implementation module transform
import syntax, check, StdCompare, utilities, RWSDebug
:: LiftState =
{ ls_var_heap :: !.VarHeap
, ls_fun_defs :: !.{#FunDef}
, ls_expr_heap :: !.ExpressionHeap
}
class lift a :: !a !*LiftState -> (!a, !*LiftState)
instance lift [a] | lift a
where
lift l ls = mapSt lift l ls
instance lift (a,b) | lift a & lift b
where
lift t ls = app2St (lift,lift) t ls
instance lift (Optional a) | lift a
where
lift (Yes x) ls
# (x, ls) = lift x ls
= (Yes x, ls)
lift no ls
= (no, ls)
instance lift Expression
where
lift (FreeVar {fv_name,fv_info_ptr}) ls=:{ls_var_heap}
#! var_info = sreadPtr fv_info_ptr ls_var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
_
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
lift (App app) ls
# (app, ls) = lift app ls
= (App app, ls)
lift (expr @ exprs) ls
# ((expr,exprs), ls) = lift (expr,exprs) ls
= (expr @ exprs, ls)
lift (Let lad=:{let_binds, let_expr}) ls
# ((let_binds,let_expr), ls) = lift (let_binds,let_expr) ls
= (Let {lad & let_binds = let_binds, let_expr = let_expr}, ls)
lift (Case case_expr) ls
# (case_expr, ls) = lift case_expr ls
= (Case case_expr, ls)
lift (Selection is_unique expr selectors) ls
# (selectors, ls) = lift selectors ls
(expr, ls) = lift expr ls
= (Selection is_unique expr selectors, ls)
lift (Update expr1 selectors expr2) ls
# (selectors, ls) = lift selectors ls
(expr1, ls) = lift expr1 ls
(expr2, ls) = lift expr2 ls
= (Update expr1 selectors expr2, ls)
lift (RecordUpdate cons_symbol expression expressions) ls
# (expression, ls) = lift expression ls
(expressions, ls) = lift expressions ls
= (RecordUpdate cons_symbol expression expressions, ls)
lift (TupleSelect symbol argn_nr expr) ls
# (expr, ls) = lift expr ls
= (TupleSelect symbol argn_nr expr, ls)
lift (Lambda vars expr) ls
# (expr, ls) = lift expr ls
= (Lambda vars expr, ls)
lift (MatchExpr opt_tuple cons_symb expr) ls
# (expr, ls) = lift expr ls
= (MatchExpr opt_tuple cons_symb expr, ls)
lift expr ls
= (expr, ls)
instance lift Selection
where
lift (ArraySelection array_select expr_ptr index_expr) ls
# (index_expr, ls) = lift index_expr ls
= (ArraySelection array_select expr_ptr index_expr, ls)
lift record_selection ls
= (record_selection, ls)
instance lift App
where
lift app=:{app_symb = app_symbol=:{symb_arity,symb_kind = SK_Function {glob_object,glob_module}}, app_args} ls
# (app_args, ls) = lift app_args ls
| glob_module == cIclModIndex
#! fun_def = ls.ls_fun_defs.[glob_object]
# {fun_info={fi_free_vars}} = fun_def
fun_lifted = length fi_free_vars
| fun_lifted > 0
# (app_args, ls_var_heap, ls_expr_heap) = add_free_variables fi_free_vars app_args ls.ls_var_heap ls.ls_expr_heap
= ({ app & app_args = app_args, app_symb = { app_symbol & symb_arity = symb_arity + fun_lifted }},
{ ls & ls_var_heap = ls_var_heap, ls_expr_heap = ls_expr_heap })
= ({ app & app_args = app_args }, ls)
= ({ app & app_args = app_args }, ls)
where
add_free_variables :: ![FreeVar] ![Expression] !u:VarHeap !*ExpressionHeap -> (![Expression],!u:VarHeap,!*ExpressionHeap)
add_free_variables [] app_args var_heap expr_heap
= (app_args, var_heap, expr_heap)
add_free_variables [{fv_name, fv_info_ptr} : free_vars] app_args var_heap expr_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
_
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
lift app=:{app_args} ls
# (app_args, ls) = lift app_args ls
= ({ app & app_args = app_args }, ls)
instance lift (Bind a b) | lift a
where
lift bind=:{bind_src} ls
# (bind_src, ls) = lift bind_src ls
= ({ bind & bind_src = bind_src }, ls)
instance lift Case
where
lift kees=:{ case_expr,case_guards,case_default } ls
# ((case_expr,(case_guards,case_default)), ls) = lift (case_expr,(case_guards,case_default)) ls
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, ls)
instance lift CasePatterns
where
lift (AlgebraicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (AlgebraicPatterns type patterns, ls)
lift (BasicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (BasicPatterns type patterns, ls)
lift (DynamicPatterns patterns) ls
# (patterns, ls) = lift patterns ls
= (DynamicPatterns patterns, ls)
instance lift AlgebraicPattern
where
lift pattern=:{ap_expr} ls
# (ap_expr, ls) = lift ap_expr ls
= ({ pattern & ap_expr = ap_expr }, ls)
instance lift BasicPattern
where
lift pattern=:{bp_expr} ls
# (bp_expr, ls) = lift bp_expr ls
= ({ pattern & bp_expr = bp_expr }, ls)
instance lift DynamicPattern
where
lift pattern=:{dp_rhs} ls
# (dp_rhs, ls) = lift dp_rhs ls
= ({ pattern & dp_rhs = dp_rhs }, ls)
:: UnfoldState =
{ us_var_heap :: !.VarHeap
, us_symbol_heap :: !.ExpressionHeap
, us_cleanup_info :: ![ExprInfoPtr]
}
class unfold a :: !a !*UnfoldState -> (!a, !*UnfoldState)
instance unfold [a] | unfold a
where
unfold l us = mapSt unfold l us
instance unfold (a,b) | unfold a & unfold b
where
unfold t us = app2St (unfold,unfold) t us
instance unfold (Optional a) | unfold a
where
unfold (Yes x) us
# (x, us) = unfold x us
= (Yes x, us)
unfold no us
= (no, us)
unfoldVariable :: !BoundVar !*UnfoldState -> (!Expression, !*UnfoldState)
unfoldVariable var=:{var_name,var_info_ptr} us=:{us_var_heap}
#! var_info = sreadPtr var_info_ptr us_var_heap
= case var_info of
VI_Expression expr
-> (expr, us)
VI_Variable var_name var_info_ptr
# (var_expr_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
-> (Var {var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr}, { us & us_symbol_heap = us_symbol_heap})
_
-> (Var var, us)
instance unfold Expression
where
unfold (Var var) us
= unfoldVariable var us
unfold (App app) us
# (app, us) = unfold app us
= (App app, us)
unfold (expr @ exprs) us
# ((expr,exprs), us) = unfold (expr,exprs) us
= (expr @ exprs, us)
unfold (Let lad) us
# (lad, us) = unfold lad us
= (Let lad, us)
unfold (Case case_expr) us
# (case_expr, us) = unfold case_expr us
= (Case case_expr, us)
unfold (Selection is_unique expr selectors) us
# ((expr, selectors), us) = unfold (expr, selectors) us
= (Selection is_unique expr selectors, us)
unfold (Update expr1 selectors expr2) us
# (((expr1, expr2), selectors), us) = unfold ((expr1, expr2), selectors) us
= (Update expr1 selectors expr2, us)
unfold (RecordUpdate cons_symbol expression expressions) us
# ((expression, expressions), us) = unfold (expression, expressions) us
= (RecordUpdate cons_symbol expression expressions, us)
unfold (TupleSelect symbol argn_nr expr) us
# (expr, us) = unfold expr us
= (TupleSelect symbol argn_nr expr, us)
unfold (Lambda vars expr) us
# (expr, us) = unfold expr us
= (Lambda vars expr, us)
unfold (MatchExpr opt_tuple cons_symb expr) us
# (expr, us) = unfold expr us
= (MatchExpr opt_tuple cons_symb expr, us)
unfold expr us
= (expr, us)
instance unfold Selection
where
unfold (ArraySelection array_select expr_ptr index_expr) us
# (index_expr, us) = unfold index_expr us
= (ArraySelection array_select expr_ptr index_expr, us)
unfold (DictionarySelection var selectors expr_ptr index_expr) us
# (index_expr, us) = unfold index_expr us
(var_expr, us) = unfoldVariable var us
= case var_expr of
App {app_symb={symb_kind= SK_Constructor _ }, app_args}
# [RecordSelection _ field_index:_] = selectors
(App { app_symb = {symb_name, symb_kind = SK_Function array_select}}) = app_args !! field_index
-> (ArraySelection { array_select & glob_object = { ds_ident = symb_name, ds_arity = 2, ds_index = array_select.glob_object}}
expr_ptr index_expr, us)
Var var
-> (DictionarySelection var selectors expr_ptr index_expr, us)
unfold record_selection ls
= (record_selection, ls)
instance unfold FreeVar
where
unfold fv=:{fv_info_ptr,fv_name} us=:{us_var_heap}
# (new_info_ptr, us_var_heap) = newPtr VI_Empty us_var_heap
= ({ fv & fv_info_ptr = new_info_ptr }, { us & us_var_heap = writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) us_var_heap })
instance unfold App
where
unfold app=:{app_symb, app_args} us
# (app_args, us) = unfold app_args us
| is_function_or_macro app_symb.symb_kind
# (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
= ({ app & app_args = app_args, app_info_ptr = new_info_ptr}, { us & us_symbol_heap = us_symbol_heap })
= ({ app & app_args = app_args, app_info_ptr = nilPtr }, us)
where
is_function_or_macro (SK_Function _)
= True
is_function_or_macro (SK_Macro _)
= True
is_function_or_macro (SK_OverloadedFunction _)
= True
is_function_or_macro symb_kind
= False
instance unfold (Bind a b) | unfold a
where
unfold bind=:{bind_src} us
# (bind_src, us) = unfold bind_src us
= ({ bind & bind_src = bind_src }, us)
instance unfold Case
where
unfold kees=:{ case_expr,case_guards,case_default,case_info_ptr} us=:{us_cleanup_info}
# ((case_expr,(case_guards,case_default)), us) = unfold (case_expr,(case_guards,case_default)) us
(old_case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
(new_info_ptr, us_symbol_heap) = newPtr old_case_info us_symbol_heap
us_cleanup_info = case old_case_info of
EI_Extended _ _ -> [new_info_ptr:us_cleanup_info]
_ -> us_cleanup_info
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default, case_info_ptr = new_info_ptr},
{ us & us_symbol_heap = us_symbol_heap, us_cleanup_info=us_cleanup_info })
instance unfold Let
where
unfold lad=:{let_binds, let_expr, let_info_ptr} us
# (let_binds, us) = copy_bound_vars let_binds us
# ((let_binds,let_expr), us) = unfold (let_binds,let_expr) us
(old_let_info, us_symbol_heap) = readPtr let_info_ptr us.us_symbol_heap
(new_info_ptr, us_symbol_heap) = newPtr old_let_info us_symbol_heap
= ({lad & let_binds = let_binds, let_expr = let_expr, let_info_ptr = new_info_ptr}, { us & us_symbol_heap = us_symbol_heap })
where
copy_bound_vars [bind=:{bind_dst} : binds] us
# (bind_dst, us) = unfold bind_dst us
(binds, us) = copy_bound_vars binds us
= ([ {bind & bind_dst = bind_dst} : binds ], us)
copy_bound_vars [] us
= ([], us)
instance unfold CasePatterns
where
unfold (AlgebraicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (AlgebraicPatterns type patterns, us)
unfold (BasicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (BasicPatterns type patterns, us)
unfold (DynamicPatterns patterns) us
# (patterns, us) = unfold patterns us
= (DynamicPatterns patterns, us)
instance unfold BasicPattern
where
unfold guard=:{bp_expr} us
# (bp_expr, us) = unfold bp_expr us
= ({ guard & bp_expr = bp_expr }, us)
instance unfold AlgebraicPattern
where
unfold guard=:{ap_vars,ap_expr} us
# (ap_vars, us) = unfold ap_vars us
(ap_expr, us) = unfold ap_expr us
= ({ guard & ap_vars = ap_vars, ap_expr = ap_expr }, us)
instance unfold DynamicPattern
where
unfold guard=:{dp_var,dp_rhs} us
# (dp_var, us) = unfold dp_var us
(dp_rhs, us) = unfold dp_rhs us
= ({ guard & dp_var = dp_var, dp_rhs = dp_rhs }, us)
updateFunctionCalls :: ![FunCall] ![FunCall] !*{# FunDef} !*SymbolTable
-> (![FunCall], !*{# FunDef}, !*SymbolTable)
updateFunctionCalls calls collected_calls fun_defs symbol_table
= foldSt add_function_call calls (collected_calls, fun_defs, symbol_table)
where
add_function_call fc (collected_calls, fun_defs, symbol_table)
# ({fun_symb}, fun_defs) = fun_defs![fc.fc_index]
(collected_calls, symbol_table) = examineFunctionCall fun_symb fc (collected_calls, symbol_table)
= (collected_calls, fun_defs, symbol_table)
examineFunctionCall {id_info} fc=:{fc_index} (calls, symbol_table)
#! entry = sreadPtr id_info symbol_table
= case entry.ste_kind of
STE_Called indexes
| isMember fc_index indexes
-> (calls, symbol_table)
-> ([ fc : calls ], symbol_table <:= (id_info, { entry & ste_kind = STE_Called [ fc_index : indexes ]}))
_
-> ( [ fc : calls ], symbol_table <:=
(id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
//unfoldMacro :: !FunDef ![Expression] !*ExpandInfo -> (!Expression, !*ExpandInfo)
unfoldMacro {fun_body = TransformedBody {tb_args,tb_rhs}, fun_info = {fi_calls}} args fun_defs (calls, es=:{es_var_heap,es_symbol_heap, es_symbol_table})
# (let_binds, var_heap) = bind_expressions tb_args args [] es_var_heap
(result_expr, {us_symbol_heap,us_var_heap}) = unfold tb_rhs { us_symbol_heap = es_symbol_heap, us_var_heap = var_heap, us_cleanup_info=[] }
(calls, fun_defs, es_symbol_table) = updateFunctionCalls fi_calls calls fun_defs es_symbol_table
| isEmpty let_binds
= (result_expr, fun_defs, (calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
# (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
= (Let { let_strict = cIsNotStrict, let_binds = let_binds, let_expr = result_expr, let_info_ptr = new_info_ptr}, fun_defs,
(calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
where
bind_expressions [var : vars] [expr : exprs] binds var_heap
# (binds, var_heap) = bind_expressions vars exprs binds var_heap
= bind_expression var expr binds var_heap
bind_expressions _ _ binds var_heap
= (binds, var_heap)
bind_expression {fv_count} expr binds var_heap
| fv_count == 0
= (binds, var_heap)
bind_expression {fv_info_ptr} (Var {var_name,var_info_ptr}) binds var_heap
= (binds, writePtr fv_info_ptr (VI_Variable var_name var_info_ptr) var_heap)
bind_expression {fv_name,fv_info_ptr,fv_count} expr binds var_heap
| fv_count == 1
= (binds, writePtr fv_info_ptr (VI_Expression expr) var_heap)
# (new_info, var_heap) = newPtr VI_Empty var_heap
new_var = { fv_name = fv_name, fv_def_level = NotALevel, fv_info_ptr = new_info, fv_count = 0 }
= ([{ bind_src = expr, bind_dst = new_var} : binds], writePtr fv_info_ptr (VI_Variable fv_name new_info) var_heap)
:: Group =
{ group_members :: ![Int]
// , group_number :: !Int
}
:: PartitioningInfo =
{ pi_symbol_table :: !.SymbolTable
// , pi_marks :: !.{# Int}
, pi_var_heap :: !.VarHeap
, pi_symbol_heap :: !.ExpressionHeap
, pi_error :: !.ErrorAdmin
, pi_next_num :: !Int
, pi_next_group :: !Int
, pi_groups :: ![[Int]]
, pi_deps :: ![Int]
}
NotChecked :== -1
partitionateMacros :: !IndexRange !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateMacros {ir_from,ir_to} mod_index fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap,
pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error, pi_next_group, pi_groups, pi_marks})
= iFoldSt (pationate_macro mod_index max_fun_nr) ir_from ir_to (fun_defs, modules, partitioning_info)
= (iFoldSt reset_body_of_rhs_macro ir_from ir_to fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
reset_body_of_rhs_macro macro_index macro_defs
# (macro_def, macro_defs) = macro_defs![macro_index]
= case macro_def.fun_body of
RhsMacroBody body
-> { macro_defs & [macro_index] = { macro_def & fun_body = CheckedBody body }}
_
-> macro_defs
pationate_macro mod_index max_fun_nr macro_index (macro_defs, modules, pi)
# (macro_def, macro_defs) = macro_defs![macro_index]
| macro_def.fun_kind == FK_Macro
= case macro_def.fun_body of
CheckedBody body
# macros_modules_pi = foldSt (visit_macro mod_index max_fun_nr) macro_def.fun_info.fi_calls (
{ macro_defs & [macro_index] = { macro_def & fun_body = PartioningMacro }}, modules, pi)
-> expand_simple_macro mod_index macro_index macro_def macros_modules_pi
PartioningMacro
# identPos = newPosition macro_def.fun_symb macro_def.fun_pos
-> (macro_defs, modules, { pi & pi_error = checkError macro_def.fun_symb "recursive macro definition" (setErrorAdmin identPos pi.pi_error) })
_
-> (macro_defs, modules, pi)
= (macro_defs, modules, pi)
visit_macro mod_index max_fun_nr {fc_index} macros_modules_pi
= pationate_macro mod_index max_fun_nr fc_index macros_modules_pi
expand_simple_macro mod_index macro_index macro=:{fun_body = CheckedBody body, fun_info, fun_symb, fun_pos}
(macro_defs, modules, pi=:{pi_symbol_table,pi_symbol_heap,pi_var_heap,pi_error})
| macros_are_simple fun_info.fi_calls macro_defs
# identPos = newPosition fun_symb fun_pos
es = { es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap,
es_symbol_heap = pi_symbol_heap, es_error = setErrorAdmin identPos pi_error }
(tb_args, tb_rhs, local_vars, fi_calls, macro_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expandMacrosInBody [] body macro_defs mod_index modules es
macro = { macro & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = local_vars }}
= ({ macro_defs & [macro_index] = macro }, modules,
{ pi & pi_symbol_table = es_symbol_table, pi_symbol_heap = es_symbol_heap, pi_var_heap = es_var_heap, pi_error = es_error })
= ({ macro_defs & [macro_index] = { macro & fun_body = RhsMacroBody body }}, modules, pi)
macros_are_simple [] macro_defs
= True
macros_are_simple [ {fc_index} : calls ] macro_defs
# {fun_kind,fun_body} = macro_defs.[fc_index]
= is_a_pattern_macro fun_kind fun_body && macros_are_simple calls macro_defs
where
is_a_pattern_macro FK_Macro (TransformedBody {tb_args})
= True
is_a_pattern_macro _ _
= False
partitionateAndLiftFunctions :: ![IndexRange] !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{! Group}, !*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateAndLiftFunctions ranges mod_index fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap, pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_groups, pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error})
= foldSt (partitionate_functions mod_index max_fun_nr) ranges (fun_defs, modules, partitioning_info)
groups = { {group_members = group} \\ group <- reverse pi_groups }
= (groups, fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
partitionate_functions mod_index max_fun_nr {ir_from,ir_to} funs_modules_pi
= iFoldSt (partitionate_global_function mod_index max_fun_nr) ir_from ir_to funs_modules_pi
partitionate_global_function mod_index max_fun_nr fun_index funs_modules_pi
# (_, funs_modules_pi) = partitionate_function mod_index max_fun_nr fun_index funs_modules_pi
= funs_modules_pi
partitionate_function mod_index max_fun_nr fun_index (fun_defs, modules, pi)
# (fun_def, fun_defs) = fun_defs![fun_index]
= case fun_def.fun_body of
CheckedBody body
# fun_number = pi.pi_next_num
# (min_dep, funs_modules_pi) = foldSt (visit_function mod_index max_fun_nr) fun_def.fun_info.fi_calls
(max_fun_nr, ({ fun_defs & [fun_index] = { fun_def & fun_body = PartioningFunction body fun_number }}, modules,
{ pi & pi_next_num = inc fun_number, pi_deps = [fun_index : pi.pi_deps] }))
-> try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep fun_def.fun_info.fi_def_level funs_modules_pi
PartioningFunction _ fun_number
-> (fun_number, (fun_defs, modules, pi))
TransformedBody _
| fun_def.fun_info.fi_group_index == NoIndex
-> (max_fun_nr, ({ fun_defs & [fun_index] = {fun_def & fun_info.fi_group_index = pi.pi_next_group }}, modules,
{pi & pi_next_group = inc pi.pi_next_group, pi_groups = [ [fun_index] : pi.pi_groups]}))
-> (max_fun_nr, (fun_defs, modules, pi))
visit_function mod_index max_fun_nr {fc_index} (min_dep, funs_modules_pi)
# (next_min, funs_modules_pi) = partitionate_function mod_index max_fun_nr fc_index funs_modules_pi
= (min next_min min_dep, funs_modules_pi)
try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep def_level (fun_defs, modules,
pi=:{pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_deps, pi_groups, pi_next_group, pi_error})
| fun_number <= min_dep
# (pi_deps, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index pi_deps [] [] max_fun_nr pi_next_group fun_defs
(fun_defs, pi_var_heap, pi_symbol_heap)
= liftFunctions def_level (group_without_macros ++ group_without_funs) pi_next_group fun_defs pi_var_heap pi_symbol_heap
(fun_defs, modules, es)
= expand_macros_in_group mod_index group_without_funs (fun_defs, modules,
{ es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap, es_symbol_heap = pi_symbol_heap,
es_error = pi_error })
(fun_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expand_macros_in_group mod_index group_without_macros (fun_defs, modules, es)
= (max_fun_nr, (fun_defs, modules, { pi & pi_deps = pi_deps, pi_var_heap = es_var_heap,
pi_symbol_table = es_symbol_table, pi_error = es_error, pi_symbol_heap = es_symbol_heap,
pi_next_group = inc pi_next_group, pi_groups = [ group_without_macros ++ group_without_funs : pi_groups ] }))
= (min_dep, (fun_defs, modules, pi))
where
close_group fun_index [d:ds] group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# (fun_def, fun_defs) = fun_defs![d]
fun_defs = { fun_defs & [d] = { fun_def & fun_info.fi_group_index = group_number }}
| fun_def.fun_kind == FK_Macro
# group_without_funs = [d : group_without_funs]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# group_without_macros = [d : group_without_macros]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
expand_macros_in_group mod_index group funs_modules_es
= foldSt (expand_macros mod_index) group (funs_modules_es)
expand_macros mod_index fun_index (fun_and_macro_defs, modules, es)
# (fun_def, fun_and_macro_defs) = fun_and_macro_defs![fun_index]
{fun_symb,fun_body = PartioningFunction body _, fun_info, fun_pos} = fun_def
identPos = newPosition fun_symb fun_pos
(tb_args, tb_rhs, fi_local_vars, fi_calls, fun_and_macro_defs, modules, es)
= expandMacrosInBody fun_info.fi_calls body fun_and_macro_defs mod_index modules { es & es_error = setErrorAdmin identPos es.es_error }
fun_def = { fun_def & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = fi_local_vars }}
= ({ fun_and_macro_defs & [fun_index] = fun_def }, modules, es)
addFunctionCallsToSymbolTable calls fun_defs symbol_table
= foldSt add_function_call_to_symbol_table calls ([], fun_defs, symbol_table)
where
add_function_call_to_symbol_table fc=:{fc_index} (collected_calls, fun_defs, symbol_table)
# ({fun_symb = { id_info }, fun_kind}, fun_defs) = fun_defs![fc_index]
| fun_kind == FK_Macro
= (collected_calls, fun_defs, symbol_table)
#! entry = sreadPtr id_info symbol_table
= ([fc : collected_calls], fun_defs,
symbol_table <:= (id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
removeFunctionCallsFromSymbolTable calls fun_defs symbol_table
= foldSt remove_function_call_from_symbol_table calls (fun_defs, symbol_table)
where
remove_function_call_from_symbol_table {fc_index} (fun_defs, symbol_table)
# ({fun_symb = { id_info }}, fun_defs) = fun_defs![fc_index]
#! entry = sreadPtr id_info symbol_table
= (fun_defs, symbol_table <:= (id_info, entry.ste_previous))
expandMacrosInBody fi_calls {cb_args,cb_rhs} fun_defs mod_index modules es=:{es_symbol_table}
# (prev_calls, fun_defs, es_symbol_table) = addFunctionCallsToSymbolTable fi_calls fun_defs es_symbol_table
([rhs:rhss], fun_defs, modules, (all_calls, es)) = expand cb_rhs fun_defs mod_index modules (prev_calls, { es & es_symbol_table = es_symbol_table })
(fun_defs, es_symbol_table) = removeFunctionCallsFromSymbolTable all_calls fun_defs es.es_symbol_table
(merge_rhs, es_var_heap, es_symbol_heap, es_error) = mergeCases rhs rhss es.es_var_heap es.es_symbol_heap es.es_error
(merge_rhs, cb_args, local_vars, {cos_error, cos_var_heap, cos_symbol_heap}) = determineVariablesAndRefCounts cb_args merge_rhs // (merge_rhs ---> (cb_args, merge_rhs))
{ cos_error = es_error, cos_var_heap = es_var_heap, cos_symbol_heap = es_symbol_heap }
= (cb_args, merge_rhs, local_vars, all_calls, fun_defs, modules,
{ es & es_error = cos_error, es_var_heap = cos_var_heap, es_symbol_heap = cos_symbol_heap,
es_symbol_table = es_symbol_table })
// ---> (cb_args, local_vars, merge_rhs)
cContainsFreeVars :== True
cContainsNoFreeVars :== False
cMacroIsCalled :== True
cNoMacroIsCalled :== False
mergeCases :: !Expression ![Expression] !*VarHeap !*ExpressionHeap !*ErrorAdmin -> *(!Expression, !*VarHeap, !*ExpressionHeap, !*ErrorAdmin);
mergeCases expr [] var_heap symbol_heap error
= (expr, var_heap, symbol_heap, error)
mergeCases (Let lad=:{let_expr}) exprs var_heap symbol_heap error
# (let_expr, var_heap, symbol_heap, error) = mergeCases let_expr exprs var_heap symbol_heap error
= (Let {lad & let_expr = let_expr}, var_heap,symbol_heap, error)
mergeCases case_expr=:(Case first_case=:{case_expr = Var {var_info_ptr}, case_default = No}) [expr : exprs] var_heap symbol_heap error
= case (split_case var_info_ptr expr) of
Yes {case_guards,case_default}
# (case_guards, var_heap, symbol_heap, error) = merge_guards first_case.case_guards case_guards var_heap symbol_heap error
-> mergeCases (Case { first_case & case_guards = case_guards, case_default = case_default }) exprs var_heap symbol_heap error
No
# (case_default, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error
-> (Case { first_case & case_default = Yes case_default}, var_heap, symbol_heap, error)
where
split_case split_var_info_ptr (Case this_case=:{case_expr = Var {var_info_ptr}, case_guards, case_default})
| split_var_info_ptr == var_info_ptr
= Yes this_case
| has_no_default case_default
= case case_guards of
AlgebraicPatterns type [alg_pattern]
-> case (split_case split_var_info_ptr alg_pattern.ap_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
AlgebraicPatterns type [ { alg_pattern & ap_expr = guard_expr }] })
split_case.case_guards }
No
-> No
BasicPatterns type [basic_pattern]
-> case (split_case split_var_info_ptr basic_pattern.bp_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
BasicPatterns type [ { basic_pattern & bp_expr = guard_expr }] })
split_case.case_guards }
No
-> No
DynamicPatterns [dynamic_pattern]
-> case (split_case split_var_info_ptr dynamic_pattern.dp_rhs) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
DynamicPatterns [ { dynamic_pattern & dp_rhs = guard_expr }] })
split_case.case_guards }
No
-> No
_
-> No
| otherwise
= No
split_case split_var_info_ptr (Let lad=:{let_expr})
= case (split_case split_var_info_ptr let_expr) of
Yes split_case
-> Yes { split_case & case_guards = push_expression_into_guards (
\let_expr -> Let { lad & let_expr = let_expr}) split_case.case_guards }
No
-> No
split_case split_var_info_ptr expr
= No
has_no_default No = True
has_no_default (Yes _) = False
push_expression_into_guards expr_fun (AlgebraicPatterns type patterns)
= AlgebraicPatterns type (map (\algpattern -> { algpattern & ap_expr = expr_fun algpattern.ap_expr }) patterns)
push_expression_into_guards expr_fun (BasicPatterns type patterns)
= BasicPatterns type (map (\baspattern -> { baspattern & bp_expr = expr_fun baspattern.bp_expr }) patterns)
push_expression_into_guards expr_fun (DynamicPatterns patterns)
= DynamicPatterns (map (\dynpattern -> { dynpattern & dp_rhs = expr_fun dynpattern.dp_rhs }) patterns)
/* Happened already */
/*
skip_aliases info_ptr []
= info_ptr
skip_aliases info_ptr [{bind_src=Var {var_info_ptr},bind_dst} : binds ]
| info_ptr == var_info_ptr
= skip_aliases bind_dst.fv_info_ptr binds
= skip_aliases info_ptr binds
*/
merge_guards guards=:(AlgebraicPatterns type1 patterns1) (AlgebraicPatterns type2 patterns2) var_heap symbol_heap error
| type1 == type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_algebraic_patterns patterns1 patterns2 var_heap symbol_heap error
= (AlgebraicPatterns type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(BasicPatterns basic_type1 patterns1) (BasicPatterns basic_type2 patterns2) var_heap symbol_heap error
| basic_type1 == basic_type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_basic_patterns patterns1 patterns2 var_heap symbol_heap error
= (BasicPatterns basic_type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(DynamicPatterns patterns1) (DynamicPatterns patterns2) var_heap symbol_heap error
# (merged_patterns, var_heap, symbol_heap, error) = merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (DynamicPatterns merged_patterns, var_heap, symbol_heap, error)
merge_guards patterns1 patterns2 var_heap symbol_heap error
= (patterns1, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_algebraic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_algebraic_patterns patterns alg_patterns var_heap symbol_heap error
merge_algebraic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_basic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_basic_patterns patterns alg_patterns var_heap symbol_heap error
merge_basic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (patterns1 ++ patterns2, var_heap, symbol_heap, error)
merge_algebraic_pattern_with_patterns new_pattern [pattern=:{ap_symbol,ap_vars,ap_expr} : patterns] var_heap symbol_heap error
| new_pattern.ap_symbol == ap_symbol
# (new_expr, var_heap, symbol_heap) = replace_variables new_pattern.ap_vars new_pattern.ap_expr ap_vars var_heap symbol_heap
(ap_expr, var_heap, symbol_heap, error) = mergeCases ap_expr [new_expr] var_heap symbol_heap error
= ([{ pattern & ap_expr = ap_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
where
replace_variables [] expr ap_vars var_heap symbol_heap
= (expr, var_heap, symbol_heap)
replace_variables vars expr ap_vars var_heap symbol_heap
# (expr, us) = unfold expr { us_var_heap = build_aliases vars ap_vars var_heap, us_symbol_heap = symbol_heap, us_cleanup_info=[] }
= (expr, us.us_var_heap, us.us_symbol_heap)
build_aliases [var1 : vars1] [ {fv_name,fv_info_ptr} : vars2 ] var_heap
= build_aliases vars1 vars2 (writePtr var1.fv_info_ptr (VI_Variable fv_name fv_info_ptr) var_heap)
build_aliases [] [] var_heap
= var_heap
merge_algebraic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [pattern=:{bp_value,bp_expr} : patterns] var_heap symbol_heap error
| new_pattern.bp_value == bp_value
# (bp_expr, var_heap, symbol_heap, error) = mergeCases bp_expr [new_pattern.bp_expr] var_heap symbol_heap error
= ([{ pattern & bp_expr = bp_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
mergeCases case_expr=:(Case first_case=:{case_default}) [expr : exprs] var_heap symbol_heap error
= case case_default of
Yes default_expr
# (default_expr, var_heap, symbol_heap, error) = mergeCases default_expr [expr : exprs] var_heap symbol_heap error
-> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error)
No
# (default_expr, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error
-> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error)
mergeCases expr _ var_heap symbol_heap error
= (expr, var_heap, symbol_heap, checkWarning "" " alternative will never match" error)
liftFunctions min_level group group_index fun_defs var_heap expr_heap
# (contains_free_vars, lifted_function_called, fun_defs)
= foldSt (add_free_vars_of_non_recursive_calls_to_function group_index) group (False, False, fun_defs)
| contains_free_vars
# fun_defs = iterateSt (foldSt (add_free_vars_of_recursive_calls_to_function group_index) group) fun_defs
= lift_functions group fun_defs var_heap expr_heap
| lifted_function_called
= lift_functions group fun_defs var_heap expr_heap
= (fun_defs, var_heap, expr_heap)
where
add_free_vars_of_non_recursive_calls_to_function group_index fun (contains_free_vars, lifted_function_called, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(lifted_function_called, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_non_recursive_call fi_def_level group_index) fi_calls (lifted_function_called, fi_free_vars, fun_defs)
= (contains_free_vars || not (isEmpty fi_free_vars), lifted_function_called,
{ fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_non_recursive_call fun_def_level group_index {fc_index} (lifted_function_called, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
= (lifted_function_called, free_vars, fun_defs)
| isEmpty fi_free_vars
= (lifted_function_called, free_vars, fun_defs)
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (False, free_vars)
= (True, free_vars, fun_defs)
add_free_vars_of_recursive_calls_to_function group_index fun (free_vars_added, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(free_vars_added, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_recursive_call fi_def_level group_index) fi_calls (free_vars_added, fi_free_vars, fun_defs)
= (free_vars_added, { fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_recursive_call fun_def_level group_index {fc_index} (free_vars_added, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (free_vars_added, free_vars)
= (free_vars_added, free_vars, fun_defs)
= (free_vars_added, free_vars, fun_defs)
add_free_variables fun_level new_vars (free_vars_added, free_vars)
= add_free_global_variables (skip_local_variables fun_level new_vars) (free_vars_added, free_vars)
where
skip_local_variables level vars=:[{fv_def_level}:rest_vars]
| fv_def_level > level
= skip_local_variables level rest_vars
= vars
skip_local_variables _ []
= []
add_free_global_variables [] (free_vars_added, free_vars)
= (free_vars_added, free_vars)
add_free_global_variables free_vars (free_vars_added, [])
= (True, free_vars)
add_free_global_variables [var:vars] (free_vars_added, free_vars)
# (free_var_added, free_vars) = newFreeVariable var free_vars
= add_free_global_variables vars (free_var_added || free_vars_added, free_vars)
lift_functions group fun_defs var_heap expr_heap
= foldSt lift_function group (fun_defs, var_heap, expr_heap)
where
lift_function fun (fun_defs=:{[fun] = fun_def}, var_heap, expr_heap)
# {fi_free_vars} = fun_def.fun_info
fun_lifted = length fi_free_vars
(PartioningFunction {cb_args,cb_rhs} fun_number) = fun_def.fun_body
(cb_args, var_heap) = add_lifted_args fi_free_vars cb_args var_heap
(cb_rhs, {ls_fun_defs,ls_var_heap,ls_expr_heap}) = lift cb_rhs { ls_fun_defs = fun_defs, ls_var_heap = var_heap, ls_expr_heap = expr_heap }
ls_var_heap = remove_lifted_args fi_free_vars ls_var_heap
ls_fun_defs = { ls_fun_defs & [fun] = { fun_def & fun_lifted = fun_lifted, fun_body = PartioningFunction {cb_args = cb_args, cb_rhs = cb_rhs} fun_number}}
= (ls_fun_defs, ls_var_heap, ls_expr_heap)
// ---> ("lift_function", fun_def.fun_symb, fi_free_vars, cb_args, cb_rhs)
remove_lifted_args vars var_heap
= foldl (\var_heap {fv_name,fv_info_ptr} -> writePtr fv_info_ptr VI_Empty var_heap) var_heap vars
add_lifted_args [lifted_arg=:{fv_name,fv_info_ptr} : lifted_args] args var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
args = [{ lifted_arg & fv_info_ptr = new_info_ptr } : args ]
= add_lifted_args lifted_args args (writePtr fv_info_ptr (VI_LiftedVariable new_info_ptr) var_heap)
add_lifted_args [] args var_heap
= (args, var_heap)
:: ExpandInfo :== (![FunCall], !.ExpandState)
:: ExpandState =
{ es_symbol_table :: !.SymbolTable
, es_var_heap :: !.VarHeap
, es_symbol_heap :: !.ExpressionHeap
, es_error :: !.ErrorAdmin
}
class expand a :: !a !*{#FunDef} !Int !v:{# DclModule} !*ExpandInfo -> (!a, !*{#FunDef}, !v:{# DclModule}, !*ExpandInfo)
instance expand [a] | expand a
where
expand [x:xs] fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(xs, fun_and_macro_defs, modules, es) = expand xs fun_and_macro_defs mod_index modules es
= ([x:xs], fun_and_macro_defs, modules, es)
expand [] fun_and_macro_defs mod_index modules es
= ([], fun_and_macro_defs, modules, es)
instance expand (a,b) | expand a & expand b
where
expand (x,y) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(y, fun_and_macro_defs, modules, es) = expand y fun_and_macro_defs mod_index modules es
= ((x,y), fun_and_macro_defs, modules, es)
instance expand (Optional a) | expand a
where
expand (Yes x) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
= (Yes x, fun_and_macro_defs, modules, es)
expand no fun_and_macro_defs mod_index modules es
= (no, fun_and_macro_defs, modules, es)
/*
determineArity (SK_Function)
determineArity (SK_OverloadedFunction
determineArity (SK_Constructor
*/
instance expand Expression
where
expand (App app=:{app_symb = symb=:{symb_arity, symb_kind = SK_Macro {glob_object,glob_module}}, app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, (calls, state)) = expand app_args fun_and_macro_defs mod_index modules es
#! macro = fun_and_macro_defs.[glob_object]
| macro.fun_arity == symb_arity
# (expr, fun_and_macro_defs, es) = unfoldMacro macro app_args fun_and_macro_defs (calls, state)
= (expr, fun_and_macro_defs, modules, es)
# (calls, es_symbol_table) = examineFunctionCall macro.fun_symb {fc_index = glob_object, fc_level = NotALevel} (calls, state.es_symbol_table)
= (App { app & app_symb = { symb & symb_kind = SK_Function {glob_object = glob_object, glob_module = glob_module} }, app_args = app_args },
fun_and_macro_defs, modules, (calls, { state & es_symbol_table = es_symbol_table }))
expand (App app=:{app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, es) = expand app_args fun_and_macro_defs mod_index modules es
= (App { app & app_args = app_args }, fun_and_macro_defs, modules, es)
expand (expr @ exprs) fun_and_macro_defs mod_index modules es
# ((expr,exprs), fun_and_macro_defs, modules, es) = expand (expr,exprs) fun_and_macro_defs mod_index modules es
= (expr @ exprs, fun_and_macro_defs, modules, es)
expand (Let lad=:{let_binds, let_expr}) fun_and_macro_defs mod_index modules es
# ((let_binds,let_expr), fun_and_macro_defs, modules, es) = expand (let_binds,let_expr) fun_and_macro_defs mod_index modules es
= (Let {lad & let_expr = let_expr, let_binds = let_binds}, fun_and_macro_defs, modules, es)
expand (Case case_expr) fun_and_macro_defs mod_index modules es
# (case_expr, fun_and_macro_defs, modules, es) = expand case_expr fun_and_macro_defs mod_index modules es
= (Case case_expr, fun_and_macro_defs, modules, es)
expand (Selection is_unique expr selectors) fun_and_macro_defs mod_index modules es
# ((expr, selectors), fun_and_macro_defs, modules, es) = expand (expr, selectors) fun_and_macro_defs mod_index modules es
= (Selection is_unique expr selectors, fun_and_macro_defs, modules, es)
expand (Update expr1 selectors expr2) fun_and_macro_defs mod_index modules es
# (((expr1, expr2), selectors), fun_and_macro_defs, modules, es) = expand ((expr1, expr2), selectors) fun_and_macro_defs mod_index modules es
= (Update expr1 selectors expr2, fun_and_macro_defs, modules, es)
expand (RecordUpdate cons_symbol expression expressions) fun_and_macro_defs mod_index modules es
# ((expression, expressions), fun_and_macro_defs, modules, es) = expand (expression, expressions) fun_and_macro_defs mod_index modules es
= (RecordUpdate cons_symbol expression expressions, fun_and_macro_defs, modules, es)
expand (TupleSelect symbol argn_nr expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (TupleSelect symbol argn_nr expr, fun_and_macro_defs, modules, es)
expand (Lambda vars expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (Lambda vars expr, fun_and_macro_defs, modules, es)
expand (MatchExpr opt_tuple cons_symb expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (MatchExpr opt_tuple cons_symb expr, fun_and_macro_defs, modules, es)
expand expr fun_and_macro_defs mod_index modules es
= (expr, fun_and_macro_defs, modules, es)
instance expand Selection
where
expand (ArraySelection array_select expr_ptr index_expr) fun_and_macro_defs mod_index modules es
# (index_expr, fun_and_macro_defs, modules, es) = expand index_expr fun_and_macro_defs mod_index modules es
= (ArraySelection array_select expr_ptr index_expr, fun_and_macro_defs, modules, es)
expand record_selection fun_and_macro_defs mod_index modules es
= (record_selection, fun_and_macro_defs, modules, es)
instance expand (Bind a b) | expand a
where
expand bind=:{bind_src} fun_and_macro_defs mod_index modules es
# (bind_src, fun_and_macro_defs, modules, es) = expand bind_src fun_and_macro_defs mod_index modules es
= ({ bind & bind_src = bind_src }, fun_and_macro_defs, modules, es)
instance expand Case
where
expand kees=:{ case_expr,case_guards,case_default } fun_and_macro_defs mod_index modules es
# ((case_expr,(case_guards,case_default)), fun_and_macro_defs, modules, es) = expand (case_expr,(case_guards,case_default)) fun_and_macro_defs mod_index modules es
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, fun_and_macro_defs, modules, es)
instance expand CasePatterns
where
expand (AlgebraicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (AlgebraicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (BasicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (BasicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (DynamicPatterns patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (DynamicPatterns patterns, fun_and_macro_defs, modules, es)
instance expand AlgebraicPattern
where
expand alg_pattern=:{ap_expr} fun_and_macro_defs mod_index modules es
# (ap_expr, fun_and_macro_defs, modules, es) = expand ap_expr fun_and_macro_defs mod_index modules es
= ({ alg_pattern & ap_expr = ap_expr }, fun_and_macro_defs, modules, es)
instance expand BasicPattern
where
expand bas_pattern=:{bp_expr} fun_and_macro_defs mod_index modules es
# (bp_expr, fun_and_macro_defs, modules, es) = expand bp_expr fun_and_macro_defs mod_index modules es
= ({ bas_pattern & bp_expr = bp_expr }, fun_and_macro_defs, modules, es)
instance expand DynamicPattern
where
expand dyn_pattern=:{dp_rhs} fun_and_macro_defs mod_index modules es
# (dp_rhs, fun_and_macro_defs, modules, es) = expand dp_rhs fun_and_macro_defs mod_index modules es
= ({ dyn_pattern & dp_rhs = dp_rhs }, fun_and_macro_defs, modules, es)
:: CollectState =
{ cos_var_heap :: !.VarHeap
, cos_symbol_heap :: !.ExpressionHeap
, cos_error :: !.ErrorAdmin
}
determineVariablesAndRefCounts :: ![FreeVar] !Expression !*CollectState -> (!Expression , ![FreeVar], ![FreeVar], !*CollectState)
determineVariablesAndRefCounts free_vars expr cos=:{cos_var_heap}
# (expr, local_vars, cos) = collectVariables expr [] { cos & cos_var_heap = clearCount free_vars cIsAGlobalVar cos_var_heap }
(free_vars, cos_var_heap) = retrieveRefCounts free_vars cos.cos_var_heap
(local_vars, cos_var_heap) = retrieveRefCounts local_vars cos_var_heap
= (expr, free_vars, local_vars, { cos & cos_var_heap = cos_var_heap })
retrieveRefCounts free_vars var_heap
= mapSt retrieveRefCount free_vars var_heap
retrieveRefCount fv=:{fv_info_ptr} var_heap
# (VI_Count count _, var_heap) = readPtr fv_info_ptr var_heap
= ({ fv & fv_count = count }, var_heap)
/*
'clearCount' initialises the 'fv_info_ptr' field of each 'FreeVar'
*/
class clearCount a :: !a !Bool !*VarHeap -> *VarHeap
instance clearCount [a] | clearCount a
where
clearCount [x:xs] locality var_heap
= clearCount x locality (clearCount xs locality var_heap)
clearCount [] locality var_heap
= var_heap
instance clearCount (Bind a b) | clearCount b
where
clearCount bind=:{bind_dst} locality var_heap
= clearCount bind_dst locality var_heap
instance clearCount FreeVar
where
clearCount{fv_info_ptr} locality var_heap
= var_heap <:= (fv_info_ptr, VI_Count 0 locality)
/*
In 'collectVariables' all local variables are collected. Moreover the reference counts
of the local as well as of the global variables are determined. Aliases and unreachable
bindings introduced in a 'let' are removed.
*/
class collectVariables a :: !a ![FreeVar] !*CollectState -> !(!a, ![FreeVar],!*CollectState)
cContainsACycle :== True
cContainsNoCycle :== False
instance collectVariables Expression
where
collectVariables (Var var) free_vars cos
# (var, free_vars, cos) = collectVariables var free_vars cos
= (Var var, free_vars, cos)
collectVariables (App app=:{app_args}) free_vars cos
# (app_args, free_vars, cos) = collectVariables app_args free_vars cos
= (App { app & app_args = app_args}, free_vars, cos)
collectVariables (expr @ exprs) free_vars cos
# ((expr, exprs), free_vars, cos) = collectVariables (expr, exprs) free_vars cos
= (expr @ exprs, free_vars, cos)
collectVariables (Let lad=:{let_binds, let_expr}) free_vars cos=:{cos_var_heap}
# cos_var_heap = determine_aliases let_binds cos_var_heap
(is_cyclic, let_binds, cos_var_heap) = detect_cycles_and_remove_alias_binds let_binds cos_var_heap
| is_cyclic
= (Let {lad & let_binds = let_binds }, free_vars, { cos & cos_var_heap = cos_var_heap, cos_error = checkError "" "cyclic let definition" cos.cos_error})
| otherwise
# (let_expr, free_vars, cos) = collectVariables let_expr free_vars { cos & cos_var_heap = cos_var_heap }
(let_binds, free_vars, cos) = collect_variables_in_binds let_binds [] free_vars cos
| isEmpty let_binds
= (let_expr, free_vars, cos)
= (Let {lad & let_expr = let_expr, let_binds = let_binds}, free_vars, cos)
where
/* Set the 'var_info_field' of each bound variable to either 'VI_Alias var' (if
this variable is an alias for 'var') or to 'VI_Count 0 cIsALocalVar' to initialise
the reference count info.
*/
determine_aliases [{bind_dst={fv_info_ptr}, bind_src = Var var} : binds] var_heap
= determine_aliases binds (writePtr fv_info_ptr (VI_Alias var) var_heap)
determine_aliases [bind : binds] var_heap
= determine_aliases binds (clearCount bind cIsALocalVar var_heap)
determine_aliases [] var_heap
= var_heap
/* Remove all aliases from the list of 'let'-binds. Be carefull with cycles! */
detect_cycles_and_remove_alias_binds [] var_heap
= (cContainsNoCycle, [], var_heap)
detect_cycles_and_remove_alias_binds [bind=:{bind_dst={fv_info_ptr}} : binds] var_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_Alias {var_info_ptr}
| is_cyclic fv_info_ptr var_info_ptr var_heap
-> (cContainsACycle, binds, var_heap)
-> detect_cycles_and_remove_alias_binds binds var_heap
_
# (is_cyclic, binds, var_heap) = detect_cycles_and_remove_alias_binds binds var_heap
-> (is_cyclic, [bind : binds], var_heap)
where
is_cyclic orig_info_ptr info_ptr var_heap
| orig_info_ptr == info_ptr
= True
#! var_info = sreadPtr info_ptr var_heap
= case var_info of
VI_Alias {var_info_ptr}
-> is_cyclic orig_info_ptr var_info_ptr var_heap
_
-> False
/* Apply 'collectVariables' to the bound expressions (the 'bind_src' field of 'let'-bind) if
the corresponding bound variable (the 'bind_dst' field) has been used. This can be determined
by examining the reference count.
*/
collect_variables_in_binds binds collected_binds free_vars cos
# (continue, binds, collected_binds, free_vars, cos) = examine_reachable_binds False binds collected_binds free_vars cos
| continue
= collect_variables_in_binds binds collected_binds free_vars cos
= (collected_binds, free_vars, cos)
examine_reachable_binds bind_found [bind=:{bind_dst={fv_info_ptr},bind_src} : binds] collected_binds free_vars cos
# (bind_found, binds, collected_binds, free_vars, cos) = examine_reachable_binds bind_found binds collected_binds free_vars cos
#! var_info = sreadPtr fv_info_ptr cos.cos_var_heap
# (VI_Count count is_global) = var_info
| count > 0
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= (True, binds, [ { bind & bind_src = bind_src } : collected_binds ], free_vars, cos)
= (bind_found, [bind : binds], collected_binds, free_vars, cos)
examine_reachable_binds bind_found [] collected_binds free_vars cos
= (bind_found, [], collected_binds, free_vars, cos)
collectVariables (Case case_expr) free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
= (Case case_expr, free_vars, cos)
collectVariables (Selection is_unique expr selectors) free_vars cos
# ((expr, selectors), free_vars, cos) = collectVariables (expr, selectors) free_vars cos
= (Selection is_unique expr selectors, free_vars, cos)
collectVariables (Update expr1 selectors expr2) free_vars cos
# (((expr1, expr2), selectors), free_vars, cos) = collectVariables ((expr1, expr2), selectors) free_vars cos
= (Update expr1 selectors expr2, free_vars, cos)
collectVariables (RecordUpdate cons_symbol expression expressions) free_vars cos
# ((expression, expressions), free_vars, cos) = collectVariables (expression, expressions) free_vars cos
= (RecordUpdate cons_symbol expression expressions, free_vars, cos)
collectVariables (TupleSelect symbol argn_nr expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (TupleSelect symbol argn_nr expr, free_vars, cos)
collectVariables (MatchExpr opt_tuple cons_symb expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (MatchExpr opt_tuple cons_symb expr, free_vars, cos)
collectVariables expr free_vars cos
= (expr, free_vars, cos)
instance collectVariables Selection
where
collectVariables (ArraySelection array_select expr_ptr index_expr) free_vars cos
# (index_expr, free_vars, cos) = collectVariables index_expr free_vars cos
= (ArraySelection array_select expr_ptr index_expr, free_vars, cos)
collectVariables record_selection free_vars cos
= (record_selection, free_vars, cos)
instance collectVariables [a] | collectVariables a
where
collectVariables [x:xs] free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (xs, free_vars, cos) = collectVariables xs free_vars cos
= ([x:xs], free_vars, cos)
collectVariables [] free_vars cos
= ([], free_vars, cos)
instance collectVariables !(!a,!b) | collectVariables a & collectVariables b
where
collectVariables (x,y) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (y, free_vars, cos) = collectVariables y free_vars cos
= ((x,y), free_vars, cos)
instance collectVariables (Optional a) | collectVariables a
where
collectVariables (Yes x) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
= (Yes x, free_vars, cos)
collectVariables no free_vars cos
= (no, free_vars, cos)
instance collectVariables (Bind a b) | collectVariables a where
collectVariables bind=:{bind_src} free_vars cos
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= ({bind & bind_src = bind_src}, free_vars, cos)
instance collectVariables Case
where
collectVariables kees=:{ case_expr, case_guards, case_default } free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
# (case_guards, free_vars, cos) = collectVariables case_guards free_vars cos
# (case_default, free_vars, cos) = collectVariables case_default free_vars cos
= ({ kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default }, free_vars, cos)
instance collectVariables CasePatterns
where
collectVariables (AlgebraicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (AlgebraicPatterns type patterns, free_vars, cos)
collectVariables (BasicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (BasicPatterns type patterns, free_vars, cos)
collectVariables (DynamicPatterns patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (DynamicPatterns patterns, free_vars, cos)
instance collectVariables AlgebraicPattern
where
collectVariables pattern=:{ap_vars,ap_expr} free_vars cos
# (ap_expr, free_vars, cos) = collectVariables ap_expr free_vars { cos & cos_var_heap = clearCount ap_vars cIsALocalVar cos.cos_var_heap}
(ap_vars, cos_var_heap) = retrieveRefCounts ap_vars cos.cos_var_heap
= ({ pattern & ap_expr = ap_expr, ap_vars = ap_vars }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BasicPattern
where
collectVariables pattern=:{bp_expr} free_vars cos
# (bp_expr, free_vars, cos) = collectVariables bp_expr free_vars cos
= ({ pattern & bp_expr = bp_expr }, free_vars, cos)
instance collectVariables DynamicPattern
where
collectVariables pattern=:{dp_var,dp_rhs} free_vars cos
# (dp_rhs, free_vars, cos) = collectVariables dp_rhs free_vars { cos & cos_var_heap = clearCount dp_var cIsALocalVar cos.cos_var_heap}
(dp_var, cos_var_heap) = retrieveRefCount dp_var cos.cos_var_heap
= ({ pattern & dp_rhs = dp_rhs, dp_var = dp_var }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BoundVar
where
collectVariables var=:{var_name,var_info_ptr} free_vars cos=:{cos_var_heap}
#! var_info = sreadPtr var_info_ptr cos_var_heap
= case var_info of
VI_Alias alias
-> collectVariables alias free_vars cos
VI_Count count is_global
| count > 0 || is_global
-> (var, free_vars, { cos & cos_var_heap = writePtr var_info_ptr (VI_Count (inc count) is_global) cos.cos_var_heap })
-> (var, [{fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0} : free_vars ],
{ cos & cos_var_heap = writePtr var_info_ptr (VI_Count 1 is_global) cos.cos_var_heap })
_
-> abort "collectVariables [BoundVar] (transform, 1227)" <<- (var_info ---> var_name)
instance <<< FreeVar
where
(<<<) file { fv_name } = file <<< fv_name
instance <<< Ptr a
where
(<<<) file p = file <<< ptrToInt p
instance <<< FunCall
where
(<<<) file {fc_index} = file <<< fc_index