1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
|
implementation module backendconvert
import code from library "backend_library"
import StdEnv
import frontend
import backend
import backendsupport, backendpreprocess
import RWSDebug
:: BEMonad a :== St !*BackEnd !a
:: Backender :== *BackEnd -> *BackEnd
/* +++
:: *BackEndState = {bes_backEnd :: BackEnd, bes_varHeap :: *VarHeap}
appBackEnd f beState
# (result, bes_backEnd)
= f beState.bes_backEnd
= (result, {beState & bes_backEnd = bes_backEnd})
accVarHeap f beState
# (result, varHeap)
= f beState.bes_varHeap
= (result, {beState & bes_varHeap = varHeap})
*/
appBackEnd f beState :== f beState
accVarHeap f beState :== f beState
beFunction0 f
:== appBackEnd f
beFunction1 f m1
:== m1 ==> \a1
-> appBackEnd (f a1)
beFunction2 f m1 m2
:== m1 ==> \a1
-> m2 ==> \a2
-> appBackEnd (f a1 a2)
beFunction3 f m1 m2 m3
:== m1 ==> \a1
-> m2 ==> \a2
-> m3 ==> \a3
-> appBackEnd (f a1 a2 a3)
beFunction4 f m1 m2 m3 m4
:== m1 ==> \a1
-> m2 ==> \a2
-> m3 ==> \a3
-> m4 ==> \a4
-> appBackEnd (f a1 a2 a3 a4)
beFunction5 f m1 m2 m3 m4 m5
:== m1 ==> \a1
-> m2 ==> \a2
-> m3 ==> \a3
-> m4 ==> \a4
-> m5 ==> \a5
-> appBackEnd (f a1 a2 a3 a4 a5)
beFunction6 f m1 m2 m3 m4 m5 m6
:== m1 ==> \a1
-> m2 ==> \a2
-> m3 ==> \a3
-> m4 ==> \a4
-> m5 ==> \a5
-> m6 ==> \a6
-> appBackEnd (f a1 a2 a3 a4 a5 a6)
beFunction7 f m1 m2 m3 m4 m5 m6 m7
:== m1 ==> \a1
-> m2 ==> \a2
-> m3 ==> \a3
-> m4 ==> \a4
-> m5 ==> \a5
-> m6 ==> \a6
-> m7 ==> \a7
-> appBackEnd (f a1 a2 a3 a4 a5 a6 a7)
changeArrayFunctionIndex selectIndex
:== selectIndex
beBoolSymbol value
:== beFunction0 (BEBoolSymbol value)
beLiteralSymbol type value
:== beFunction0 (BELiteralSymbol type value)
beFunctionSymbol functionIndex moduleIndex
:== beFunction0 (BEFunctionSymbol functionIndex moduleIndex)
beSpecialArrayFunctionSymbol arrayFunKind functionIndex moduleIndex
:== beFunction0 (BESpecialArrayFunctionSymbol arrayFunKind (changeArrayFunctionIndex functionIndex) moduleIndex)
beDictionarySelectFunSymbol
:== beFunction0 BEDictionarySelectFunSymbol
beDictionaryUpdateFunSymbol
:== beFunction0 BEDictionaryUpdateFunSymbol
beConstructorSymbol moduleIndex constructorIndex
:== beFunction0 (BEConstructorSymbol constructorIndex moduleIndex)
beFieldSymbol fieldIndex moduleIndex
:== beFunction0 (BEFieldSymbol fieldIndex moduleIndex)
beTypeSymbol typeIndex moduleIndex
:== beFunction0 (BETypeSymbol typeIndex moduleIndex)
beBasicSymbol typeSymbolIndex
:== beFunction0 (BEBasicSymbol typeSymbolIndex)
beDontCareDefinitionSymbol
:== beFunction0 BEDontCareDefinitionSymbol
beNoArgs
:== beFunction0 BENoArgs
beArgs
:== beFunction2 BEArgs
beNoTypeArgs
:== beFunction0 BENoTypeArgs
beTypeArgs
:== beFunction2 BETypeArgs
beNormalNode
:== beFunction2 BENormalNode
beIfNode
:== beFunction3 BEIfNode
beGuardNode
:== beFunction7 BEGuardNode
beSelectorNode selectorKind
:== beFunction2 (BESelectorNode selectorKind)
beUpdateNode
:== beFunction1 BEUpdateNode
beNormalTypeNode
:== beFunction2 BENormalTypeNode
beVarTypeNode name
:== beFunction0 (BEVarTypeNode name)
beRuleAlt lineNumber
:== beFunction5 (BERuleAlt lineNumber)
beNoRuleAlts
:== beFunction0 BENoRuleAlts
beRuleAlts
:== beFunction2 BERuleAlts
beTypeAlt
:== beFunction2 BETypeAlt
beRule index isCaf
:== beFunction2 (BERule index isCaf)
beNoRules
:== beFunction0 BENoRules
beRules
:== beFunction2 BERules
beNodeDef sequenceNumber
:== beFunction1 (BENodeDef sequenceNumber)
beNoNodeDefs
:== beFunction0 BENoNodeDefs
beNodeDefs
:== beFunction2 BENodeDefs
beStrictNodeId
:== beFunction1 BEStrictNodeId
beNoStrictNodeIds
:== beFunction0 BENoStrictNodeIds
beStrictNodeIds
:== beFunction2 BEStrictNodeIds
beNodeIdNode
:== beFunction2 BENodeIdNode
beNodeId sequenceNumber
:== beFunction0 (BENodeId sequenceNumber)
beWildCardNodeId
:== beFunction0 BEWildCardNodeId
beConstructor
:== beFunction1 BEConstructor
beNoConstructors
:== beFunction0 BENoConstructors
beConstructors
:== beFunction2 BEConstructors
beNoFields
:== beFunction0 BENoFields
beFields
:== beFunction2 BEFields
beField fieldIndex moduleIndex
:== beFunction1 (BEField fieldIndex moduleIndex)
beAnnotateTypeNode annotation
:== beFunction1 (BEAnnotateTypeNode annotation)
beAttributeTypeNode attribution
:== beFunction1 (BEAttributeTypeNode attribution)
beDeclareRuleType functionIndex moduleIndex name
:== beFunction0 (BEDeclareRuleType functionIndex moduleIndex name)
beDefineRuleType functionIndex moduleIndex
:== beFunction1 (BEDefineRuleType functionIndex moduleIndex)
beCodeAlt lineNumber
:== beFunction3 (BECodeAlt lineNumber)
beString string
:== beFunction0 (BEString string)
beStrings
:== beFunction2 BEStrings
beNoStrings
:== beFunction0 BENoStrings
beCodeParameter location
:== beFunction1 (BECodeParameter location)
beCodeParameters
:== beFunction2 BECodeParameters
beNoCodeParameters
:== beFunction0 BENoCodeParameters
beAbcCodeBlock inline
:== beFunction1 (BEAbcCodeBlock inline)
beAnyCodeBlock
:== beFunction3 BEAnyCodeBlock
beDeclareNodeId number lhsOrRhs name
:== beFunction0 (BEDeclareNodeId number lhsOrRhs name)
beAdjustArrayFunction backendId functionIndex moduleIndex
:== beFunction0 (BEAdjustArrayFunction backendId functionIndex moduleIndex)
beFlatType
:== beFunction2 BEFlatType
beNoTypeVars
:== beFunction0 BENoTypeVars
beTypeVars
:== beFunction2 BETypeVars
beTypeVar name
:== beFunction0 (BETypeVar name)
beExportType typeIndex
:== beFunction0 (BEExportType typeIndex)
beExportConstructor constructorIndex
:== beFunction0 (BEExportConstructor constructorIndex)
beExportField fieldIndex
:== beFunction0 (BEExportField fieldIndex)
beExportFunction dclIndexFunctionIndex iclFunctionIndex
:== beFunction0 (BEExportFunction dclIndexFunctionIndex iclFunctionIndex)
beTupleSelectNode arity index
:== beFunction1 (BETupleSelectNode arity index)
beMatchNode arity
:== beFunction2 (BEMatchNode arity)
beDefineImportedObjsAndLibs
:== beFunction2 BEDefineImportedObjsAndLibs
notYetImplementedExpr :: Expression
notYetImplementedExpr
= (BasicExpr (BVS "\"error in compiler (something was not implemented by lazy Ronny)\"") BT_Int)
backEndConvertModules :: PredefinedSymbols FrontEndSyntaxTree VarHeap *BackEnd -> *BackEnd
backEndConvertModules predefs {fe_icl = fe_icl =: {icl_name, icl_functions, icl_common, icl_imported_objects}, fe_components, fe_dcls, fe_arrayInstances, fe_dclIclConversions, fe_iclDclConversions} varHeap backEnd
// sanity check ...
// | cIclModIndex <> kIclModuleIndex || cPredefinedModuleIndex <> kPredefinedModuleIndex
// = undef <<- "backendconvert, backEndConvertModules: module index mismatch"
// ... sanity check
/*
# backEnd
= ruleDoesNotMatch 1 backEnd
with
ruleDoesNotMatch 0 backend
= backend
# backEnd
= abort "front end abort" backEnd
*/
#! backEnd
= BEDeclareModules (size fe_dcls) backEnd
#! backEnd
= predefineSymbols fe_dcls.[cPredefinedModuleIndex] predefs backEnd
#! backEnd
= declareCurrentDclModule fe_icl fe_dcls.[cIclModIndex] backEnd
#! backEnd
= declareOtherDclModules fe_dcls backEnd
#! backEnd
= defineCurrentDclModule varHeap fe_icl fe_dcls.[cIclModIndex] backEnd
#! backEnd
= defineOtherDclModules fe_dcls varHeap backEnd
#! backEnd
= declareDclModule cIclModIndex fe_dcls.[cIclModIndex] backEnd
#! backEnd
= defineDclModule varHeap cIclModIndex fe_dcls.[cIclModIndex] backEnd
#! backEnd
= BEDeclareIclModule icl_name.id_name (size icl_functions) (size icl_common.com_type_defs) (size icl_common.com_cons_defs) (size icl_common.com_selector_defs) backEnd
#! backEnd
= declareFunctionSymbols icl_functions (getConversions fe_iclDclConversions) functionIndices backEnd
with
getConversions :: (Optional {#Int}) -> {#Int}
getConversions No
= {}
getConversions (Yes conversions)
= conversions
#! backEnd
= declare cIclModIndex varHeap icl_common backEnd
#! backEnd
= declareArrayInstances fe_arrayInstances icl_functions backEnd
#! (rules, backEnd)
= convertRules [(index, icl_functions.[index]) \\ (_, index) <- functionIndices] varHeap backEnd
#! backEnd
= BEDefineRules rules backEnd
#! backEnd
= beDefineImportedObjsAndLibs
(convertStrings [imported.io_name \\ imported <- icl_imported_objects | not imported.io_is_library])
(convertStrings [imported.io_name \\ imported <- icl_imported_objects | imported.io_is_library])
backEnd
#! backEnd
= adjustArrayFunctions predefs fe_arrayInstances icl_functions fe_dcls varHeap backEnd
#! backEnd
= markExports fe_dcls.[cIclModIndex] icl_common.com_class_defs icl_common.com_type_defs fe_dclIclConversions backEnd
= backEnd
where
componentCount
= length functionIndices
functionIndices
= flatten [[(componentIndex, member) \\ member <- group.group_members] \\ group <-: fe_components & componentIndex <- [0..]]
declareOtherDclModules :: {#DclModule} -> Backender
declareOtherDclModules dcls
= foldStateWithIndexA declareOtherDclModule dcls
defineOtherDclModules :: {#DclModule} VarHeap -> Backender
defineOtherDclModules dcls varHeap
= foldStateWithIndexA (defineOtherDclModule varHeap) dcls
declareCurrentDclModule :: IclModule DclModule -> Backender
declareCurrentDclModule {icl_common} {dcl_name, dcl_functions, dcl_is_system, dcl_common}
= BEDeclareDclModule cIclModIndex dcl_name.id_name dcl_is_system (size dcl_functions) (size icl_common.com_type_defs) (size dcl_common.com_cons_defs) (size dcl_common.com_selector_defs)
declareOtherDclModule :: ModuleIndex DclModule -> Backender
declareOtherDclModule moduleIndex dclModule
| moduleIndex == cIclModIndex || moduleIndex == cPredefinedModuleIndex
= identity
// otherwise
= declareDclModule moduleIndex dclModule
declareDclModule :: ModuleIndex DclModule -> Backender
declareDclModule moduleIndex {dcl_name, dcl_common, dcl_functions, dcl_is_system}
= BEDeclareDclModule moduleIndex dcl_name.id_name dcl_is_system (size dcl_functions) (size dcl_common.com_type_defs) (size dcl_common.com_cons_defs) (size dcl_common.com_selector_defs)
defineCurrentDclModule :: VarHeap IclModule DclModule -> Backender
defineCurrentDclModule varHeap {icl_common} {dcl_name, dcl_common, dcl_functions, dcl_is_system, dcl_conversions}
= declareCurrentDclModuleTypes dcl_common.com_type_defs typeConversions varHeap
o` defineCurrentDclModuleTypes dcl_common.com_cons_defs dcl_common.com_selector_defs dcl_common.com_type_defs typeConversions varHeap
where
typeConversions
= currentModuleTypeConversions icl_common.com_class_defs dcl_common.com_class_defs dcl_conversions
defineOtherDclModule :: VarHeap ModuleIndex DclModule -> Backender
defineOtherDclModule varHeap moduleIndex dclModule
| moduleIndex == cIclModIndex || moduleIndex == cPredefinedModuleIndex
= identity
// otherwise
= defineDclModule varHeap moduleIndex dclModule
defineDclModule :: VarHeap ModuleIndex DclModule -> Backender
defineDclModule varHeap moduleIndex {dcl_name, dcl_common, dcl_functions, dcl_is_system}
= declare moduleIndex varHeap dcl_common
o` declareFunTypes moduleIndex dcl_functions varHeap
class declareVars a :: a !VarHeap -> Backender
instance declareVars [a] | declareVars a where
declareVars :: [a] VarHeap -> Backender | declareVars a
declareVars list varHeap
= foldState (flip declareVars varHeap) list
instance declareVars (Ptr VarInfo) where
declareVars varInfoPtr varHeap
= declareVariable BELhsNodeId varInfoPtr "_var???" varHeap // +++ name
instance declareVars FreeVar where
declareVars :: FreeVar VarHeap -> Backender
declareVars freeVar varHeap
= declareVariable BELhsNodeId freeVar.fv_info_ptr freeVar.fv_name.id_name varHeap
instance declareVars (Bind a FreeVar) where
declareVars :: (Bind a FreeVar) VarHeap -> Backender
declareVars {bind_dst=freeVar} varHeap
= declareVariable BERhsNodeId freeVar.fv_info_ptr freeVar.fv_name.id_name varHeap
declareVariable :: Int (Ptr VarInfo) {#Char} VarHeap -> Backender
declareVariable lhsOrRhs varInfoPtr name varHeap
= beDeclareNodeId (getVariableSequenceNumber varInfoPtr varHeap) lhsOrRhs name
instance declareVars (Optional a) | declareVars a where
declareVars :: (Optional a) VarHeap -> Backender | declareVars a
declareVars (Yes x) varHeap
= declareVars x varHeap
declareVars No _
= identity
instance declareVars FunctionPattern where
declareVars :: FunctionPattern !VarHeap -> Backender
declareVars (FP_Algebraic _ freeVars optionalVar) varHeap
= declareVars freeVars varHeap
o` declareVars optionalVar varHeap
declareVars (FP_Variable freeVar) varHeap
= declareVars freeVar varHeap
declareVars (FP_Basic _ optionalVar) varHeap
= declareVars optionalVar varHeap
declareVars FP_Empty varHeap
= identity
instance declareVars Expression where
declareVars :: Expression !VarHeap -> Backender
declareVars (Let {let_strict_binds, let_lazy_binds, let_expr}) varHeap
= declareVars let_strict_binds varHeap
o` declareVars let_lazy_binds varHeap
o` declareVars let_expr varHeap
declareVars (Conditional {if_then, if_else}) varHeap
= declareVars if_then varHeap
o` declareVars if_else varHeap
declareVars (AnyCodeExpr _ outParams _) varHeap
= declareVars outParams varHeap
declareVars _ _
= identity
instance declareVars TransformedBody where
declareVars :: TransformedBody !VarHeap -> Backender
declareVars {tb_args, tb_rhs} varHeap
= declareVars tb_args varHeap
o` declareVars tb_rhs varHeap
instance declareVars BackendBody where
declareVars :: BackendBody !VarHeap -> Backender
declareVars {bb_args, bb_rhs} varHeap
= declareVars bb_args varHeap
o` declareVars bb_rhs varHeap
:: ModuleIndex :== Index
class declare a :: ModuleIndex !VarHeap a -> Backender
class declareWithIndex a :: Index ModuleIndex !VarHeap a -> Backender
instance declare {#a} | declareWithIndex a & ArrayElem a where
declare :: ModuleIndex VarHeap {#a} -> Backender | declareWithIndex a & ArrayElem a
declare moduleIndex varHeap array
= foldStateWithIndexA (\i -> declareWithIndex i moduleIndex varHeap) array
declareFunctionSymbols :: {#FunDef} {#Int} [(Int, Int)] *BackEnd -> *BackEnd
declareFunctionSymbols functions iclDclConversions functionIndices backEnd
= foldr (declare iclDclConversions) backEnd [(functionIndex, componentIndex, functions.[functionIndex]) \\ (componentIndex, functionIndex) <- functionIndices]
where
declare :: {#Int} (Int, Int, FunDef) *BackEnd -> *BackEnd
declare iclDclConversions (functionIndex, componentIndex, function) backEnd
= BEDeclareFunction (function.fun_symb.id_name +++ ";" +++ toString iclDclConversions.[functionIndex]) function.fun_arity functionIndex componentIndex backEnd
// move to backendsupport
foldStateWithIndexRangeA function frm to array
:== foldStateWithIndexRangeA frm
where
foldStateWithIndexRangeA index
| index == to
= identity
// otherwise
= function index array.[index]
o` foldStateWithIndexRangeA (index+1)
declareArrayInstances :: IndexRange {#FunDef} -> Backender
declareArrayInstances {ir_from, ir_to} functions
= foldStateWithIndexRangeA declareArrayInstance ir_from ir_to functions
where
declareArrayInstance :: Index FunDef -> Backender
declareArrayInstance index {fun_symb={id_name}, fun_type=Yes type}
= beDeclareRuleType index cIclModIndex (id_name +++ ";" +++ toString index)
o` beDefineRuleType index cIclModIndex (convertTypeAlt index cIclModIndex type)
instance declare CommonDefs where
declare :: ModuleIndex VarHeap CommonDefs -> Backender
declare moduleIndex varHeap {com_cons_defs, com_type_defs, com_selector_defs, com_class_defs}
= declare moduleIndex varHeap com_type_defs
o` defineTypes moduleIndex com_cons_defs com_selector_defs com_type_defs varHeap
instance declareWithIndex TypeDef a where
declareWithIndex :: Index ModuleIndex VarHeap (TypeDef a) -> Backender
declareWithIndex typeIndex moduleIndex _ {td_name}
= BEDeclareType typeIndex moduleIndex td_name.id_name
declareFunTypes :: ModuleIndex {#FunType} VarHeap -> Backender
declareFunTypes moduleIndex funTypes varHeap
= foldStateWithIndexA (declareFunType moduleIndex varHeap) funTypes
declareFunType :: ModuleIndex VarHeap Index FunType -> Backender
declareFunType moduleIndex varHeap functionIndex {ft_symb, ft_type_ptr}
= case (sreadPtr ft_type_ptr varHeap) of
VI_ExpandedType expandedType
-> beDeclareRuleType functionIndex moduleIndex (ft_symb.id_name +++ ";" +++ toString functionIndex)
o` beDefineRuleType functionIndex moduleIndex (convertTypeAlt functionIndex moduleIndex expandedType)
_
-> identity
currentModuleTypeConversions :: {#ClassDef} {#ClassDef} (Optional ConversionTable) -> {#Int}
currentModuleTypeConversions iclClasses dclClasses (Yes conversionTable)
// revert ...
// | True
// = {i \\ i <- [0 .. nDclTypes + nDclClasses - 1]}
// ... revert
// sanity check ...
| sort [dclClass.class_dictionary.ds_index \\ dclClass <-: dclClasses]
<> [size typeConversions .. size typeConversions + size dclClasses - 1]
= abort "backendconvert, currentModuleTypeConversions wrong index range for dcl dictionary types"
// ... sanity check
| nDclClasses == 0
= typeConversions
// otherwise
= {createArray (nDclTypes + nDclClasses) NoIndex
& [i] = typeConversion
\\ typeConversion <-: typeConversions & i <- [0..]}
:- foldStateWithIndexA (updateDictionaryTypeIndex classConversions) classConversions
where
typeConversions
= conversionTable.[cTypeDefs]
nDclTypes
= size typeConversions
classConversions
= conversionTable.[cClassDefs]
nDclClasses
= size classConversions
updateDictionaryTypeIndex :: {#Int} Int Int *{#Int} -> *{#Int}
updateDictionaryTypeIndex classConversions dclClassIndex iclClassIndex allTypeConversions
// sanity check ...
# (oldIndex, allTypeConversions)
= uselect allTypeConversions dclTypeIndex
| oldIndex <> NoIndex
= abort "backendconvert, updateDictionaryTypeIndex wrong index overwritten"
// ... sanity chechk
= {allTypeConversions & [dclTypeIndex] = iclTypeIndex}
where
dclTypeIndex
= dclClasses.[dclClassIndex].class_dictionary.ds_index
iclClassIndex
= classConversions.[dclClassIndex]
iclTypeIndex
= iclClasses.[iclClassIndex].class_dictionary.ds_index
currentModuleTypeConversions _ _ No
= {}
declareCurrentDclModuleTypes :: {#CheckedTypeDef} {#Int} VarHeap -> Backender
declareCurrentDclModuleTypes dclTypes typeConversions varHeap
= foldStateWithIndexA (declareConvertedType dclTypes varHeap) typeConversions
where
declareConvertedType :: {#CheckedTypeDef} VarHeap Index Index -> Backender
declareConvertedType dclTypes varHeap dclIndex iclIndex
= declareWithIndex iclIndex cIclModIndex varHeap dclTypes.[dclIndex]
defineCurrentDclModuleTypes :: {#ConsDef} {#SelectorDef} {#CheckedTypeDef} {#Int} VarHeap -> Backender
defineCurrentDclModuleTypes dclConstructors dclSelectors dclTypes typeConversions varHeap
= foldStateWithIndexA (defineConvertedType dclTypes varHeap) typeConversions
where
defineConvertedType :: {#CheckedTypeDef} VarHeap Index Index -> Backender
defineConvertedType dclTypes varHeap dclIndex iclIndex
= defineType cIclModIndex dclConstructors dclSelectors varHeap iclIndex dclTypes.[dclIndex]
defineTypes :: ModuleIndex {#ConsDef} {#SelectorDef} {#CheckedTypeDef} VarHeap -> Backender
defineTypes moduleIndex constructors selectors types varHeap
= foldStateWithIndexA (defineType moduleIndex constructors selectors varHeap) types
convertTypeLhs :: ModuleIndex Index [ATypeVar] -> BEMonad BEFlatTypeP
convertTypeLhs moduleIndex typeIndex args
= beFlatType (beTypeSymbol typeIndex moduleIndex) (convertTypeVars args)
convertTypeVars :: [ATypeVar] -> BEMonad BETypeVarListP
convertTypeVars typeVars
= foldr (beTypeVars o convertTypeVar) beNoTypeVars typeVars
convertTypeVar :: ATypeVar -> BEMonad BETypeVarP
convertTypeVar typeVar
= beTypeVar typeVar.atv_variable.tv_name.id_name
defineType :: ModuleIndex {#ConsDef} {#SelectorDef} VarHeap Index CheckedTypeDef *BackEnd -> *BackEnd
defineType moduleIndex constructors _ varHeap typeIndex {td_args, td_rhs=AlgType constructorSymbols} be
# (flatType, be)
= convertTypeLhs moduleIndex typeIndex td_args be
# (constructors, be)
= convertConstructors moduleIndex constructors constructorSymbols varHeap be
# (_, be)
= BEAlgebraicType flatType constructors be
= be
defineType moduleIndex constructors selectors varHeap typeIndex {td_args, td_rhs=RecordType {rt_constructor, rt_fields}} be
# (flatType, be)
= convertTypeLhs moduleIndex typeIndex td_args be
# (fields, be)
= convertSelectors moduleIndex selectors rt_fields varHeap be
# (constructorTypeNode, be)
= beNormalTypeNode
(beConstructorSymbol moduleIndex constructorIndex)
(convertSymbolTypeArgs constructorType)
be
# (_, be)
= BERecordType moduleIndex flatType constructorTypeNode fields be
= be
where
constructorIndex
= rt_constructor.ds_index
constructorDef
= constructors.[constructorIndex]
constructorType
= case (sreadPtr constructorDef.cons_type_ptr varHeap) of
VI_ExpandedType expandedType
-> expandedType
_
-> constructorDef.cons_type
defineType _ _ _ _ _ _ be
= be
convertConstructors :: ModuleIndex {#ConsDef} [DefinedSymbol] VarHeap -> BEMonad BEConstructorListP
convertConstructors moduleIndex constructors symbols varHeap
= foldr (beConstructors o convertConstructor moduleIndex constructors varHeap) beNoConstructors symbols
convertConstructor :: ModuleIndex {#ConsDef} VarHeap DefinedSymbol -> BEMonad BEConstructorListP
convertConstructor moduleIndex constructorDefs varHeap {ds_index}
= BEDeclareConstructor ds_index moduleIndex constructorDef.cons_symb.id_name // +++ remove declare
o` beConstructor
(beNormalTypeNode
(beConstructorSymbol moduleIndex ds_index)
(convertSymbolTypeArgs constructorType))
where
constructorDef
= constructorDefs.[ds_index]
constructorType
= case (sreadPtr constructorDef.cons_type_ptr varHeap) of
VI_ExpandedType expandedType
-> expandedType
_
-> constructorDef.cons_type
convertSelectors :: ModuleIndex {#SelectorDef} {#FieldSymbol} VarHeap -> BEMonad BEFieldListP
convertSelectors moduleIndex selectors symbols varHeap
= foldrA (beFields o convertSelector moduleIndex selectors varHeap) beNoFields symbols
convertSelector :: ModuleIndex {#SelectorDef} VarHeap FieldSymbol -> BEMonad BEFieldListP
convertSelector moduleIndex selectorDefs varHeap {fs_index}
= BEDeclareField fs_index moduleIndex selectorDef.sd_symb.id_name
o` beField fs_index moduleIndex (convertAnnotTypeNode (selectorType.st_result))
where
selectorDef
= selectorDefs.[fs_index]
selectorType
= case (sreadPtr selectorDef.sd_type_ptr varHeap) of
VI_ExpandedType expandedType
-> expandedType
_
-> selectorDef.sd_type
predefineSymbols :: DclModule PredefinedSymbols -> Backender
predefineSymbols {dcl_common} predefs
= BEDeclarePredefinedModule (size dcl_common.com_type_defs) (size dcl_common.com_cons_defs)
o` foldState predefineType types
o` foldState predefineConstructor constructors
where
predefineType (index, arity, symbolKind)
// sanity check ...
| predefs.[index].pds_def == NoIndex
= abort "backendconvert, predefineSymbols predef is not a type"
// ... sanity check
= BEPredefineTypeSymbol arity predefs.[index].pds_def cPredefinedModuleIndex symbolKind
predefineConstructor (index, arity, symbolKind)
// sanity check ...
| predefs.[index].pds_def == NoIndex
= abort "backendconvert, predefineSymbols predef is not a constructor"
// ... sanity check
= BEPredefineConstructorSymbol arity predefs.[index].pds_def cPredefinedModuleIndex symbolKind
types :: [(Int, Int, BESymbKind)]
types
= [ (PD_ListType, 1, BEListType)
, (PD_LazyArrayType, 1, BEArrayType)
, (PD_StrictArrayType, 1, BEStrictArrayType)
, (PD_UnboxedArrayType, 1, BEUnboxedArrayType)
: [(index, index-PD_Arity2TupleType+2, BETupleType) \\ index <- [PD_Arity2TupleType..PD_Arity32TupleType]]
]
constructors :: [(Int, Int, BESymbKind)]
constructors
= [ (PD_NilSymbol, 0, BENilSymb)
, (PD_ConsSymbol, 2, BEConsSymb)
: [(index, index-PD_Arity2TupleSymbol+2, BETupleSymb) \\ index <- [PD_Arity2TupleSymbol..PD_Arity32TupleSymbol]]
]
:: AdjustStdArrayInfo =
{ asai_moduleIndex :: !Int
, asai_mapping :: !{#BEArrayFunKind}
, asai_funs :: !{#FunType}
, asai_varHeap :: !VarHeap
}
adjustArrayFunctions :: PredefinedSymbols IndexRange {#FunDef} {#DclModule} VarHeap -> Backender
adjustArrayFunctions predefs arrayInstancesRange functions dcls varHeap
= adjustStdArray arrayInfo predefs stdArray.dcl_common.com_instance_defs
o` adjustIclArrayInstances arrayInstancesRange arrayMemberMapping functions
where
arrayModuleIndex
= predefs.[PD_StdArray].pds_def
arrayClassIndex
= predefs.[PD_ArrayClass].pds_def
arrayClass
= stdArray.dcl_common.com_class_defs.[arrayClassIndex]
stdArray
= dcls.[arrayModuleIndex]
arrayMemberMapping
= getArrayMemberMapping predefs arrayClass.class_members
arrayInfo
= { asai_moduleIndex = arrayModuleIndex
, asai_mapping = arrayMemberMapping
, asai_funs = stdArray.dcl_functions
, asai_varHeap = varHeap
}
getArrayMemberMapping :: PredefinedSymbols {#DefinedSymbol} -> {#BEArrayFunKind}
getArrayMemberMapping predefs members
// sanity check ...
| size members <> length (memberIndexMapping predefs)
= abort "backendconvert, arrayMemberMapping: incorrect number of members"
// ... sanity check
= { createArray (size members) BENoArrayFun
& [i] = backEndFunKind member.ds_index (memberIndexMapping predefs) \\ member <-: members & i <- [0..]
}
where
memberIndexMapping :: PredefinedSymbols -> [(!Index, !BEArrayFunKind)]
memberIndexMapping predefs
= [(predefs.[predefIndex].pds_def, backEndArrayFunKind) \\ (predefIndex, backEndArrayFunKind) <- predefMapping]
where
predefMapping
= [ (PD_CreateArrayFun, BECreateArrayFun)
, (PD_ArraySelectFun, BEArraySelectFun)
, (PD_UnqArraySelectFun, BEUnqArraySelectFun)
, (PD_ArrayUpdateFun, BEArrayUpdateFun)
, (PD_ArrayReplaceFun, BEArrayReplaceFun)
, (PD_ArraySizeFun, BEArraySizeFun)
, (PD_UnqArraySizeFun, BEUnqArraySizeFun)
, (PD__CreateArrayFun, BE_CreateArrayFun)
]
backEndFunKind :: Index [(!Index, !BEArrayFunKind)] -> BEArrayFunKind
backEndFunKind memberIndex predefMapping
= hd [back \\ (predefMemberIndex, back) <- predefMapping | predefMemberIndex == memberIndex]
adjustStdArray :: AdjustStdArrayInfo PredefinedSymbols {#ClassInstance} -> Backender
adjustStdArray arrayInfo predefs instances
| arrayModuleIndex == NoIndex
= identity
// otherwise
= foldStateA (adjustStdArrayInstance arrayClassIndex arrayInfo) instances
where
adjustStdArrayInstance :: Index AdjustStdArrayInfo ClassInstance -> Backender
adjustStdArrayInstance arrayClassIndex arrayInfo=:{asai_moduleIndex} instance`=:{ins_class}
| ins_class.glob_object.ds_index == arrayClassIndex && ins_class.glob_module == asai_moduleIndex
= adjustArrayClassInstance arrayInfo instance`
// otherwise
= identity
where
adjustArrayClassInstance :: AdjustStdArrayInfo ClassInstance -> Backender
adjustArrayClassInstance arrayInfo {ins_members}
= foldStateWithIndexA (adjustMember arrayInfo) ins_members
where
adjustMember :: AdjustStdArrayInfo Int DefinedSymbol -> Backender
adjustMember {asai_moduleIndex, asai_mapping, asai_funs, asai_varHeap} offset {ds_index}
= case (sreadPtr asai_funs.[ds_index].ft_type_ptr asai_varHeap) of
VI_ExpandedType _
-> beAdjustArrayFunction asai_mapping.[offset] ds_index asai_moduleIndex
_
-> identity
adjustIclArrayInstances :: IndexRange {#BEArrayFunKind} {#FunDef} -> Backender
adjustIclArrayInstances {ir_from, ir_to} mapping instances
= foldStateWithIndexRangeA (adjustIclArrayInstance mapping) ir_from ir_to instances
where
adjustIclArrayInstance :: {#BEArrayFunKind} Index FunDef -> Backender
// for array functions fun_index is not the index in the FunDef array,
// but its member index in the Array class
adjustIclArrayInstance mapping index {fun_index}
= beAdjustArrayFunction mapping.[fun_index] index cIclModIndex
convertRules :: [(Int, FunDef)] VarHeap -> BEMonad BEImpRuleP
convertRules rules varHeap
= foldr (beRules o flip convertRule varHeap) beNoRules rules
convertRule :: (Int,FunDef) VarHeap -> BEMonad BEImpRuleP
convertRule (index, {fun_type=Yes type, fun_body=body, fun_pos, fun_kind}) varHeap
= beRule index (cafness fun_kind) (convertTypeAlt index cIclModIndex type) (convertFunctionBody index (positionToLineNumber fun_pos) body varHeap)
where
cafness :: FunKind -> Int
cafness (FK_Function _)
= BEIsNotACaf
cafness FK_Macro
= BEIsNotACaf
cafness FK_Caf
= BEIsACaf
cafness funKind
= BEIsNotACaf <<- ("backendconvert, cafness: unknown fun kind", funKind)
positionToLineNumber :: Position -> Int
positionToLineNumber (FunPos _ lineNumber _)
= lineNumber
positionToLineNumber (LinePos _ lineNumber)
= lineNumber
positionToLineNumber _
= -1
convertFunctionBody :: Int Int FunctionBody VarHeap -> BEMonad BERuleAltP
convertFunctionBody functionIndex lineNumber (BackendBody bodies) varHeap
= convertBackendBodies functionIndex lineNumber bodies varHeap
convertTypeAlt :: Int ModuleIndex SymbolType -> BEMonad BETypeAltP
convertTypeAlt functionIndex moduleIndex symbol=:{st_result}
= beTypeAlt (beNormalTypeNode (beFunctionSymbol functionIndex moduleIndex) (convertSymbolTypeArgs symbol)) (convertAnnotTypeNode st_result)
convertSymbolTypeArgs :: SymbolType -> BEMonad BETypeArgP
convertSymbolTypeArgs {st_args}
= convertTypeArgs st_args
convertBasicTypeKind :: BasicType -> BESymbKind
convertBasicTypeKind BT_Int
= BEIntType
convertBasicTypeKind BT_Char
= BECharType
convertBasicTypeKind BT_Real
= BERealType
convertBasicTypeKind BT_Bool
= BEBoolType
convertBasicTypeKind BT_File
= BEFileType
convertBasicTypeKind BT_World
= BEWorldType
convertBasicTypeKind BT_Dynamic
= BEDynamicType
convertBasicTypeKind (BT_String _)
= undef <<- "convertBasicTypeKind (BT_String _) shouldn't occur"
convertAnnotation :: Annotation -> BEAnnotation
convertAnnotation AN_None
= BENoAnnot
convertAnnotation AN_Strict
= BEStrictAnnot
convertAttribution :: TypeAttribute -> BEAttribution
convertAttribution TA_Unique
= BEUniqueAttr
convertAttribution _ // +++ uni vars, etc.
= BENoUniAttr
convertAnnotTypeNode :: AType -> BEMonad BETypeNodeP
convertAnnotTypeNode {at_type, at_annotation, at_attribute}
= convertTypeNode at_type
:- beAnnotateTypeNode (convertAnnotation at_annotation)
:- beAttributeTypeNode (convertAttribution (at_attribute))
convertTypeNode :: Type -> BEMonad BETypeNodeP
convertTypeNode (TB (BT_String type))
= convertTypeNode type
convertTypeNode (TB basicType)
= beNormalTypeNode (beBasicSymbol (convertBasicTypeKind basicType)) beNoTypeArgs
convertTypeNode (TA typeSymbolIdent typeArgs)
= beNormalTypeNode (convertTypeSymbolIdent typeSymbolIdent) (convertTypeArgs typeArgs)
convertTypeNode (TV {tv_name})
= beVarTypeNode tv_name.id_name
convertTypeNode (TempQV n)
= beVarTypeNode ("_tqv" +++ toString n)
convertTypeNode (TempV n)
= beVarTypeNode ("_tv" +++ toString n)
convertTypeNode (a --> b)
= beNormalTypeNode (beBasicSymbol BEFunType) (convertTypeArgs [a, b])
convertTypeNode (a :@: b)
= beNormalTypeNode (beBasicSymbol BEApplySymb) (convertTypeArgs [{at_attribute=TA_Multi, at_annotation=AN_None, at_type = consVariableToType a} : b])
convertTypeNode TE
= beNormalTypeNode beDontCareDefinitionSymbol beNoTypeArgs
convertTypeNode typeNode
= undef <<- ("backendconvert, convertTypeNode: unknown type node", typeNode)
consVariableToType :: ConsVariable -> Type
consVariableToType (CV typeVar)
= TV typeVar
consVariableToType (TempCV varId)
= TempV varId
consVariableToType (TempQCV varId)
= TempQV varId
convertTypeArgs :: [AType] -> BEMonad BETypeArgP
convertTypeArgs args
= foldr (beTypeArgs o convertAnnotTypeNode) beNoTypeArgs args
convertBackendBodies :: Int Int [BackendBody] VarHeap -> BEMonad BERuleAltP
convertBackendBodies functionIndex lineNumber bodies varHeap
= foldr (beRuleAlts o (flip (convertBackendBody functionIndex lineNumber)) varHeap) beNoRuleAlts bodies
convertBackendBody :: Int Int BackendBody VarHeap -> BEMonad BERuleAltP
convertBackendBody functionIndex lineNumber body=:{bb_args, bb_rhs=ABCCodeExpr instructions inline} varHeap
= beNoNodeDefs ==> \noNodeDefs
-> declareVars body varHeap
o` beCodeAlt
lineNumber
(convertLhsNodeDefs bb_args noNodeDefs varHeap)
(convertBackendLhs functionIndex bb_args varHeap)
(beAbcCodeBlock inline (convertStrings instructions))
convertBackendBody functionIndex lineNumber body=:{bb_args, bb_rhs=AnyCodeExpr inParams outParams instructions} varHeap
= beNoNodeDefs ==> \noNodeDefs
-> declareVars body varHeap
o` beCodeAlt
lineNumber
(convertLhsNodeDefs bb_args noNodeDefs varHeap)
(convertBackendLhs functionIndex bb_args varHeap)
(beAnyCodeBlock (convertCodeParameters inParams varHeap) (convertCodeParameters outParams varHeap) (convertStrings instructions))
convertBackendBody functionIndex lineNumber body=:{bb_args, bb_rhs} varHeap
= beNoNodeDefs ==> \noNodeDefs
-> declareVars body varHeap
o` beRuleAlt
lineNumber
(convertLhsNodeDefs bb_args noNodeDefs varHeap)
(convertBackendLhs functionIndex bb_args varHeap)
(convertRhsNodeDefs bb_rhs varHeap)
(convertRhsStrictNodeIds bb_rhs varHeap)
(convertRootExpr bb_rhs varHeap)
convertStrings :: [{#Char}] -> BEMonad BEStringListP
convertStrings strings
= foldr (beStrings o beString) beNoStrings strings
convertCodeParameters :: (CodeBinding a) VarHeap -> BEMonad BECodeParameterP | varInfoPtr a
convertCodeParameters codeParameters varHeap
= foldr (beCodeParameters o flip convertCodeParameter varHeap) beNoCodeParameters codeParameters
class varInfoPtr a :: a -> VarInfoPtr
instance varInfoPtr BoundVar where
varInfoPtr boundVar
= boundVar.var_info_ptr
instance varInfoPtr FreeVar where
varInfoPtr freeVar
= freeVar.fv_info_ptr
convertCodeParameter :: (Bind String a) VarHeap -> BEMonad BECodeParameterP | varInfoPtr a
convertCodeParameter {bind_src, bind_dst} varHeap
= beCodeParameter bind_src (convertVar (varInfoPtr bind_dst) varHeap)
convertTransformedLhs :: Int [FreeVar] VarHeap -> BEMonad BENodeP
convertTransformedLhs functionIndex freeVars varHeap
= beNormalNode (beFunctionSymbol functionIndex cIclModIndex) (convertLhsArgs freeVars varHeap)
convertBackendLhs :: Int [FunctionPattern] VarHeap -> BEMonad BENodeP
convertBackendLhs functionIndex patterns varHeap
= beNormalNode (beFunctionSymbol functionIndex cIclModIndex) (convertPatterns patterns varHeap)
convertPatterns :: [FunctionPattern] VarHeap -> BEMonad BEArgP
convertPatterns patterns varHeap
= foldr (beArgs o flip convertPattern varHeap) beNoArgs patterns
convertPattern :: FunctionPattern VarHeap -> BEMonad BENodeP
convertPattern (FP_Variable freeVar) varHeap
= convertFreeVarPattern freeVar varHeap
convertPattern (FP_Basic _ (Yes freeVar)) varHeap
= convertFreeVarPattern freeVar varHeap
convertPattern (FP_Basic value No) _
= beNormalNode (convertLiteralSymbol value) beNoArgs
convertPattern (FP_Algebraic _ freeVars (Yes freeVar)) varHeap
= convertFreeVarPattern freeVar varHeap
convertPattern (FP_Algebraic {glob_module, glob_object={ds_index}} subpatterns No) varHeap
= beNormalNode (beConstructorSymbol glob_module ds_index) (convertPatterns subpatterns varHeap)
convertPattern (FP_Dynamic _ _ _ (Yes freeVar)) varHeap
= convertFreeVarPattern freeVar varHeap
convertPattern FP_Empty varHeap
= beNodeIdNode beWildCardNodeId beNoArgs
convertFreeVarPattern :: FreeVar VarHeap -> BEMonad BENodeP
convertFreeVarPattern freeVar varHeap
= beNodeIdNode (convertVar freeVar.fv_info_ptr varHeap) beNoArgs
convertLhsArgs :: [FreeVar] VarHeap -> BEMonad BEArgP
convertLhsArgs freeVars varHeap
= foldr (beArgs o (flip convertFreeVarPattern) varHeap) beNoArgs freeVars
convertVarPtr :: VarInfoPtr VarHeap -> BEMonad BENodeP
convertVarPtr var varHeap
= beNodeIdNode (convertVar var varHeap) beNoArgs
convertVars :: [VarInfoPtr] VarHeap -> BEMonad BEArgP
convertVars vars varHeap
= foldr (beArgs o flip convertVarPtr varHeap) beNoArgs vars
convertRootExpr :: Expression VarHeap -> BEMonad BENodeP
convertRootExpr (Let {let_expr}) varHeap
= convertRootExpr let_expr varHeap
convertRootExpr (Conditional {if_cond=cond, if_then=then, if_else=Yes else}) varHeap
= convertConditional cond then else varHeap
where
convertConditional :: Expression Expression Expression VarHeap -> BEMonad BENodeP
convertConditional cond then else varHeap
= beGuardNode
(convertExpr cond varHeap)
(convertRhsNodeDefs then varHeap)
(convertRhsStrictNodeIds then varHeap)
(convertRootExpr then varHeap)
(convertRhsNodeDefs else varHeap)
(convertRhsStrictNodeIds else varHeap)
(convertRootExpr else varHeap)
convertRootExpr (Conditional {if_cond=cond, if_then=then, if_else=No}) varHeap
= beGuardNode
(convertExpr cond varHeap)
(convertRhsNodeDefs then varHeap)
(convertRhsStrictNodeIds then varHeap)
(convertRootExpr then varHeap)
beNoNodeDefs
beNoStrictNodeIds
(beNormalNode (beBasicSymbol BEFailSymb) beNoArgs)
convertRootExpr expr varHeap
= convertExpr expr varHeap
// RWS +++ rewrite
convertLhsNodeDefs :: [FunctionPattern] BENodeDefP VarHeap -> BEMonad BENodeDefP
convertLhsNodeDefs [FP_Basic value (Yes freeVar) : patterns] nodeDefs varHeap
= convertLhsNodeDefs patterns nodeDefs varHeap ==> \nodeDefs
-> defineLhsNodeDef freeVar (FP_Basic value No) nodeDefs varHeap
convertLhsNodeDefs [FP_Algebraic symbol subpatterns (Yes freeVar) : patterns] nodeDefs varHeap
= convertLhsNodeDefs subpatterns nodeDefs varHeap ==> \nodeDefs
-> convertLhsNodeDefs patterns nodeDefs varHeap ==> \nodeDefs
-> defineLhsNodeDef freeVar (FP_Algebraic symbol subpatterns No) nodeDefs varHeap
convertLhsNodeDefs [FP_Algebraic symbol subpatterns No : patterns] nodeDefs varHeap
= convertLhsNodeDefs subpatterns nodeDefs varHeap ==> \nodeDefs
-> convertLhsNodeDefs patterns nodeDefs varHeap
convertLhsNodeDefs [FP_Dynamic varPtrs var typeCode (Yes freeVar) : patterns] nodeDefs varHeap
= convertLhsNodeDefs patterns nodeDefs varHeap ==> \nodeDefs
-> defineLhsNodeDef freeVar (FP_Dynamic varPtrs var typeCode No) nodeDefs varHeap
convertLhsNodeDefs [_ : patterns] nodeDefs varHeap
= convertLhsNodeDefs patterns nodeDefs varHeap
convertLhsNodeDefs [] nodeDefs varHeap
= return nodeDefs
defineLhsNodeDef :: FreeVar FunctionPattern BENodeDefP VarHeap -> BEMonad BENodeDefP
defineLhsNodeDef freeVar pattern nodeDefs varHeap
= beNodeDefs
(beNodeDef (getVariableSequenceNumber freeVar.fv_info_ptr varHeap) (convertPattern pattern varHeap))
(return nodeDefs)
collectNodeDefs :: Expression -> [Bind Expression FreeVar]
collectNodeDefs (Let {let_strict_binds, let_lazy_binds})
= let_strict_binds ++ let_lazy_binds
collectNodeDefs _
= []
convertRhsNodeDefs :: Expression VarHeap -> BEMonad BENodeDefP
convertRhsNodeDefs expr varHeap
= convertNodeDefs (collectNodeDefs expr) varHeap
convertNodeDef :: !(Bind Expression FreeVar) VarHeap -> BEMonad BENodeDefP
convertNodeDef {bind_src=expr, bind_dst=freeVar} varHeap
= beNodeDef (getVariableSequenceNumber freeVar.fv_info_ptr varHeap) (convertExpr expr varHeap)
convertNodeDefs :: [Bind Expression FreeVar] VarHeap -> BEMonad BENodeDefP
convertNodeDefs binds varHeap
= foldr (beNodeDefs o flip convertNodeDef varHeap) beNoNodeDefs binds
collectStrictNodeIds :: Expression -> [FreeVar]
collectStrictNodeIds (Let {let_strict_binds, let_expr})
= [bind_dst \\ {bind_dst} <- let_strict_binds]
collectStrictNodeIds _
= []
convertStrictNodeId :: FreeVar VarHeap -> BEMonad BEStrictNodeIdP
convertStrictNodeId freeVar varHeap
= beStrictNodeId (convertVar freeVar.fv_info_ptr varHeap)
convertStrictNodeIds :: [FreeVar] VarHeap -> BEMonad BEStrictNodeIdP
convertStrictNodeIds freeVars varHeap
= foldr (beStrictNodeIds o flip convertStrictNodeId varHeap) beNoStrictNodeIds freeVars
convertRhsStrictNodeIds :: Expression VarHeap -> BEMonad BEStrictNodeIdP
convertRhsStrictNodeIds expression varHeap
= convertStrictNodeIds (collectStrictNodeIds expression) varHeap
convertLiteralSymbol :: BasicValue -> BEMonad BESymbolP
convertLiteralSymbol (BVI string)
= beLiteralSymbol BEIntDenot string
convertLiteralSymbol (BVB bool)
= beBoolSymbol bool
convertLiteralSymbol (BVC string)
= beLiteralSymbol BECharDenot string
convertLiteralSymbol (BVR string)
= beLiteralSymbol BERealDenot string
convertLiteralSymbol (BVS string)
= beLiteralSymbol BEStringDenot string
convertArgs :: [Expression] VarHeap -> BEMonad BEArgP
convertArgs exprs varHeap
= foldr (beArgs o flip convertExpr varHeap) beNoArgs exprs
convertSymbol :: !SymbIdent -> BEMonad BESymbolP
convertSymbol {symb_kind=SK_Function {glob_module, glob_object}}
= beFunctionSymbol glob_object glob_module
convertSymbol {symb_kind=SK_GeneratedFunction _ index}
= beFunctionSymbol index cIclModIndex
convertSymbol {symb_kind=SK_Constructor {glob_module, glob_object}}
= beConstructorSymbol glob_module glob_object
convertSymbol symbol
= undef <<- ("backendconvert, convertSymbol: unknown symbol", symbol)
convertTypeSymbolIdent :: TypeSymbIdent -> BEMonad BESymbolP
convertTypeSymbolIdent {type_index={glob_module, glob_object}}
= beTypeSymbol glob_object glob_module
convertExpr :: Expression VarHeap -> BEMonad BENodeP
convertExpr (BasicExpr value _) varHeap
= beNormalNode (convertLiteralSymbol value) beNoArgs
convertExpr (App {app_symb, app_args}) varHeap
= beNormalNode (convertSymbol app_symb) (convertArgs app_args varHeap)
convertExpr (Var var) varHeap
= beNodeIdNode (convertVar var.var_info_ptr varHeap) beNoArgs
convertExpr (f @ [a]) varHeap
= beNormalNode (beBasicSymbol BEApplySymb) (convertArgs [f, a] varHeap)
convertExpr (f @ [a:as]) varHeap
= convertExpr (f @ [a] @ as) varHeap
convertExpr (Selection isUnique expression selections) varHeap
= convertSelections (convertExpr expression varHeap) varHeap (addKinds isUnique selections)
where
addKinds No selections
= [(BESelector, selection) \\ selection <- selections]
addKinds _ [selection]
= [(BESelector_U, selection)]
addKinds _ [selection : selections]
= [(BESelector_F, selection) : addMoreKinds selections]
where
addMoreKinds []
= []
addMoreKinds [selection]
= [(BESelector_L, selection)]
addMoreKinds [selection : selections]
= [(BESelector_N, selection) : addMoreKinds selections]
addKinds _ []
= []
convertExpr (RecordUpdate _ expr updates) varHeap
= foldl (convertUpdate varHeap) (convertExpr expr varHeap) updates
where
convertUpdate varHeap expr {bind_src=EE}
= expr
convertUpdate varHeap expr {bind_src, bind_dst=bind_dst=:{glob_module, glob_object={fs_index}}}
= beUpdateNode
(beArgs
expr
(beArgs
(beSelectorNode BESelector (beFieldSymbol fs_index glob_module)
(beArgs (convertExpr bind_src varHeap)
beNoArgs))
beNoArgs))
convertExpr (Update expr1 [singleSelection] expr2) varHeap
= case singleSelection of
RecordSelection _ _
-> beUpdateNode (convertArgs [expr1, Selection No expr2 [singleSelection]] varHeap)
ArraySelection {glob_object={ds_index}, glob_module} _ index
-> beNormalNode
(beSpecialArrayFunctionSymbol BEArrayUpdateFun ds_index glob_module)
(convertArgs [expr1, index, expr2] varHeap)
DictionarySelection dictionaryVar dictionarySelections _ index
-> convertExpr (Selection No (Var dictionaryVar) dictionarySelections @ [expr1, index, expr2]) varHeap
convertExpr (Update expr1 selections expr2) varHeap
= case lastSelection of
RecordSelection _ _
-> beUpdateNode (beArgs selection (convertArgs [Selection No expr2 [lastSelection]] varHeap))
ArraySelection {glob_object={ds_index}, glob_module} _ index
-> beNormalNode (beSpecialArrayFunctionSymbol BE_ArrayUpdateFun ds_index glob_module) (beArgs selection (convertArgs [index, expr2] varHeap))
DictionarySelection dictionaryVar dictionarySelections _ index
-> beNormalNode beDictionaryUpdateFunSymbol
(beArgs dictionary (beArgs selection (convertArgs [index, expr2] varHeap)))
with
dictionary
= convertExpr (Selection No (Var dictionaryVar) dictionarySelections) varHeap
where
lastSelection
= last selections
selection
= convertSelections (convertExpr expr1 varHeap) varHeap (addKinds (init selections))
addKinds [selection : selections]
= [(BESelector_F, selection) : addMoreKinds selections]
where
addMoreKinds selections
= [(BESelector_U, selection) \\ selection <- selections]
addKinds []
= []
convertExpr (TupleSelect {ds_arity} n expr) varHeap
= beTupleSelectNode ds_arity n (convertExpr expr varHeap)
convertExpr (MatchExpr optionalTuple {glob_module, glob_object={ds_index}} expr) varHeap
= beMatchNode (arity optionalTuple) (beConstructorSymbol glob_module ds_index) (convertExpr expr varHeap)
where
arity :: (Optional (Global DefinedSymbol)) -> Int
arity No
= 1
arity (Yes {glob_object={ds_arity}})
= ds_arity
convertExpr (Conditional {if_cond=cond, if_then, if_else=Yes else}) varHeap
= beIfNode (convertExpr cond varHeap) (convertExpr if_then varHeap) (convertExpr else varHeap)
convertExpr expr _
= undef <<- ("backendconvert, convertExpr: unknown expression", expr)
convertSelections :: (BEMonad BENodeP) VarHeap [(BESelectorKind, Selection)] -> (BEMonad BENodeP)
convertSelections expression varHeap selections
= foldl (convertSelection varHeap) expression selections
convertSelection :: VarHeap (BEMonad BENodeP) (BESelectorKind, Selection) -> (BEMonad BENodeP)
convertSelection varHeap expression (kind, RecordSelection {glob_object={ds_index}, glob_module} _)
= beSelectorNode kind (beFieldSymbol ds_index glob_module) (beArgs expression beNoArgs)
convertSelection varHeap expression (kind, ArraySelection {glob_object={ds_index}, glob_module} _ index)
= beNormalNode (beSpecialArrayFunctionSymbol (selectionKindToArrayFunKind kind) ds_index glob_module) (beArgs expression (convertArgs [index] varHeap))
convertSelection varHeap expression (kind, DictionarySelection dictionaryVar dictionarySelections _ index)
= case kind of
BESelector
-> beNormalNode (beBasicSymbol BEApplySymb)
(beArgs
(beNormalNode (beBasicSymbol BEApplySymb)
(beArgs dictionary
(beArgs expression beNoArgs)))
(convertArgs [index] varHeap))
_
-> beNormalNode beDictionarySelectFunSymbol
(beArgs dictionary (beArgs expression (convertArgs [index] varHeap)))
where
dictionary
= convertExpr (Selection No (Var dictionaryVar) dictionarySelections) varHeap
selectionKindToArrayFunKind BESelector
= BEArraySelectFun
selectionKindToArrayFunKind BESelector_U
= BE_UnqArraySelectFun
selectionKindToArrayFunKind BESelector_F
= BE_UnqArraySelectFun
selectionKindToArrayFunKind BESelector_L
= BE_UnqArraySelectLastFun
selectionKindToArrayFunKind BESelector_N
= BE_UnqArraySelectLastFun
convertVar :: VarInfoPtr VarHeap -> BEMonad BENodeIdP
convertVar varInfo varHeap
= beNodeId (getVariableSequenceNumber varInfo varHeap)
getVariableSequenceNumber :: VarInfoPtr VarHeap -> Int
getVariableSequenceNumber varInfoPtr varHeap
# (VI_SequenceNumber sequenceNumber)
= sreadPtr varInfoPtr varHeap
= sequenceNumber
markExports :: DclModule {#ClassDef} {#CheckedTypeDef} (Optional {#Int}) -> Backender
markExports {dcl_conversions = Yes conversionTable} iclClasses iclTypes (Yes functionConversions)
= foldStateA beExportType conversionTable.[cTypeDefs]
o foldStateA beExportConstructor conversionTable.[cConstructorDefs]
o foldStateA beExportField conversionTable.[cSelectorDefs]
o foldStateA (exportDictionary iclClasses iclTypes) conversionTable.[cClassDefs]
o foldStateWithIndexA beExportFunction functionConversions
where
exportDictionary :: {#ClassDef} {#CheckedTypeDef} Index -> Backender
exportDictionary iclClasses iclTypes classIndex
= beExportType typeIndex
o foldStateA exportDictionaryField rt_fields
where
typeIndex
= iclClasses.[classIndex].class_dictionary.ds_index
{td_rhs = RecordType {rt_fields}}
= iclTypes.[typeIndex]
exportDictionaryField :: FieldSymbol -> Backender
exportDictionaryField {fs_index}
= beExportField fs_index
markExports _ _ _ _
= identity
|