen_ident gen_pos) as.as_error}
# (class_infos, as) = check_kinds_of_symbol_type common_defs gen_type class_infos as
# (kinds, as) = mapSt retrieve_tv_kind gen_type.st_vars as
# as = check_kinds_of_generic_vars (take (length gen_vars) kinds) as
# (gen_info, gen_heap) = readPtr gen_info_ptr gen_heap
# gen_heap = writePtr gen_info_ptr {gen_info & gen_var_kinds = kinds} gen_heap
# as = {as & as_error = popErrorAdmin as.as_error}
= (class_infos, gen_heap, as)
retrieve_tv_kind :: !TypeVar !*AnalyseState -> (!TypeKind, !*AnalyseState)
retrieve_tv_kind tv=:{tv_info_ptr} as=:{as_type_var_heap, as_kind_heap}
#! (TVI_TypeKind kind_info_ptr, as_type_var_heap) = readPtr tv_info_ptr as_type_var_heap
#! (kind_info, as_kind_heap) = readPtr kind_info_ptr as_kind_heap
#! (kind, as_kind_heap) = kindInfoToKind kind_info as_kind_heap
= (kind, {as & as_kind_heap = as_kind_heap, as_type_var_heap = as_type_var_heap})
check_kinds_of_generic_vars :: ![TypeKind] !*AnalyseState -> *AnalyseState
check_kinds_of_generic_vars [gen_kind:gen_kinds] as
//| all (\k -> k == gen_kind) gen_kinds
| all ((==) KindConst) [gen_kind:gen_kinds] // forcing all kind variables be of kind star
= as
# as_error = checkError
"conflicting kinds: "
"generic variables must have the same kind"
as.as_error
= {as & as_error = as_error}
check_kinds_of_gencases :: !Index !{#GenericCaseDef} !*AnalyseState -> *AnalyseState
check_kinds_of_gencases index gencases as
| index == size gencases
= as
# as = check_kinds_of_gencase gencases.[index] as
= check_kinds_of_gencases (inc index) gencases as
where
check_kinds_of_gencase gencase=:{gc_type_cons=TypeConsSymb {type_index}} as=:{as_error, as_td_infos}
# ({tdi_kinds}, as_td_infos) = as_td_infos ! [type_index.glob_module, type_index.glob_object]
# kind = if (isEmpty tdi_kinds) KindConst (KindArrow tdi_kinds)
# as_error = case rank_of_kind kind > 2 of
True -> checkError kind "only kinds up to rank-2 supported by generics" as_error
False -> as_error
= {as & as_error = as_error, as_td_infos = as_td_infos}
where
rank_of_kind KindConst = 0
rank_of_kind (KindArrow kinds) = 1 + foldr max 0 (map rank_of_kind kinds)
check_kinds_of_gencase gencase as
= as
check_kinds_of_icl_fuction common_defs fun_index (icl_fun_defs, class_infos, expression_heap, as)
# ({fun_type,fun_ident,fun_info,fun_pos}, icl_fun_defs) = icl_fun_defs![fun_index]
(expression_heap,as) = check_kinds_of_dynamics common_defs fun_info.fi_dynamics expression_heap as
= case fun_type of
Yes symbol_type
# as_error = pushErrorAdmin (newPosition fun_ident fun_pos) as.as_error
(class_infos, as) = check_kinds_of_symbol_type common_defs symbol_type class_infos { as & as_error = as_error }
-> (icl_fun_defs, class_infos, expression_heap, { as & as_error = popErrorAdmin as.as_error })
No
-> (icl_fun_defs, class_infos, expression_heap, as)
check_kinds_of_dcl_fuctions common_defs module_index dcl_modules class_infos as
# ({dcl_functions,dcl_instances}, dcl_modules) = dcl_modules![module_index]
# nr_of_dcl_funs = dcl_instances.ir_from
# (class_infos, as) = iFoldSt (check_kinds_of_dcl_fuction common_defs dcl_functions) 0 nr_of_dcl_funs (class_infos, as)
= (dcl_modules, class_infos, as)
where
check_kinds_of_dcl_fuction common_defs dcl_functions fun_index (class_infos, as)
# {ft_type,ft_ident,ft_pos} = dcl_functions.[fun_index]
as_error = pushErrorAdmin (newPosition ft_ident ft_pos) as.as_error
(class_infos, as) = check_kinds_of_symbol_type common_defs ft_type class_infos {as & as_error = as_error}
= (class_infos, { as & as_error = popErrorAdmin as.as_error})
check_kinds_of_symbol_type :: !{#CommonDefs} !SymbolType !*ClassDefInfos !*AnalyseState -> (!*ClassDefInfos, !*AnalyseState)
check_kinds_of_symbol_type common_defs {st_vars,st_result,st_args,st_context} class_infos as=:{as_type_var_heap,as_kind_heap}
# (as_type_var_heap, as_kind_heap) = bindFreshKindVariablesToTypeVars st_vars as_type_var_heap as_kind_heap
as = {as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
as = determine_kinds_type_list common_defs [st_result:st_args] as
= determine_kinds_of_type_contexts common_defs st_context class_infos as
check_kinds_of_dynamics :: {#CommonDefs} [DynamicPtr] *ExpressionHeap *AnalyseState -> (*ExpressionHeap, *AnalyseState)
check_kinds_of_dynamics common_defs dynamic_ptrs expr_heap as
= foldSt (check_kinds_of_dynamic common_defs) dynamic_ptrs (expr_heap, as)
where
check_kinds_of_dynamic :: {#CommonDefs} DynamicPtr (*ExpressionHeap, *AnalyseState) -> (*ExpressionHeap, *AnalyseState)
check_kinds_of_dynamic common_defs dynamic_ptr (expr_heap,as)
# (dynamic_info, expr_heap) = readPtr dynamic_ptr expr_heap
= check_kinds_of_dynamic_info common_defs dynamic_info (expr_heap, as)
check_kinds_of_dynamic_info :: {#CommonDefs} ExprInfo (*ExpressionHeap, *AnalyseState) -> (*ExpressionHeap, *AnalyseState)
check_kinds_of_dynamic_info common_defs (EI_Dynamic opt_type locals) (expr_heap, as)
# as = check_kinds_of_opt_dynamic_type common_defs opt_type as
= check_kinds_of_dynamics common_defs locals expr_heap as
check_kinds_of_dynamic_info common_defs (EI_DynamicTypeWithVars vars type locals) (expr_heap, as=:{as_type_var_heap,as_kind_heap})
# (as_type_var_heap, as_kind_heap) = bindFreshKindVariablesToTypeVars vars as_type_var_heap as_kind_heap
as = check_kinds_of_dynamic_type common_defs type { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
= check_kinds_of_dynamics common_defs locals expr_heap as
check_kinds_of_opt_dynamic_type :: {#CommonDefs} (Optional DynamicType) *AnalyseState -> *AnalyseState
check_kinds_of_opt_dynamic_type common_defs (Yes type) as
= check_kinds_of_dynamic_type common_defs type as
check_kinds_of_opt_dynamic_type common_defs No as
= as
check_kinds_of_dynamic_type :: {#CommonDefs} DynamicType *AnalyseState -> *AnalyseState
check_kinds_of_dynamic_type common_defs {dt_type, dt_uni_vars, dt_global_vars} as=:{as_type_var_heap,as_kind_heap}
# (as_type_var_heap, as_kind_heap) = bindFreshKindVariablesToTypeVars [atv_variable \\ {atv_variable} <- dt_uni_vars] as_type_var_heap as_kind_heap
(as_type_var_heap, as_kind_heap) = bindFreshKindVariablesToTypeVars dt_global_vars as_type_var_heap as_kind_heap
= determine_kinds_type_list common_defs [dt_type] { as & as_type_var_heap = as_type_var_heap, as_kind_heap = as_kind_heap}
instance <<< DynamicType
where
(<<<) file {dt_global_vars,dt_type} = file <<< dt_global_vars <<< dt_type
instance <<< GlobalIndex
where
(<<<) file {gi_module,gi_index} = file <<< '[' <<< gi_module <<< ',' <<< gi_index <<< ']'
checkLeftRootAttributionOfTypeDef :: !{# CommonDefs} GlobalIndex !(!*TypeDefInfos, !*TypeVarHeap, !*ErrorAdmin)
-> (!*TypeDefInfos, !*TypeVarHeap, !*ErrorAdmin)
checkLeftRootAttributionOfTypeDef common_defs {gi_module,gi_index} (td_infos, th_vars, error)
# {td_rhs, td_attribute, td_ident, td_pos} = common_defs.[gi_module].com_type_defs.[gi_index]
| isUniqueAttr td_attribute
= (td_infos, th_vars, error)
# (is_unique, (td_infos, th_vars))
= isUniqueTypeRhs common_defs gi_module td_rhs (td_infos, th_vars)
| is_unique
= (td_infos, th_vars, checkErrorWithIdentPos (newPosition td_ident td_pos)
" left root * attribute expected" error)
= (td_infos, th_vars, error)
isUniqueTypeRhs common_defs mod_index (AlgType constructors) state
= has_unique_constructor constructors common_defs mod_index state
isUniqueTypeRhs common_defs mod_index (SynType rhs) state
= isUnique common_defs rhs state
isUniqueTypeRhs common_defs mod_index (RecordType {rt_constructor={ds_index}}) state
= constructor_is_unique mod_index ds_index common_defs state
isUniqueTypeRhs common_defs mod_index (NewType {ds_index}) state
= constructor_is_unique mod_index ds_index common_defs state
isUniqueTypeRhs common_defs mod_index (ExtensibleAlgType constructors) state
= has_unique_constructor constructors common_defs mod_index state
isUniqueTypeRhs common_defs mod_index (AlgConses constructors _) state
= has_unique_constructor constructors common_defs mod_index state
isUniqueTypeRhs common_defs mod_index _ state
= (False, state)
has_unique_constructor [{ds_index}:constructors] common_defs mod_index state
# (is_unique,state) = constructor_is_unique mod_index ds_index common_defs state
| is_unique
= (True,state);
= has_unique_constructor constructors common_defs mod_index state
has_unique_constructor [] common_defs mod_index state
= (False,state)
constructor_is_unique mod_index index common_defs state
# {cons_type} = common_defs.[mod_index].com_cons_defs.[index]
(uniqueness_of_args, state)
= mapSt (isUnique common_defs) cons_type.st_args state
= (or uniqueness_of_args, state)
class isUnique a :: !{# CommonDefs} !a !(!*TypeDefInfos, !*TypeVarHeap) -> (!Bool, !(!*TypeDefInfos, !*TypeVarHeap))
instance isUnique AType
where
isUnique common_defs {at_attribute=TA_Unique} state
= (True, state)
isUnique common_defs {at_type} state
= isUnique common_defs at_type state
instance isUnique Type
where
isUnique common_defs (TA {type_index={glob_module, glob_object}} type_args) (td_infos, th_vars)
= isUnique_for_TA glob_module glob_object type_args common_defs td_infos th_vars
isUnique common_defs (TAS {type_index={glob_module, glob_object}} type_args _) (td_infos, th_vars)
= isUnique_for_TA glob_module glob_object type_args common_defs td_infos th_vars
isUnique common_defs _ state
= (False, state)
isUnique_for_TA :: Int Int [AType] !{# CommonDefs} !*TypeDefInfos !*TypeVarHeap -> (!Bool, !(!*TypeDefInfos, !*TypeVarHeap))
isUnique_for_TA glob_module glob_object type_args common_defs td_infos th_vars
# type_def = common_defs.[glob_module].com_type_defs.[glob_object]
| isUniqueAttr type_def.td_attribute
= (True, (td_infos, th_vars))
# (prop_classification, th_vars, td_infos)
= propClassification glob_object glob_module (repeatn type_def.td_arity 0)
common_defs th_vars td_infos
(uniqueness_of_args, (td_infos, th_vars))
= mapSt (isUnique common_defs) type_args (td_infos, th_vars)
= (unique_if_arg_is_unique_and_propagating uniqueness_of_args prop_classification, (td_infos, th_vars))
where
unique_if_arg_is_unique_and_propagating [] _
= False
unique_if_arg_is_unique_and_propagating [is_unique_argument:rest] prop_classification
| isOdd prop_classification && is_unique_argument
= True
= unique_if_arg_is_unique_and_propagating rest (prop_classification>>1)
isUniqueAttr TA_Unique = True
isUniqueAttr _ = False
|