implementation module transform
import syntax, check, StdCompare, utilities, RWSDebug
:: LiftState =
{ ls_var_heap :: !.VarHeap
// , ls_fun_defs :: !.{#FunDef}
, ls_x :: !.LiftStateX
, ls_expr_heap :: !.ExpressionHeap
}
:: LiftStateX = {
x_fun_defs :: !.{#FunDef},
x_main_dcl_module_n :: !Int
}
class lift a :: !a !*LiftState -> (!a, !*LiftState)
instance lift [a] | lift a
where
lift l ls = mapSt lift l ls
instance lift (a,b) | lift a & lift b
where
lift t ls = app2St (lift,lift) t ls
instance lift (Optional a) | lift a
where
lift (Yes x) ls
# (x, ls) = lift x ls
= (Yes x, ls)
lift no ls
= (no, ls)
instance lift CheckedAlternative
where
lift ca=:{ca_rhs} ls
# (ca_rhs, ls) = lift ca_rhs ls
= ({ ca & ca_rhs = ca_rhs }, ls)
instance lift Expression
where
lift (FreeVar {fv_name,fv_info_ptr}) ls=:{ls_var_heap}
#! var_info = sreadPtr fv_info_ptr ls_var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
_
# (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap
-> (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap})
lift (App app) ls
# (app, ls) = lift app ls
= (App app, ls)
lift (expr @ exprs) ls
# ((expr,exprs), ls) = lift (expr,exprs) ls
= (expr @ exprs, ls)
lift (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) ls
# (let_strict_binds, ls) = lift let_strict_binds ls
(let_lazy_binds, ls) = lift let_lazy_binds ls
(let_expr, ls) = lift let_expr ls
= (Let {lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr}, ls)
lift (Case case_expr) ls
# (case_expr, ls) = lift case_expr ls
= (Case case_expr, ls)
lift (Selection is_unique expr selectors) ls
# (selectors, ls) = lift selectors ls
(expr, ls) = lift expr ls
= (Selection is_unique expr selectors, ls)
lift (Update expr1 selectors expr2) ls
# (selectors, ls) = lift selectors ls
(expr1, ls) = lift expr1 ls
(expr2, ls) = lift expr2 ls
= (Update expr1 selectors expr2, ls)
lift (RecordUpdate cons_symbol expression expressions) ls
# (expression, ls) = lift expression ls
(expressions, ls) = lift expressions ls
= (RecordUpdate cons_symbol expression expressions, ls)
lift (TupleSelect symbol argn_nr expr) ls
# (expr, ls) = lift expr ls
= (TupleSelect symbol argn_nr expr, ls)
lift (Lambda vars expr) ls
# (expr, ls) = lift expr ls
= (Lambda vars expr, ls)
lift (MatchExpr opt_tuple cons_symb expr) ls
# (expr, ls) = lift expr ls
= (MatchExpr opt_tuple cons_symb expr, ls)
lift expr ls
= (expr, ls)
instance lift Selection
where
lift (ArraySelection array_select expr_ptr index_expr) ls
# (index_expr, ls) = lift index_expr ls
= (ArraySelection array_select expr_ptr index_expr, ls)
lift record_selection ls
= (record_selection, ls)
instance lift App
where
lift app=:{app_symb = app_symbol=:{symb_arity,symb_kind = SK_Function {glob_object,glob_module}}, app_args} ls
# (app_args, ls) = lift app_args ls
// | glob_module == cIclModIndex
| glob_module == ls.ls_x.LiftStateX.x_main_dcl_module_n
// #! fun_def = ls.ls_fun_defs.[glob_object]
#! fun_def = ls.ls_x.x_fun_defs.[glob_object]
# {fun_info={fi_free_vars}} = fun_def
fun_lifted = length fi_free_vars
| fun_lifted > 0
# (app_args, ls_var_heap, ls_expr_heap) = add_free_variables fi_free_vars app_args ls.ls_var_heap ls.ls_expr_heap
= ({ app & app_args = app_args, app_symb = { app_symbol & symb_arity = symb_arity + fun_lifted }},
{ ls & ls_var_heap = ls_var_heap, ls_expr_heap = ls_expr_heap })
= ({ app & app_args = app_args }, ls)
= ({ app & app_args = app_args }, ls)
where
add_free_variables :: ![FreeVar] ![Expression] !u:VarHeap !*ExpressionHeap -> (![Expression],!u:VarHeap,!*ExpressionHeap)
add_free_variables [] app_args var_heap expr_heap
= (app_args, var_heap, expr_heap)
add_free_variables [{fv_name, fv_info_ptr} : free_vars] app_args var_heap expr_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
_
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
lift app=:{app_symb = app_symbol=:{symb_arity,symb_kind = SK_LocalMacroFunction glob_object}, app_args} ls
# (app_args, ls) = lift app_args ls
// #! fun_def = ls.ls_fun_defs.[glob_object]
#! fun_def = ls.ls_x.x_fun_defs.[glob_object]
# {fun_info={fi_free_vars}} = fun_def
fun_lifted = length fi_free_vars
| fun_lifted > 0
# (app_args, ls_var_heap, ls_expr_heap) = add_free_variables fi_free_vars app_args ls.ls_var_heap ls.ls_expr_heap
= ({ app & app_args = app_args, app_symb = { app_symbol & symb_arity = symb_arity + fun_lifted }},
{ ls & ls_var_heap = ls_var_heap, ls_expr_heap = ls_expr_heap })
= ({ app & app_args = app_args }, ls)
where
add_free_variables :: ![FreeVar] ![Expression] !u:VarHeap !*ExpressionHeap -> (![Expression],!u:VarHeap,!*ExpressionHeap)
add_free_variables [] app_args var_heap expr_heap
= (app_args, var_heap, expr_heap)
add_free_variables [{fv_name, fv_info_ptr} : free_vars] app_args var_heap expr_heap
#! var_info = sreadPtr fv_info_ptr var_heap
= case var_info of
VI_LiftedVariable var_info_ptr
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
_
# (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap
-> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr } : app_args]
var_heap expr_heap
lift app=:{app_args} ls
# (app_args, ls) = lift app_args ls
= ({ app & app_args = app_args }, ls)
instance lift (Bind a b) | lift a
where
lift bind=:{bind_src} ls
# (bind_src, ls) = lift bind_src ls
= ({ bind & bind_src = bind_src }, ls)
instance lift Case
where
lift kees=:{ case_expr,case_guards,case_default } ls
# ((case_expr,(case_guards,case_default)), ls) = lift (case_expr,(case_guards,case_default)) ls
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, ls)
instance lift CasePatterns
where
lift (AlgebraicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (AlgebraicPatterns type patterns, ls)
lift (BasicPatterns type patterns) ls
# (patterns, ls) = lift patterns ls
= (BasicPatterns type patterns, ls)
lift (DynamicPatterns patterns) ls
# (patterns, ls) = lift patterns ls
= (DynamicPatterns patterns, ls)
instance lift AlgebraicPattern
where
lift pattern=:{ap_expr} ls
# (ap_expr, ls) = lift ap_expr ls
= ({ pattern & ap_expr = ap_expr }, ls)
instance lift BasicPattern
where
lift pattern=:{bp_expr} ls
# (bp_expr, ls) = lift bp_expr ls
= ({ pattern & bp_expr = bp_expr }, ls)
instance lift DynamicPattern
where
lift pattern=:{dp_rhs} ls
# (dp_rhs, ls) = lift dp_rhs ls
= ({ pattern & dp_rhs = dp_rhs }, ls)
:: UnfoldState =
{ us_var_heap :: !.VarHeap
, us_symbol_heap :: !.ExpressionHeap
, us_opt_type_heaps :: !.Optional .TypeHeaps
, us_cleanup_info :: ![ExprInfoPtr]
, us_handle_aci_free_vars :: !AciFreeVarHandleMode
}
:: AciFreeVarHandleMode = LeaveThem | RemoveThem | SubstituteThem
class unfold a :: !a !*UnfoldState -> (!a, !*UnfoldState)
instance unfold [a] | unfold a
where
unfold l us = mapSt unfold l us
instance unfold (a,b) | unfold a & unfold b
where
unfold t us = app2St (unfold,unfold) t us
instance unfold (Optional a) | unfold a
where
unfold (Yes x) us
# (x, us) = unfold x us
= (Yes x, us)
unfold no us
= (no, us)
unfoldVariable :: !BoundVar !*UnfoldState -> (!Expression, !*UnfoldState)
unfoldVariable var=:{var_name,var_info_ptr} us
#! (var_info, us) = readVarInfo var_info_ptr us
= case var_info of
VI_Expression expr
-> (expr, us)
VI_Variable var_name var_info_ptr
# (var_expr_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
-> (Var {var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr}, { us & us_symbol_heap = us_symbol_heap})
VI_Body fun_symb _ vars
-> (App { app_symb = fun_symb,
app_args = [ Var { var_name=fv_name, var_info_ptr=fv_info_ptr, var_expr_ptr=nilPtr }
\\ {fv_name,fv_info_ptr}<-vars],
app_info_ptr = nilPtr }, us)
VI_Dictionary app_symb app_args class_type
# (new_class_type, us_opt_type_heaps) = substitute_class_types class_type us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr (EI_DictionaryType new_class_type) us.us_symbol_heap
-> (App { app_symb = app_symb, app_args = app_args, app_info_ptr = new_info_ptr },
{ us & us_opt_type_heaps = us_opt_type_heaps, us_symbol_heap = us_symbol_heap })
_
-> (Var var, us)
where
substitute_class_types class_types no=:No
= (class_types, no)
substitute_class_types class_types (Yes type_heaps)
# (new_class_types, type_heaps) = substitute class_types type_heaps
= (new_class_types, Yes type_heaps)
readVarInfo var_info_ptr us
#! var_info = sreadPtr var_info_ptr us.us_var_heap
= case var_info of
VI_Extended _ original -> (original, us)
_ -> (var_info, us)
writeVarInfo :: VarInfoPtr VarInfo *VarHeap -> *VarHeap
writeVarInfo var_info_ptr new_var_info var_heap
# (old_var_info, var_heap) = readPtr var_info_ptr var_heap
= case old_var_info of
VI_Extended extensions _ -> writePtr var_info_ptr (VI_Extended extensions new_var_info) var_heap
_ -> writePtr var_info_ptr new_var_info var_heap
instance unfold Expression
where
unfold (Var var) us
= unfoldVariable var us
unfold (App app) us
# (app, us) = unfold app us
= (App app, us)
unfold (expr @ exprs) us
# ((expr,exprs), us) = unfold (expr,exprs) us
= (expr @ exprs, us)
unfold (Let lad) us
# (lad, us) = unfold lad us
= (Let lad, us)
unfold (Case case_expr) us
# (case_expr, us) = unfold case_expr us
= (Case case_expr, us)
unfold (Selection is_unique expr selectors) us
# ((expr, selectors), us) = unfold (expr, selectors) us
= (Selection is_unique expr selectors, us)
unfold (Update expr1 selectors expr2) us
# (((expr1, expr2), selectors), us) = unfold ((expr1, expr2), selectors) us
= (Update expr1 selectors expr2, us)
unfold (RecordUpdate cons_symbol expression expressions) us
# ((expression, expressions), us) = unfold (expression, expressions) us
= (RecordUpdate cons_symbol expression expressions, us)
unfold (TupleSelect symbol argn_nr expr) us
# (expr, us) = unfold expr us
= (TupleSelect symbol argn_nr expr, us)
unfold (Lambda vars expr) us
# (expr, us) = unfold expr us
= (Lambda vars expr, us)
unfold (MatchExpr opt_tuple cons_symb expr) us
# (expr, us) = unfold expr us
= (MatchExpr opt_tuple cons_symb expr, us)
unfold (DynamicExpr expr) us
# (expr, us) = unfold expr us
= (DynamicExpr expr, us)
unfold expr us
= (expr, us)
instance unfold DynamicExpr
where
unfold expr=:{dyn_expr} us
# (dyn_expr, us) = unfold dyn_expr us
= ({ expr & dyn_expr = dyn_expr }, us)
/* Sjaak ... */
instance unfold Selection
where
unfold (ArraySelection array_select expr_ptr index_expr) us=:{us_symbol_heap}
# (new_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
(index_expr, us) = unfold index_expr { us & us_symbol_heap = us_symbol_heap}
= (ArraySelection array_select new_ptr index_expr, us)
unfold (DictionarySelection var selectors expr_ptr index_expr) us=:{us_symbol_heap}
# (new_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
(index_expr, us) = unfold index_expr { us & us_symbol_heap = us_symbol_heap}
(var_expr, us) = unfoldVariable var us
= case var_expr of
App {app_symb={symb_kind= SK_Constructor _ }, app_args}
# [RecordSelection _ field_index:_] = selectors
(App { app_symb = {symb_name, symb_kind = SK_Function array_select}}) = app_args !! field_index
-> (ArraySelection { array_select & glob_object = { ds_ident = symb_name, ds_arity = 2, ds_index = array_select.glob_object}}
new_ptr index_expr, us)
Var var
-> (DictionarySelection var selectors new_ptr index_expr, us)
unfold record_selection ls
= (record_selection, ls)
/* ... Sjaak */
instance unfold FreeVar
where
unfold fv=:{fv_info_ptr,fv_name} us=:{us_var_heap}
# (new_info_ptr, us_var_heap) = newPtr VI_Empty us_var_heap
= ({ fv & fv_info_ptr = new_info_ptr }, { us & us_var_heap = writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) us_var_heap })
instance unfold App
where
unfold app=:{app_symb, app_args, app_info_ptr} us
# (new_info_ptr, us)
= case is_function_or_macro app_symb.symb_kind of
True # (new_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap
-> (new_ptr, { us & us_symbol_heap = us_symbol_heap })
_ -> case (app_symb.symb_kind, isNilPtr app_info_ptr) of
(SK_Constructor _, False)
# (app_info, us_symbol_heap) = readPtr app_info_ptr us.us_symbol_heap
(new_app_info, us_opt_type_heaps) = substitute_EI_DictionaryType app_info us.us_opt_type_heaps
(new_ptr, us_symbol_heap) = newPtr new_app_info us_symbol_heap
-> (new_ptr, { us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps })
_ -> (nilPtr, us)
(app_args, us) = unfold app_args us
= ({ app & app_args = app_args, app_info_ptr = new_info_ptr}, us)
where
is_function_or_macro (SK_Function _)
= True
is_function_or_macro (SK_LocalMacroFunction _)
= True
is_function_or_macro (SK_Macro _)
= True
is_function_or_macro (SK_OverloadedFunction _)
= True
is_function_or_macro _
= False
substitute_EI_DictionaryType (EI_DictionaryType class_type) (Yes type_heaps)
# (new_class_type, type_heaps) = substitute class_type type_heaps
= (EI_DictionaryType new_class_type, Yes type_heaps)
substitute_EI_DictionaryType x opt_type_heaps
= (x, opt_type_heaps)
instance unfold (Bind a b) | unfold a
where
unfold bind=:{bind_src} us
# (bind_src, us) = unfold bind_src us
= ({ bind & bind_src = bind_src }, us)
instance unfold Case
where
unfold kees=:{ case_expr,case_guards,case_default,case_info_ptr} us=:{us_cleanup_info}
# (old_case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
(new_case_info, us_opt_type_heaps) = substitute_let_or_case_type old_case_info us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr new_case_info us_symbol_heap
us_cleanup_info = case old_case_info of
EI_Extended _ _ -> [new_info_ptr:us_cleanup_info]
_ -> us_cleanup_info
us = { us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps, us_cleanup_info=us_cleanup_info }
((case_guards,case_default), us) = unfold (case_guards,case_default) us
(case_expr, us) = update_active_case_info_and_unfold case_expr new_info_ptr us
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default, case_info_ptr = new_info_ptr}, us)
where
update_active_case_info_and_unfold case_expr=:(Var {var_info_ptr}) case_info_ptr us=:{us_handle_aci_free_vars}
# (case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
us = { us & us_symbol_heap = us_symbol_heap }
= case case_info of
EI_Extended (EEI_ActiveCase aci=:{aci_free_vars}) ei
#!(new_aci_free_vars, us) = case us_handle_aci_free_vars of
LeaveThem -> (aci_free_vars, us)
RemoveThem -> (No, us)
SubstituteThem -> case aci_free_vars of
No -> (No, us)
Yes fvs # (fvs_subst, us) = mapSt unfoldBoundVar fvs us
-> (Yes fvs_subst, us)
(var_info, us_var_heap) = readPtr var_info_ptr us.us_var_heap
us = { us & us_var_heap = us_var_heap }
-> case var_info of
VI_Body fun_symb {tb_args, tb_rhs} new_aci_params
# tb_args_ptrs = [ fv_info_ptr \\ {fv_info_ptr}<-tb_args ]
(original_bindings, us_var_heap) = mapSt readPtr tb_args_ptrs us.us_var_heap
us_var_heap = fold2St bind tb_args_ptrs new_aci_params us_var_heap
(tb_rhs, us) = unfold tb_rhs { us & us_var_heap = us_var_heap }
us_var_heap = fold2St writePtr tb_args_ptrs original_bindings us.us_var_heap
new_aci = { aci & aci_params = new_aci_params, aci_opt_unfolder = Yes fun_symb, aci_free_vars = new_aci_free_vars }
new_eei = (EI_Extended (EEI_ActiveCase new_aci) ei)
us_symbol_heap = writePtr case_info_ptr new_eei us.us_symbol_heap
-> (tb_rhs, { us & us_var_heap = us_var_heap, us_symbol_heap = us_symbol_heap })
_ # new_eei = EI_Extended (EEI_ActiveCase { aci & aci_free_vars = new_aci_free_vars }) ei
us_symbol_heap = writePtr case_info_ptr new_eei us.us_symbol_heap
-> unfold case_expr { us & us_symbol_heap = us_symbol_heap }
_ -> unfold case_expr us
where
// XXX consider to store BoundVars in VI_Body
bind fv_info_ptr {fv_name=name, fv_info_ptr=info_ptr} var_heap
= writeVarInfo fv_info_ptr (VI_Expression (Var {var_name=name, var_info_ptr=info_ptr, var_expr_ptr = nilPtr})) var_heap
/*
bind ({fv_info_ptr}, var_bound_var) var_heap
= writeVarInfo fv_info_ptr (VI_Expression var_bound_var) var_heap
*/
/* update_active_case_info_and_unfold case_expr=:(Var {var_info_ptr}) case_info_ptr us
#! var_info = sreadPtr var_info_ptr us.us_var_heap
= case var_info of
VI_Body fun_symb fun_body new_aci_var_info_ptr
# (fun_body, us) = unfold fun_body us
(EI_Extended (EEI_ActiveCase aci) ei, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap
new_aci = { aci & aci_var_info_ptr = new_aci_var_info_ptr, aci_opt_unfolder = Yes fun_symb }
us_symbol_heap = writePtr case_info_ptr (EI_Extended (EEI_ActiveCase new_aci) ei) us_symbol_heap
-> (fun_body, { us & us_symbol_heap = us_symbol_heap })
_ -> unfold case_expr us
*/
update_active_case_info_and_unfold case_expr _ us
= unfold case_expr us
unfoldBoundVar {var_info_ptr} us
# (VI_Expression (Var act_var), us_var_heap) = readPtr var_info_ptr us.us_var_heap
= (act_var, { us & us_var_heap = us_var_heap })
instance unfold Let
where
unfold lad=:{let_strict_binds, let_lazy_binds, let_expr, let_info_ptr} us
# (let_strict_binds, us) = copy_bound_vars let_strict_binds us
# (let_lazy_binds, us) = copy_bound_vars let_lazy_binds us
# (let_strict_binds, us) = unfold let_strict_binds us
# (let_lazy_binds, us) = unfold let_lazy_binds us
# (let_expr, us) = unfold let_expr us
(old_let_info, us_symbol_heap) = readPtr let_info_ptr us.us_symbol_heap
(new_let_info, us_opt_type_heaps) = substitute_let_or_case_type old_let_info us.us_opt_type_heaps
(new_info_ptr, us_symbol_heap) = newPtr new_let_info us_symbol_heap
= ({lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr, let_info_ptr = new_info_ptr},
{ us & us_symbol_heap = us_symbol_heap, us_opt_type_heaps = us_opt_type_heaps })
where
copy_bound_vars [bind=:{bind_dst} : binds] us
# (bind_dst, us) = unfold bind_dst us
(binds, us) = copy_bound_vars binds us
= ([ {bind & bind_dst = bind_dst} : binds ], us)
copy_bound_vars [] us
= ([], us)
substitute_let_or_case_type expr_info No
= (expr_info, No)
substitute_let_or_case_type (EI_Extended extensions expr_info) yes_type_heaps
# (new_expr_info, yes_type_heaps) = substitute_let_or_case_type expr_info yes_type_heaps
= (EI_Extended extensions new_expr_info, yes_type_heaps)
substitute_let_or_case_type (EI_CaseType case_type) (Yes type_heaps)
# (new_case_type, type_heaps) = substitute case_type type_heaps
= (EI_CaseType new_case_type, Yes type_heaps)
// = (EI_CaseType case_type, Yes type_heaps)
substitute_let_or_case_type (EI_LetType let_type) (Yes type_heaps)
# (new_let_type, type_heaps) = substitute let_type type_heaps
= (EI_LetType new_let_type, Yes type_heaps)
instance unfold CasePatterns
where
unfold (AlgebraicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (AlgebraicPatterns type patterns, us)
unfold (BasicPatterns type patterns) us
# (patterns, us) = unfold patterns us
= (BasicPatterns type patterns, us)
unfold (DynamicPatterns patterns) us
# (patterns, us) = unfold patterns us
= (DynamicPatterns patterns, us)
instance unfold BasicPattern
where
unfold guard=:{bp_expr} us
# (bp_expr, us) = unfold bp_expr us
= ({ guard & bp_expr = bp_expr }, us)
instance unfold AlgebraicPattern
where
unfold guard=:{ap_vars,ap_expr} us
# (ap_vars, us) = unfold ap_vars us
(ap_expr, us) = unfold ap_expr us
= ({ guard & ap_vars = ap_vars, ap_expr = ap_expr }, us)
instance unfold DynamicPattern
where
unfold guard=:{dp_var,dp_rhs} us
# (dp_var, us) = unfold dp_var us
(dp_rhs, us) = unfold dp_rhs us
= ({ guard & dp_var = dp_var, dp_rhs = dp_rhs }, us)
updateFunctionCalls :: ![FunCall] ![FunCall] !*{# FunDef} !*SymbolTable
-> (![FunCall], !*{# FunDef}, !*SymbolTable)
updateFunctionCalls calls collected_calls fun_defs symbol_table
= foldSt add_function_call calls (collected_calls, fun_defs, symbol_table)
where
add_function_call fc (collected_calls, fun_defs, symbol_table)
# ({fun_symb}, fun_defs) = fun_defs![fc.fc_index]
(collected_calls, symbol_table) = examineFunctionCall fun_symb fc (collected_calls, symbol_table)
= (collected_calls, fun_defs, symbol_table)
examineFunctionCall {id_info} fc=:{fc_index} (calls, symbol_table)
# (entry, symbol_table) = readPtr id_info symbol_table
= case entry.ste_kind of
STE_Called indexes
| isMember fc_index indexes
-> (calls, symbol_table)
-> ([ fc : calls ], symbol_table <:= (id_info, { entry & ste_kind = STE_Called [ fc_index : indexes ]}))
_
-> ( [ fc : calls ], symbol_table <:=
(id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
//unfoldMacro :: !FunDef ![Expression] !*ExpandInfo -> (!Expression, !*ExpandInfo)
unfoldMacro {fun_body = TransformedBody {tb_args,tb_rhs}, fun_info = {fi_calls}} args fun_defs (calls, es=:{es_var_heap,es_symbol_heap, es_symbol_table})
# (let_binds, var_heap) = bind_expressions tb_args args [] es_var_heap
us = { us_symbol_heap = es_symbol_heap, us_var_heap = var_heap, us_opt_type_heaps = No, us_cleanup_info = [],
us_handle_aci_free_vars = RemoveThem }
(result_expr, {us_symbol_heap,us_var_heap}) = unfold tb_rhs us
(calls, fun_defs, es_symbol_table) = updateFunctionCalls fi_calls calls fun_defs es_symbol_table
| isEmpty let_binds
= (result_expr, fun_defs, (calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
# (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap
= (Let { let_strict_binds = [], let_lazy_binds = let_binds, let_expr = result_expr, let_info_ptr = new_info_ptr}, fun_defs,
(calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table }))
where
bind_expressions [var : vars] [expr : exprs] binds var_heap
# (binds, var_heap) = bind_expressions vars exprs binds var_heap
= bind_expression var expr binds var_heap
bind_expressions _ _ binds var_heap
= (binds, var_heap)
bind_expression {fv_count} expr binds var_heap
| fv_count == 0
= (binds, var_heap)
bind_expression {fv_info_ptr} (Var {var_name,var_info_ptr}) binds var_heap
= (binds, writePtr fv_info_ptr (VI_Variable var_name var_info_ptr) var_heap)
bind_expression {fv_name,fv_info_ptr,fv_count} expr binds var_heap
| fv_count == 1
= (binds, writePtr fv_info_ptr (VI_Expression expr) var_heap)
# (new_info, var_heap) = newPtr VI_Empty var_heap
new_var = { fv_name = fv_name, fv_def_level = NotALevel, fv_info_ptr = new_info, fv_count = 0 }
= ([{ bind_src = expr, bind_dst = new_var} : binds], writePtr fv_info_ptr (VI_Variable fv_name new_info) var_heap)
:: Group =
{ group_members :: ![Int]
// , group_number :: !Int
}
:: PartitioningInfo =
{ pi_symbol_table :: !.SymbolTable
// , pi_marks :: !.{# Int}
, pi_var_heap :: !.VarHeap
, pi_symbol_heap :: !.ExpressionHeap
, pi_error :: !.ErrorAdmin
, pi_next_num :: !Int
, pi_next_group :: !Int
, pi_groups :: ![[Int]]
, pi_deps :: ![Int]
}
NotChecked :== -1
partitionateMacros :: !IndexRange !Index !PredefinedSymbol !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateMacros {ir_from,ir_to} mod_index alias_dummy fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap,
pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error, pi_next_group, pi_groups, pi_deps})
= iFoldSt (pationate_macro mod_index max_fun_nr) ir_from ir_to (fun_defs, modules, partitioning_info)
= (foldSt reset_body_of_rhs_macro pi_deps fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
reset_body_of_rhs_macro macro_index macro_defs
# (macro_def, macro_defs) = macro_defs![macro_index]
= case macro_def.fun_body of
RhsMacroBody body
-> { macro_defs & [macro_index] = { macro_def & fun_body = CheckedBody body }}
_
-> macro_defs
pationate_macro mod_index max_fun_nr macro_index (macro_defs, modules, pi)
# (macro_def, macro_defs) = macro_defs![macro_index]
| macro_def.fun_kind == FK_Macro
= case macro_def.fun_body of
CheckedBody body
# macros_modules_pi = foldSt (visit_macro mod_index max_fun_nr) macro_def.fun_info.fi_calls
({ macro_defs & [macro_index] = { macro_def & fun_body = PartioningMacro }}, modules, pi)
-> expand_simple_macro mod_index macro_index macro_def macros_modules_pi
PartioningMacro
# identPos = newPosition macro_def.fun_symb macro_def.fun_pos
-> (macro_defs, modules, { pi & pi_error = checkError macro_def.fun_symb "recursive macro definition" (setErrorAdmin identPos pi.pi_error) })
_
-> (macro_defs, modules, pi)
= (macro_defs, modules, pi)
visit_macro mod_index max_fun_nr {fc_index} macros_modules_pi
= pationate_macro mod_index max_fun_nr fc_index macros_modules_pi
expand_simple_macro mod_index macro_index macro=:{fun_body = CheckedBody body, fun_info, fun_symb, fun_pos}
(macro_defs, modules, pi=:{pi_symbol_table,pi_symbol_heap,pi_var_heap,pi_error})
| macros_are_simple fun_info.fi_calls macro_defs
# identPos = newPosition fun_symb fun_pos
es = { es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap,
es_symbol_heap = pi_symbol_heap, es_error = setErrorAdmin identPos pi_error }
(tb_args, tb_rhs, local_vars, fi_calls, macro_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expandMacrosInBody [] body macro_defs mod_index alias_dummy modules es
macro = { macro & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = local_vars }}
= ({ macro_defs & [macro_index] = macro }, modules,
{ pi & pi_symbol_table = es_symbol_table, pi_symbol_heap = es_symbol_heap, pi_var_heap = es_var_heap, pi_error = es_error })
# pi = { pi & pi_deps = [macro_index:pi.pi_deps] }
= ({ macro_defs & [macro_index] = { macro & fun_body = RhsMacroBody body }}, modules, pi)
macros_are_simple [] macro_defs
= True
macros_are_simple [ {fc_index} : calls ] macro_defs
# {fun_kind,fun_body} = macro_defs.[fc_index]
= is_a_pattern_macro fun_kind fun_body && macros_are_simple calls macro_defs
where
is_a_pattern_macro FK_Macro (TransformedBody {tb_args})
= True
is_a_pattern_macro _ _
= False
partitionateAndLiftFunctions :: ![IndexRange] !Index !PredefinedSymbol !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin
-> (!*{! Group}, !*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin )
partitionateAndLiftFunctions ranges main_dcl_module_n alias_dummy fun_defs modules var_heap symbol_heap symbol_table error
#! max_fun_nr = size fun_defs
# partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap, pi_symbol_table = symbol_table,
pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] }
(fun_defs, modules, {pi_groups, pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error})
= foldSt (partitionate_functions main_dcl_module_n max_fun_nr) ranges (fun_defs, modules, partitioning_info)
groups = { {group_members = group} \\ group <- reverse pi_groups }
= (groups, fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error)
where
partitionate_functions mod_index max_fun_nr {ir_from,ir_to} funs_modules_pi
= iFoldSt (partitionate_global_function mod_index max_fun_nr) ir_from ir_to funs_modules_pi
partitionate_global_function mod_index max_fun_nr fun_index funs_modules_pi
# (_, funs_modules_pi) = partitionate_function mod_index max_fun_nr fun_index funs_modules_pi
= funs_modules_pi
partitionate_function mod_index max_fun_nr fun_index (fun_defs, modules, pi)
# (fun_def, fun_defs) = fun_defs![fun_index]
= case fun_def.fun_body of
CheckedBody body
# fun_number = pi.pi_next_num
# (min_dep, funs_modules_pi) = foldSt (visit_function mod_index max_fun_nr) fun_def.fun_info.fi_calls
(max_fun_nr, ({ fun_defs & [fun_index] = { fun_def & fun_body = PartioningFunction body fun_number }}, modules,
{ pi & pi_next_num = inc fun_number, pi_deps = [fun_index : pi.pi_deps] }))
-> try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep fun_def.fun_info.fi_def_level funs_modules_pi
PartioningFunction _ fun_number
-> (fun_number, (fun_defs, modules, pi))
TransformedBody _
| fun_def.fun_info.fi_group_index == NoIndex
# (fun_defs, pi) = add_called_macros fun_def.fun_info.fi_calls (fun_defs, pi)
-> (max_fun_nr, ({ fun_defs & [fun_index] = {fun_def & fun_info.fi_group_index = pi.pi_next_group }}, modules,
{pi & pi_next_group = inc pi.pi_next_group, pi_groups = [ [fun_index] : pi.pi_groups]}))
-> (max_fun_nr, (fun_defs, modules, pi))
BackendBody _
-> abort "partitionate_function BackendBody"
visit_function mod_index max_fun_nr {fc_index} (min_dep, funs_modules_pi)
# (next_min, funs_modules_pi) = partitionate_function mod_index max_fun_nr fc_index funs_modules_pi
= (min next_min min_dep, funs_modules_pi)
try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep def_level (fun_defs, modules,
pi=:{pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_deps, pi_groups, pi_next_group, pi_error})
| fun_number <= min_dep
# (pi_deps, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index pi_deps [] [] max_fun_nr pi_next_group fun_defs
// (fun_defs, pi_var_heap, pi_symbol_heap)
{ls_x={x_fun_defs=fun_defs}, ls_var_heap=pi_var_heap, ls_expr_heap=pi_symbol_heap}
// = liftFunctions def_level (group_without_macros ++ group_without_funs) pi_next_group cIclModIndex fun_defs pi_var_heap pi_symbol_heap
= liftFunctions def_level (group_without_macros ++ group_without_funs) pi_next_group main_dcl_module_n fun_defs pi_var_heap pi_symbol_heap
(fun_defs, modules, es)
= expand_macros_in_group mod_index group_without_funs (fun_defs, modules,
{ es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap, es_symbol_heap = pi_symbol_heap,
es_error = pi_error })
(fun_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error})
= expand_macros_in_group mod_index group_without_macros (fun_defs, modules, es)
= (max_fun_nr, (fun_defs, modules, { pi & pi_deps = pi_deps, pi_var_heap = es_var_heap,
pi_symbol_table = es_symbol_table, pi_error = es_error, pi_symbol_heap = es_symbol_heap,
pi_next_group = inc pi_next_group, pi_groups = [ group_without_macros ++ group_without_funs : pi_groups ] }))
= (min_dep, (fun_defs, modules, pi))
where
close_group fun_index [d:ds] group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# (fun_def, fun_defs) = fun_defs![d]
fun_defs = { fun_defs & [d] = { fun_def & fun_info.fi_group_index = group_number }}
| fun_def.fun_kind == FK_Macro
# group_without_funs = [d : group_without_funs]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
# group_without_macros = [d : group_without_macros]
| d == fun_index
= (ds, group_without_macros, group_without_funs, fun_defs)
= close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs
expand_macros_in_group mod_index group funs_modules_es
= foldSt (expand_macros mod_index) group (funs_modules_es)
expand_macros mod_index fun_index (fun_and_macro_defs, modules, es)
# (fun_def, fun_and_macro_defs) = fun_and_macro_defs![fun_index]
{fun_symb,fun_body = PartioningFunction body _, fun_info, fun_pos} = fun_def
identPos = newPosition fun_symb fun_pos
(tb_args, tb_rhs, fi_local_vars, fi_calls, fun_and_macro_defs, modules, es)
= expandMacrosInBody fun_info.fi_calls body fun_and_macro_defs mod_index alias_dummy modules
{ es & es_error = setErrorAdmin identPos es.es_error }
fun_def = { fun_def & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs},
fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = fi_local_vars }}
= ({ fun_and_macro_defs & [fun_index] = fun_def }, modules, es)
add_called_macros calls macro_defs_and_pi
= foldSt add_called_macro calls macro_defs_and_pi
where
add_called_macro {fc_index} (macro_defs, pi)
# (macro_def, macro_defs) = macro_defs![fc_index]
= case macro_def.fun_body of
TransformedBody _
| macro_def.fun_info.fi_group_index == NoIndex
# (macro_defs, pi) = add_called_macros macro_def.fun_info.fi_calls (macro_defs, pi)
-> ({ macro_defs & [fc_index] = {macro_def & fun_info.fi_group_index = pi.pi_next_group }},
{pi & pi_next_group = inc pi.pi_next_group, pi_groups = [ [fc_index] : pi.pi_groups]})
-> (macro_defs, pi)
addFunctionCallsToSymbolTable calls fun_defs symbol_table
= foldSt add_function_call_to_symbol_table calls ([], fun_defs, symbol_table)
where
add_function_call_to_symbol_table fc=:{fc_index} (collected_calls, fun_defs, symbol_table)
# ({fun_symb = { id_info }, fun_kind}, fun_defs) = fun_defs![fc_index]
| fun_kind == FK_Macro
= (collected_calls, fun_defs, symbol_table)
# (entry, symbol_table) = readPtr id_info symbol_table
= ([fc : collected_calls], fun_defs,
symbol_table <:= (id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry }))
removeFunctionCallsFromSymbolTable calls fun_defs symbol_table
= foldSt remove_function_call_from_symbol_table calls (fun_defs, symbol_table)
where
remove_function_call_from_symbol_table {fc_index} (fun_defs, symbol_table)
# ({fun_symb = { id_info }}, fun_defs) = fun_defs![fc_index]
(entry, symbol_table) = readPtr id_info symbol_table
= case entry.ste_kind of
STE_Called indexes
-> (fun_defs, symbol_table <:= (id_info, entry.ste_previous))
_
-> (fun_defs, symbol_table)
expandMacrosInBody fi_calls {cb_args,cb_rhs} fun_defs mod_index alias_dummy modules es=:{es_symbol_table}
# (prev_calls, fun_defs, es_symbol_table)
= addFunctionCallsToSymbolTable fi_calls fun_defs es_symbol_table
([rhs:rhss], (fun_defs, modules, (all_calls, es)) )
= mapSt (expandCheckedAlternative mod_index) cb_rhs
(fun_defs, modules, (prev_calls, { es & es_symbol_table = es_symbol_table }))
(fun_defs, es_symbol_table)
= removeFunctionCallsFromSymbolTable all_calls fun_defs es.es_symbol_table
((merged_rhs, _), es_var_heap, es_symbol_heap, es_error)
= mergeCases rhs rhss es.es_var_heap es.es_symbol_heap es.es_error
(new_rhs, new_args, local_vars, {cos_error, cos_var_heap, cos_symbol_heap})
= determineVariablesAndRefCounts cb_args merged_rhs
{ cos_error = es_error, cos_var_heap = es_var_heap, cos_symbol_heap = es_symbol_heap,
cos_alias_dummy = alias_dummy }
= (new_args, new_rhs, local_vars, all_calls, fun_defs, modules,
{ es & es_error = cos_error, es_var_heap = cos_var_heap, es_symbol_heap = cos_symbol_heap,
es_symbol_table = es_symbol_table })
// ---> ("expandMacrosInBody", (cb_args, ca_rhs, '\n'), ("merged_rhs", merged_rhs, '\n'), ("new_rhs", new_args, local_vars, (new_rhs, '\n')))
expandCheckedAlternative mod_index {ca_rhs, ca_position} (fun_defs, modules, es)
# (ca_rhs, fun_defs, modules, es) = expand ca_rhs fun_defs mod_index modules es
= ((ca_rhs, ca_position), (fun_defs, modules, es))
cContainsFreeVars :== True
cContainsNoFreeVars :== False
cMacroIsCalled :== True
cNoMacroIsCalled :== False
mergeCases :: !(!Expression, !Position) ![(!Expression, !Position)] !*VarHeap !*ExpressionHeap !*ErrorAdmin
-> *(!(!Expression, !Position), !*VarHeap, !*ExpressionHeap, !*ErrorAdmin)
mergeCases expr_and_pos [] var_heap symbol_heap error
= (expr_and_pos, var_heap, symbol_heap, error)
mergeCases (Let lad=:{let_expr}, pos) exprs var_heap symbol_heap error
# ((let_expr, _), var_heap, symbol_heap, error) = mergeCases (let_expr, NoPos) exprs var_heap symbol_heap error
= ((Let {lad & let_expr = let_expr}, pos), var_heap,symbol_heap, error)
mergeCases (case_expr=:(Case first_case=:{case_expr = Var {var_info_ptr}, case_default = No}), case_pos)
[(expr, expr_pos) : exprs] var_heap symbol_heap error
# (split_result, var_heap, symbol_heap) = split_case var_info_ptr expr var_heap symbol_heap
= case split_result of
Yes {case_guards,case_default}
# (case_guards, var_heap, symbol_heap, error) = merge_guards first_case.case_guards case_guards var_heap symbol_heap error
-> mergeCases (Case { first_case & case_guards = case_guards, case_default = case_default }, NoPos)
exprs var_heap symbol_heap error
No
# ((case_default, pos), var_heap, symbol_heap, error) = mergeCases (expr, expr_pos) exprs var_heap symbol_heap error
-> ((Case { first_case & case_default = Yes case_default, case_default_pos = pos }, case_pos),
var_heap, symbol_heap, error)
where
split_case split_var_info_ptr (Case this_case=:{case_expr = Var {var_info_ptr}, case_guards, case_default}) var_heap symbol_heap
| split_var_info_ptr == skip_alias var_info_ptr var_heap
= (Yes this_case, var_heap, symbol_heap)
| has_no_default case_default
= case case_guards of
AlgebraicPatterns type [alg_pattern]
# (split_result, var_heap, symbol_heap) = split_case split_var_info_ptr alg_pattern.ap_expr var_heap symbol_heap
-> case split_result of
Yes split_case
-> (Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
AlgebraicPatterns type [ { alg_pattern & ap_expr = guard_expr }] })
split_case.case_guards }, var_heap, symbol_heap)
No
-> (No, var_heap, symbol_heap)
BasicPatterns type [basic_pattern]
# (split_result, var_heap, symbol_heap) = split_case split_var_info_ptr basic_pattern.bp_expr var_heap symbol_heap
-> case split_result of
Yes split_case
-> (Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
BasicPatterns type [ { basic_pattern & bp_expr = guard_expr }] })
split_case.case_guards }, var_heap, symbol_heap)
No
-> (No, var_heap, symbol_heap)
DynamicPatterns [dynamic_pattern]
# (split_result, var_heap, symbol_heap) = split_case split_var_info_ptr dynamic_pattern.dp_rhs var_heap symbol_heap
-> case split_result of
Yes split_case
-> (Yes { split_case & case_guards = push_expression_into_guards (
\guard_expr -> Case { this_case & case_guards =
DynamicPatterns [ { dynamic_pattern & dp_rhs = guard_expr }] })
split_case.case_guards }, var_heap, symbol_heap)
No
-> (No, var_heap, symbol_heap)
_
-> (No, var_heap, symbol_heap)
| otherwise
= (No, var_heap, symbol_heap)
split_case split_var_info_ptr (Let lad=:{let_expr,let_strict_binds,let_lazy_binds}) var_heap symbol_heap
| isEmpty let_strict_binds
# var_heap = foldSt set_alias let_lazy_binds var_heap
# (split_result, var_heap, symbol_heap) = split_case split_var_info_ptr let_expr var_heap symbol_heap
= case split_result of
Yes split_case
# (case_guards, var_heap, symbol_heap) = push_let_expression_into_guards lad split_case.case_guards var_heap symbol_heap
-> (Yes { split_case & case_guards = case_guards }, var_heap, symbol_heap)
No
-> (No, var_heap, symbol_heap)
= (No, var_heap, symbol_heap)
split_case split_var_info_ptr expr var_heap symbol_heap
= (No, var_heap, symbol_heap)
has_no_default No = True
has_no_default (Yes _) = False
skip_alias var_info_ptr var_heap
= case sreadPtr var_info_ptr var_heap of
VI_Alias bv
-> bv.var_info_ptr
_
-> var_info_ptr
set_alias {bind_src=Var var,bind_dst={fv_info_ptr}} var_heap
= var_heap <:= (fv_info_ptr, VI_Alias var)
set_alias _ var_heap
= var_heap
push_expression_into_guards expr_fun (AlgebraicPatterns type patterns)
= AlgebraicPatterns type (map (\algpattern -> { algpattern & ap_expr = expr_fun algpattern.ap_expr }) patterns)
push_expression_into_guards expr_fun (BasicPatterns type patterns)
= BasicPatterns type (map (\baspattern -> { baspattern & bp_expr = expr_fun baspattern.bp_expr }) patterns)
push_expression_into_guards expr_fun (DynamicPatterns patterns)
= DynamicPatterns (map (\dynpattern -> { dynpattern & dp_rhs = expr_fun dynpattern.dp_rhs }) patterns)
replace_variables_in_expression expr var_heap symbol_heap
# us = { us_var_heap = var_heap, us_symbol_heap = symbol_heap, us_opt_type_heaps = No,
us_cleanup_info = [], us_handle_aci_free_vars = RemoveThem }
(expr, us) = unfold expr us
= (expr, us.us_var_heap, us.us_symbol_heap)
new_variable fv=:{fv_name, fv_info_ptr} var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
= ({fv & fv_info_ptr = new_info_ptr}, var_heap <:= (fv_info_ptr, VI_Variable fv_name new_info_ptr))
rebuild_let_expression lad expr var_heap expr_heap
# (rev_let_lazy_binds, var_heap) = foldSt renew_let_var lad.let_lazy_binds ([], var_heap)
(let_info_ptr, expr_heap) = newPtr EI_Empty expr_heap
(expr, var_heap, expr_heap) = replace_variables_in_expression expr var_heap expr_heap
(let_lazy_binds, var_heap, expr_heap) = foldSt replace_variables_in_bound_expression rev_let_lazy_binds ([], var_heap, expr_heap)
= (Let { lad & let_lazy_binds = let_lazy_binds, let_info_ptr = let_info_ptr, let_expr = expr}, var_heap, expr_heap)
where
renew_let_var bind=:{bind_dst} (rev_binds, var_heap)
# (bind_dst, var_heap) = new_variable bind_dst var_heap
= ([{ bind & bind_dst = bind_dst } : rev_binds], var_heap)
replace_variables_in_bound_expression bind=:{bind_src} (rev_binds, var_heap, expr_heap)
# (bind_src, var_heap, expr_heap) = replace_variables_in_expression bind_src var_heap expr_heap
= ([{ bind & bind_src = bind_src } : rev_binds], var_heap, expr_heap)
push_let_expression_into_guards lad (AlgebraicPatterns type patterns) var_heap expr_heap
# (patterns, var_heap, expr_heap) = push_let_expression_into_algebraic_pattern lad patterns var_heap expr_heap
= (AlgebraicPatterns type patterns, var_heap, expr_heap)
where
push_let_expression_into_algebraic_pattern lad [pattern=:{ap_expr}] var_heap expr_heap
= ([{ pattern & ap_expr = Let { lad & let_expr = ap_expr}}], var_heap, expr_heap)
push_let_expression_into_algebraic_pattern lad [pattern=:{ap_expr}:patterns] var_heap expr_heap
# (ap_expr, var_heap, expr_heap) = rebuild_let_expression lad ap_expr var_heap expr_heap
(patterns, var_heap, expr_heap) = push_let_expression_into_algebraic_pattern lad patterns var_heap expr_heap
= ([{pattern & ap_expr = ap_expr} : patterns], var_heap, expr_heap)
push_let_expression_into_guards lad (BasicPatterns type patterns) var_heap expr_heap
# (patterns, var_heap, expr_heap) = push_let_expression_into_basic_pattern lad patterns var_heap expr_heap
= (BasicPatterns type patterns, var_heap, expr_heap)
where
push_let_expression_into_basic_pattern lad [pattern=:{bp_expr}] var_heap expr_heap
= ([{ pattern & bp_expr = Let { lad & let_expr = bp_expr}}], var_heap, expr_heap)
push_let_expression_into_basic_pattern lad [pattern=:{bp_expr}:patterns] var_heap expr_heap
# (bp_expr, var_heap, expr_heap) = rebuild_let_expression lad bp_expr var_heap expr_heap
(patterns, var_heap, expr_heap) = push_let_expression_into_basic_pattern lad patterns var_heap expr_heap
= ([{pattern & bp_expr = bp_expr} : patterns], var_heap, expr_heap)
push_let_expression_into_guards lad (DynamicPatterns patterns) var_heap expr_heap
# (patterns, var_heap, expr_heap) = push_let_expression_into_dynamic_pattern lad patterns var_heap expr_heap
= (DynamicPatterns patterns, var_heap, expr_heap)
where
push_let_expression_into_dynamic_pattern lad [pattern=:{dp_rhs}] var_heap expr_heap
= ([{ pattern & dp_rhs = Let { lad & let_expr = dp_rhs}}], var_heap, expr_heap)
push_let_expression_into_dynamic_pattern lad [pattern=:{dp_rhs}:patterns] var_heap expr_heap
# (dp_rhs, var_heap, expr_heap) = rebuild_let_expression lad dp_rhs var_heap expr_heap
(patterns, var_heap, expr_heap) = push_let_expression_into_dynamic_pattern lad patterns var_heap expr_heap
= ([{pattern & dp_rhs = dp_rhs} : patterns], var_heap, expr_heap)
merge_guards guards=:(AlgebraicPatterns type1 patterns1) (AlgebraicPatterns type2 patterns2) var_heap symbol_heap error
| type1 == type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_algebraic_patterns patterns1 patterns2 var_heap symbol_heap error
= (AlgebraicPatterns type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(BasicPatterns basic_type1 patterns1) (BasicPatterns basic_type2 patterns2) var_heap symbol_heap error
| basic_type1 == basic_type2
# (merged_patterns, var_heap, symbol_heap, error) = merge_basic_patterns patterns1 patterns2 var_heap symbol_heap error
= (BasicPatterns basic_type1 merged_patterns, var_heap, symbol_heap, error)
= (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_guards guards=:(DynamicPatterns patterns1) (DynamicPatterns patterns2) var_heap symbol_heap error
# (merged_patterns, var_heap, symbol_heap, error) = merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (DynamicPatterns merged_patterns, var_heap, symbol_heap, error)
merge_guards patterns1 patterns2 var_heap symbol_heap error
= (patterns1, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error)
merge_algebraic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_algebraic_patterns patterns alg_patterns var_heap symbol_heap error
merge_algebraic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_basic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error
= merge_basic_patterns patterns alg_patterns var_heap symbol_heap error
merge_basic_patterns patterns [] var_heap symbol_heap error
= (patterns, var_heap, symbol_heap, error)
merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error
= (patterns1 ++ patterns2, var_heap, symbol_heap, error)
merge_algebraic_pattern_with_patterns new_pattern [pattern=:{ap_symbol,ap_vars,ap_expr} : patterns] var_heap symbol_heap error
| new_pattern.ap_symbol == ap_symbol
| isEmpty new_pattern.ap_vars
# ((ap_expr, _), var_heap, symbol_heap, error) = mergeCases (ap_expr, NoPos) [(new_pattern.ap_expr, NoPos)] var_heap symbol_heap error
= ([{ pattern & ap_expr = ap_expr} : patterns], var_heap, symbol_heap, error)
# (new_expr, var_heap, symbol_heap) = replace_variables new_pattern.ap_vars new_pattern.ap_expr ap_vars var_heap symbol_heap
((ap_expr, _), var_heap, symbol_heap, error) = mergeCases (ap_expr, NoPos) [(new_expr, NoPos)] var_heap symbol_heap error
= ([{ pattern & ap_expr = ap_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
where
replace_variables vars expr ap_vars var_heap symbol_heap
# us = { us_var_heap = build_aliases vars ap_vars var_heap, us_symbol_heap = symbol_heap, us_opt_type_heaps = No,
us_cleanup_info=[], us_handle_aci_free_vars = RemoveThem }
(expr, us) = unfold expr us
= (expr, us.us_var_heap, us.us_symbol_heap)
build_aliases [var1 : vars1] [ {fv_name,fv_info_ptr} : vars2 ] var_heap
= build_aliases vars1 vars2 (writePtr var1.fv_info_ptr (VI_Variable fv_name fv_info_ptr) var_heap)
build_aliases [] [] var_heap
= var_heap
merge_algebraic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [pattern=:{bp_value,bp_expr} : patterns] var_heap symbol_heap error
| new_pattern.bp_value == bp_value
# ((bp_expr, _), var_heap, symbol_heap, error) = mergeCases (bp_expr, NoPos) [(new_pattern.bp_expr, NoPos)] var_heap symbol_heap error
= ([{ pattern & bp_expr = bp_expr} : patterns], var_heap, symbol_heap, error)
# (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error
= ([ pattern : patterns ], var_heap, symbol_heap, error)
merge_basic_pattern_with_patterns new_pattern [] var_heap symbol_heap error
= ([new_pattern], var_heap, symbol_heap, error)
mergeCases (case_expr=:(Case first_case=:{case_default, case_default_pos}), case_pos) [expr : exprs] var_heap symbol_heap error
= case case_default of
Yes default_expr
# ((default_expr, case_default_pos), var_heap, symbol_heap, error) = mergeCases (default_expr, case_default_pos) [expr : exprs] var_heap symbol_heap error
-> ((Case { first_case & case_default = Yes default_expr, case_default_pos = case_default_pos }, case_pos),
var_heap, symbol_heap, error)
No
# ((default_expr, pos), var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error
-> ((Case { first_case & case_default = Yes default_expr, case_default_pos = pos }, case_pos),
var_heap, symbol_heap, error)
mergeCases expr_and_pos _ var_heap symbol_heap error
= (expr_and_pos, var_heap, symbol_heap, checkWarning "" " alternative will never match" error)
liftFunctions min_level group group_index main_dcl_module_n fun_defs var_heap expr_heap
# (contains_free_vars, lifted_function_called, fun_defs)
= foldSt (add_free_vars_of_non_recursive_calls_to_function group_index) group (False, False, fun_defs)
| contains_free_vars
# fun_defs = iterateSt (add_free_vars_of_recursive_calls_to_functions group_index group) fun_defs
// = lift_functions group fun_defs var_heap expr_heap
= lift_functions group {ls_x={x_fun_defs=fun_defs,x_main_dcl_module_n=main_dcl_module_n},ls_var_heap=var_heap,ls_expr_heap=expr_heap}
| lifted_function_called
= lift_functions group {ls_x={x_fun_defs=fun_defs,x_main_dcl_module_n=main_dcl_module_n},ls_var_heap=var_heap,ls_expr_heap=expr_heap}
// = (fun_defs, var_heap, expr_heap)
= {ls_x={x_fun_defs=fun_defs,x_main_dcl_module_n=main_dcl_module_n},ls_var_heap=var_heap, ls_expr_heap=expr_heap}
where
add_free_vars_of_non_recursive_calls_to_function group_index fun (contains_free_vars, lifted_function_called, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(lifted_function_called, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_non_recursive_call fi_def_level group_index) fi_calls (lifted_function_called, fi_free_vars, fun_defs)
= (contains_free_vars || not (isEmpty fi_free_vars), lifted_function_called,
{ fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_non_recursive_call fun_def_level group_index {fc_index} (lifted_function_called, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
= (lifted_function_called, free_vars, fun_defs)
| isEmpty fi_free_vars
= (lifted_function_called, free_vars, fun_defs)
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (False, free_vars)
= (True, free_vars, fun_defs)
add_free_vars_of_recursive_calls_to_functions group_index group fun_defs
= foldSt (add_free_vars_of_recursive_calls_to_function group_index) group (False, fun_defs)
add_free_vars_of_recursive_calls_to_function group_index fun (free_vars_added, fun_defs)
# (fun_def=:{fun_info}, fun_defs) = fun_defs![fun]
{ fi_free_vars,fi_def_level,fi_calls } = fun_info
(free_vars_added, fi_free_vars, fun_defs)
= foldSt (add_free_vars_of_recursive_call fi_def_level group_index) fi_calls (free_vars_added, fi_free_vars, fun_defs)
= (free_vars_added, { fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}})
where
add_free_vars_of_recursive_call fun_def_level group_index {fc_index} (free_vars_added, free_vars, fun_defs)
# ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index]
| fi_group_index == group_index
# (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (free_vars_added, free_vars)
= (free_vars_added, free_vars, fun_defs)
= (free_vars_added, free_vars, fun_defs)
add_free_variables fun_level new_vars (free_vars_added, free_vars)
= add_free_global_variables (skip_local_variables fun_level new_vars) (free_vars_added, free_vars)
where
skip_local_variables level vars=:[{fv_def_level}:rest_vars]
| fv_def_level > level
= skip_local_variables level rest_vars
= vars
skip_local_variables _ []
= []
add_free_global_variables [] (free_vars_added, free_vars)
= (free_vars_added, free_vars)
add_free_global_variables free_vars (free_vars_added, [])
= (True, free_vars)
add_free_global_variables [var:vars] (free_vars_added, free_vars)
# (free_var_added, free_vars) = newFreeVariable var free_vars
= add_free_global_variables vars (free_var_added || free_vars_added, free_vars)
// lift_functions group fun_defs var_heap expr_heap
// = foldSt lift_function group (fun_defs, var_heap, expr_heap)
lift_functions group lift_state
= foldSt lift_function group lift_state
where
// lift_function fun (fun_defs=:{[fun] = fun_def}, var_heap, expr_heap)
lift_function fun {ls_x=ls_x=:{x_fun_defs=fun_defs=:{[fun] = fun_def}}, ls_var_heap=var_heap, ls_expr_heap=expr_heap}
# {fi_free_vars} = fun_def.fun_info
fun_lifted = length fi_free_vars
(PartioningFunction {cb_args,cb_rhs} fun_number) = fun_def.fun_body
(cb_args, var_heap) = add_lifted_args fi_free_vars cb_args var_heap
// (cb_rhs, {ls_fun_defs,ls_var_heap,ls_expr_heap}) = lift cb_rhs { ls_fun_defs = fun_defs, ls_var_heap = var_heap, ls_expr_heap = expr_heap }
(cb_rhs, {ls_x,ls_var_heap,ls_expr_heap}) = lift cb_rhs { ls_x={ls_x & x_fun_defs = fun_defs}, ls_var_heap = var_heap, ls_expr_heap = expr_heap }
ls_var_heap = remove_lifted_args fi_free_vars ls_var_heap
ls_fun_defs = ls_x.x_fun_defs
ls_fun_defs = { ls_fun_defs & [fun] = { fun_def & fun_lifted = fun_lifted, fun_body = PartioningFunction {cb_args = cb_args, cb_rhs = cb_rhs} fun_number}}
// = (ls_fun_defs, ls_var_heap, ls_expr_heap)
= {ls_x={ls_x & x_fun_defs=ls_fun_defs}, ls_var_heap=ls_var_heap, ls_expr_heap= ls_expr_heap}
// ---> ("lift_function", fun_def.fun_symb, fi_free_vars, cb_args, cb_rhs)
remove_lifted_args vars var_heap
= foldl (\var_heap {fv_name,fv_info_ptr} -> writePtr fv_info_ptr VI_Empty var_heap) var_heap vars
add_lifted_args [lifted_arg=:{fv_name,fv_info_ptr} : lifted_args] args var_heap
# (new_info_ptr, var_heap) = newPtr VI_Empty var_heap
args = [{ lifted_arg & fv_info_ptr = new_info_ptr } : args ]
= add_lifted_args lifted_args args (writePtr fv_info_ptr (VI_LiftedVariable new_info_ptr) var_heap)
add_lifted_args [] args var_heap
= (args, var_heap)
:: ExpandInfo :== (![FunCall], !.ExpandState)
:: ExpandState =
{ es_symbol_table :: !.SymbolTable
, es_var_heap :: !.VarHeap
, es_symbol_heap :: !.ExpressionHeap
, es_error :: !.ErrorAdmin
}
class expand a :: !a !*{#FunDef} !Int !v:{# DclModule} !*ExpandInfo -> (!a, !*{#FunDef}, !v:{# DclModule}, !*ExpandInfo)
instance expand [a] | expand a
where
expand [x:xs] fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(xs, fun_and_macro_defs, modules, es) = expand xs fun_and_macro_defs mod_index modules es
= ([x:xs], fun_and_macro_defs, modules, es)
expand [] fun_and_macro_defs mod_index modules es
= ([], fun_and_macro_defs, modules, es)
instance expand (a,b) | expand a & expand b
where
expand (x,y) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
(y, fun_and_macro_defs, modules, es) = expand y fun_and_macro_defs mod_index modules es
= ((x,y), fun_and_macro_defs, modules, es)
instance expand (Optional a) | expand a
where
expand (Yes x) fun_and_macro_defs mod_index modules es
# (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es
= (Yes x, fun_and_macro_defs, modules, es)
expand no fun_and_macro_defs mod_index modules es
= (no, fun_and_macro_defs, modules, es)
instance expand Expression
where
expand (App app=:{app_symb = symb=:{symb_arity, symb_kind = SK_Macro {glob_object,glob_module}}, app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, (calls, state)) = expand app_args fun_and_macro_defs mod_index modules es
# (macro, fun_and_macro_defs) = fun_and_macro_defs![glob_object]
| macro.fun_arity == symb_arity
# (expr, fun_and_macro_defs, es) = unfoldMacro macro app_args fun_and_macro_defs (calls, state)
= (expr, fun_and_macro_defs, modules, es)
# (calls, es_symbol_table) = examineFunctionCall macro.fun_symb {fc_index = glob_object, fc_level = NotALevel} (calls, state.es_symbol_table)
= (App { app & app_symb = { symb & symb_kind = SK_Function {glob_object = glob_object, glob_module = glob_module} }, app_args = app_args },
fun_and_macro_defs, modules, (calls, { state & es_symbol_table = es_symbol_table }))
expand (App app=:{app_args}) fun_and_macro_defs mod_index modules es
# (app_args, fun_and_macro_defs, modules, es) = expand app_args fun_and_macro_defs mod_index modules es
= (App { app & app_args = app_args }, fun_and_macro_defs, modules, es)
expand (expr @ exprs) fun_and_macro_defs mod_index modules es
# ((expr,exprs), fun_and_macro_defs, modules, es) = expand (expr,exprs) fun_and_macro_defs mod_index modules es
= (expr @ exprs, fun_and_macro_defs, modules, es)
expand (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) fun_and_macro_defs mod_index modules es
# (let_strict_binds, fun_and_macro_defs, modules, es) = expand let_strict_binds fun_and_macro_defs mod_index modules es
# (let_lazy_binds, fun_and_macro_defs, modules, es) = expand let_lazy_binds fun_and_macro_defs mod_index modules es
# (let_expr, fun_and_macro_defs, modules, es) = expand let_expr fun_and_macro_defs mod_index modules es
= (Let {lad & let_expr = let_expr, let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds}, fun_and_macro_defs, modules, es)
expand (Case case_expr) fun_and_macro_defs mod_index modules es
# (case_expr, fun_and_macro_defs, modules, es) = expand case_expr fun_and_macro_defs mod_index modules es
= (Case case_expr, fun_and_macro_defs, modules, es)
expand (Selection is_unique expr selectors) fun_and_macro_defs mod_index modules es
# ((expr, selectors), fun_and_macro_defs, modules, es) = expand (expr, selectors) fun_and_macro_defs mod_index modules es
= (Selection is_unique expr selectors, fun_and_macro_defs, modules, es)
expand (Update expr1 selectors expr2) fun_and_macro_defs mod_index modules es
# (((expr1, expr2), selectors), fun_and_macro_defs, modules, es) = expand ((expr1, expr2), selectors) fun_and_macro_defs mod_index modules es
= (Update expr1 selectors expr2, fun_and_macro_defs, modules, es)
expand (RecordUpdate cons_symbol expression expressions) fun_and_macro_defs mod_index modules es
# ((expression, expressions), fun_and_macro_defs, modules, es) = expand (expression, expressions) fun_and_macro_defs mod_index modules es
= (RecordUpdate cons_symbol expression expressions, fun_and_macro_defs, modules, es)
expand (TupleSelect symbol argn_nr expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (TupleSelect symbol argn_nr expr, fun_and_macro_defs, modules, es)
expand (Lambda vars expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (Lambda vars expr, fun_and_macro_defs, modules, es)
expand (MatchExpr opt_tuple cons_symb expr) fun_and_macro_defs mod_index modules es
# (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es
= (MatchExpr opt_tuple cons_symb expr, fun_and_macro_defs, modules, es)
expand expr fun_and_macro_defs mod_index modules es
= (expr, fun_and_macro_defs, modules, es)
instance expand Selection
where
expand (ArraySelection array_select expr_ptr index_expr) fun_and_macro_defs mod_index modules es
# (index_expr, fun_and_macro_defs, modules, es) = expand index_expr fun_and_macro_defs mod_index modules es
= (ArraySelection array_select expr_ptr index_expr, fun_and_macro_defs, modules, es)
expand record_selection fun_and_macro_defs mod_index modules es
= (record_selection, fun_and_macro_defs, modules, es)
instance expand (Bind a b) | expand a
where
expand bind=:{bind_src} fun_and_macro_defs mod_index modules es
# (bind_src, fun_and_macro_defs, modules, es) = expand bind_src fun_and_macro_defs mod_index modules es
= ({ bind & bind_src = bind_src }, fun_and_macro_defs, modules, es)
instance expand Case
where
expand kees=:{ case_expr,case_guards,case_default } fun_and_macro_defs mod_index modules es
# ((case_expr,(case_guards,case_default)), fun_and_macro_defs, modules, es) = expand (case_expr,(case_guards,case_default)) fun_and_macro_defs mod_index modules es
= ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, fun_and_macro_defs, modules, es)
instance expand CasePatterns
where
expand (AlgebraicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (AlgebraicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (BasicPatterns type patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (BasicPatterns type patterns, fun_and_macro_defs, modules, es)
expand (DynamicPatterns patterns) fun_and_macro_defs mod_index modules es
# (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es
= (DynamicPatterns patterns, fun_and_macro_defs, modules, es)
instance expand AlgebraicPattern
where
expand alg_pattern=:{ap_expr} fun_and_macro_defs mod_index modules es
# (ap_expr, fun_and_macro_defs, modules, es) = expand ap_expr fun_and_macro_defs mod_index modules es
= ({ alg_pattern & ap_expr = ap_expr }, fun_and_macro_defs, modules, es)
instance expand BasicPattern
where
expand bas_pattern=:{bp_expr} fun_and_macro_defs mod_index modules es
# (bp_expr, fun_and_macro_defs, modules, es) = expand bp_expr fun_and_macro_defs mod_index modules es
= ({ bas_pattern & bp_expr = bp_expr }, fun_and_macro_defs, modules, es)
instance expand DynamicPattern
where
expand dyn_pattern=:{dp_rhs} fun_and_macro_defs mod_index modules es
# (dp_rhs, fun_and_macro_defs, modules, es) = expand dp_rhs fun_and_macro_defs mod_index modules es
= ({ dyn_pattern & dp_rhs = dp_rhs }, fun_and_macro_defs, modules, es)
:: CollectState =
{ cos_var_heap :: !.VarHeap
, cos_symbol_heap :: !.ExpressionHeap
, cos_error :: !.ErrorAdmin
, cos_alias_dummy :: !PredefinedSymbol
}
determineVariablesAndRefCounts :: ![FreeVar] !Expression !*CollectState -> (!Expression , ![FreeVar], ![FreeVar], !*CollectState)
determineVariablesAndRefCounts free_vars expr cos=:{cos_var_heap}
# (expr, local_vars, cos) = collectVariables expr [] { cos & cos_var_heap = clearCount free_vars cIsAGlobalVar cos_var_heap }
(free_vars, cos_var_heap) = retrieveRefCounts free_vars cos.cos_var_heap
(local_vars, cos_var_heap) = retrieveRefCounts local_vars cos_var_heap
= (expr, free_vars, local_vars, { cos & cos_var_heap = cos_var_heap })
retrieveRefCounts free_vars var_heap
= mapSt retrieveRefCount free_vars var_heap
retrieveRefCount :: FreeVar *VarHeap -> (!FreeVar,!.VarHeap)
retrieveRefCount fv=:{fv_info_ptr} var_heap
# (VI_Count count _, var_heap) = readPtr fv_info_ptr var_heap
= ({ fv & fv_count = count }, var_heap)
/*
'clearCount' initialises the 'fv_info_ptr' field of each 'FreeVar'
*/
class clearCount a :: !a !Bool !*VarHeap -> *VarHeap
instance clearCount [a] | clearCount a
where
clearCount [x:xs] locality var_heap
= clearCount x locality (clearCount xs locality var_heap)
clearCount [] locality var_heap
= var_heap
instance clearCount (Bind a b) | clearCount b
where
clearCount bind=:{bind_dst} locality var_heap
= clearCount bind_dst locality var_heap
instance clearCount FreeVar
where
clearCount{fv_info_ptr} locality var_heap
= var_heap <:= (fv_info_ptr, VI_Count 0 locality)
/*
In 'collectVariables' all local variables are collected. Moreover the reference counts
of the local as well as of the global variables are determined. Aliases and unreachable
bindings introduced in a 'let' are removed.
*/
class collectVariables a :: !a ![FreeVar] !*CollectState -> !(!a, ![FreeVar],!*CollectState)
cContainsACycle :== True
cContainsNoCycle :== False
instance collectVariables Expression
where
collectVariables (Var var) free_vars cos
# (var, free_vars, cos) = collectVariables var free_vars cos
= (Var var, free_vars, cos)
collectVariables (App app=:{app_args}) free_vars cos
# (app_args, free_vars, cos) = collectVariables app_args free_vars cos
= (App { app & app_args = app_args}, free_vars, cos)
collectVariables (expr @ exprs) free_vars cos
# ((expr, exprs), free_vars, cos) = collectVariables (expr, exprs) free_vars cos
= (expr @ exprs, free_vars, cos)
collectVariables (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) free_vars cos=:{cos_var_heap}
# cos_var_heap = determine_aliases let_strict_binds cos_var_heap
cos_var_heap = determine_aliases let_lazy_binds cos_var_heap
(is_cyclic_s, let_strict_binds, cos)
= detect_cycles_and_handle_alias_binds True let_strict_binds
{ cos & cos_var_heap = cos_var_heap }
(is_cyclic_l, let_lazy_binds, cos)
= detect_cycles_and_handle_alias_binds False let_lazy_binds cos
| is_cyclic_s || is_cyclic_l
= (Let {lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds }, free_vars,
{ cos & cos_error = checkError "" "cyclic let definition" cos.cos_error})
// | otherwise
# (let_expr, free_vars, cos) = collectVariables let_expr free_vars cos
all_binds = mapAppend (\sb->(True, sb)) let_strict_binds [(False, lb) \\ lb<-let_lazy_binds]
(collected_binds, free_vars, cos) = collect_variables_in_binds all_binds [] free_vars cos
(let_strict_binds, let_lazy_binds) = split collected_binds
| isEmpty let_strict_binds && isEmpty let_lazy_binds
= (let_expr, free_vars, cos)
= (Let {lad & let_expr = let_expr, let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds}, free_vars, cos)
where
/* Set the 'var_info_field' of each bound variable to either 'VI_Alias var' (if
this variable is an alias for 'var') or to 'VI_Count 0 cIsALocalVar' to initialise
the reference count info.
*/
determine_aliases [{bind_dst={fv_info_ptr}, bind_src = Var var} : binds] var_heap
= determine_aliases binds (writePtr fv_info_ptr (VI_Alias var) var_heap)
determine_aliases [bind : binds] var_heap
= determine_aliases binds (clearCount bind cIsALocalVar var_heap)
determine_aliases [] var_heap
= var_heap
/* Remove all aliases from the list of lazy 'let'-binds. Add a _dummyForStrictAlias
function call for the strict aliases. Be careful with cycles! */
detect_cycles_and_handle_alias_binds is_strict [] cos
= (cContainsNoCycle, [], cos)
detect_cycles_and_handle_alias_binds is_strict [bind=:{bind_dst={fv_info_ptr}} : binds] cos
#! var_info = sreadPtr fv_info_ptr cos.cos_var_heap
= case var_info of
VI_Alias {var_info_ptr}
| is_cyclic fv_info_ptr var_info_ptr cos.cos_var_heap
-> (cContainsACycle, binds, cos)
| is_strict
# cos_var_heap = writePtr fv_info_ptr (VI_Count 0 cIsALocalVar) cos.cos_var_heap
(new_bind_src, cos) = add_dummy_id_for_strict_alias bind.bind_src
{ cos & cos_var_heap = cos_var_heap }
(is_cyclic, binds, cos)
= detect_cycles_and_handle_alias_binds is_strict binds cos
-> (is_cyclic, [{ bind & bind_src = new_bind_src } : binds], cos)
-> detect_cycles_and_handle_alias_binds is_strict binds cos
_
# (is_cyclic, binds, cos) = detect_cycles_and_handle_alias_binds is_strict binds cos
-> (is_cyclic, [bind : binds], cos)
where
is_cyclic orig_info_ptr info_ptr var_heap
| orig_info_ptr == info_ptr
= True
#! var_info = sreadPtr info_ptr var_heap
= case var_info of
VI_Alias {var_info_ptr}
-> is_cyclic orig_info_ptr var_info_ptr var_heap
_
-> False
add_dummy_id_for_strict_alias bind_src cos=:{cos_symbol_heap, cos_alias_dummy}
# (new_app_info_ptr, cos_symbol_heap) = newPtr EI_Empty cos_symbol_heap
{pds_ident, pds_module, pds_def} = cos_alias_dummy
app_symb = { symb_name = pds_ident,
symb_kind = SK_Function {glob_module = pds_module, glob_object = pds_def},
symb_arity = 1 }
= (App { app_symb = app_symb, app_args = [bind_src], app_info_ptr = new_app_info_ptr },
{ cos & cos_symbol_heap = cos_symbol_heap } )
/* Apply 'collectVariables' to the bound expressions (the 'bind_src' field of 'let'-bind) if
the corresponding bound variable (the 'bind_dst' field) has been used. This can be determined
by examining the reference count.
*/
collect_variables_in_binds binds collected_binds free_vars cos
# (continue, binds, collected_binds, free_vars, cos) = examine_reachable_binds False binds collected_binds free_vars cos
| continue
= collect_variables_in_binds binds collected_binds free_vars cos
= (collected_binds, free_vars, cos)
examine_reachable_binds bind_found [bind=:(is_strict, {bind_dst=fv=:{fv_info_ptr},bind_src}) : binds] collected_binds free_vars cos
# (bind_found, binds, collected_binds, free_vars, cos) = examine_reachable_binds bind_found binds collected_binds free_vars cos
#! var_info = sreadPtr fv_info_ptr cos.cos_var_heap
# (VI_Count count is_global) = var_info
| count > 0
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= (True, binds, [ (is_strict, { bind_dst = { fv & fv_count = count }, bind_src = bind_src }) : collected_binds ], free_vars, cos)
= (bind_found, [bind : binds], collected_binds, free_vars, cos)
examine_reachable_binds bind_found [] collected_binds free_vars cos
= (bind_found, [], collected_binds, free_vars, cos)
split :: ![(Bool, x)] -> (![x], ![x])
split []
= ([], [])
split [(p, x):xs]
# (l, r) = split xs
| p
= ([x:l], r)
= (l, [x:r])
collectVariables (Case case_expr) free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
= (Case case_expr, free_vars, cos)
collectVariables (Selection is_unique expr selectors) free_vars cos
# ((expr, selectors), free_vars, cos) = collectVariables (expr, selectors) free_vars cos
= (Selection is_unique expr selectors, free_vars, cos)
collectVariables (Update expr1 selectors expr2) free_vars cos
# (((expr1, expr2), selectors), free_vars, cos) = collectVariables ((expr1, expr2), selectors) free_vars cos
= (Update expr1 selectors expr2, free_vars, cos)
collectVariables (RecordUpdate cons_symbol expression expressions) free_vars cos
# ((expression, expressions), free_vars, cos) = collectVariables (expression, expressions) free_vars cos
= (RecordUpdate cons_symbol expression expressions, free_vars, cos)
collectVariables (TupleSelect symbol argn_nr expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (TupleSelect symbol argn_nr expr, free_vars, cos)
collectVariables (MatchExpr opt_tuple cons_symb expr) free_vars cos
# (expr, free_vars, cos) = collectVariables expr free_vars cos
= (MatchExpr opt_tuple cons_symb expr, free_vars, cos)
collectVariables (DynamicExpr dynamic_expr=:{dyn_expr}) free_vars cos
#! (dyn_expr, free_vars, cos) = collectVariables dyn_expr free_vars cos
= (DynamicExpr {dynamic_expr & dyn_expr = dyn_expr}, free_vars, cos);
collectVariables expr free_vars cos
= (expr, free_vars, cos)
instance collectVariables Selection
where
collectVariables (ArraySelection array_select expr_ptr index_expr) free_vars cos
# (index_expr, free_vars, cos) = collectVariables index_expr free_vars cos
= (ArraySelection array_select expr_ptr index_expr, free_vars, cos)
collectVariables record_selection free_vars cos
= (record_selection, free_vars, cos)
instance collectVariables [a] | collectVariables a
where
collectVariables [x:xs] free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (xs, free_vars, cos) = collectVariables xs free_vars cos
= ([x:xs], free_vars, cos)
collectVariables [] free_vars cos
= ([], free_vars, cos)
instance collectVariables (!a,!b) | collectVariables a & collectVariables b
where
collectVariables (x,y) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
# (y, free_vars, cos) = collectVariables y free_vars cos
= ((x,y), free_vars, cos)
instance collectVariables (Optional a) | collectVariables a
where
collectVariables (Yes x) free_vars cos
# (x, free_vars, cos) = collectVariables x free_vars cos
= (Yes x, free_vars, cos)
collectVariables no free_vars cos
= (no, free_vars, cos)
instance collectVariables (Bind a b) | collectVariables a where
collectVariables bind=:{bind_src} free_vars cos
# (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos
= ({bind & bind_src = bind_src}, free_vars, cos)
instance collectVariables Case
where
collectVariables kees=:{ case_expr, case_guards, case_default } free_vars cos
# (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos
# (case_guards, free_vars, cos) = collectVariables case_guards free_vars cos
# (case_default, free_vars, cos) = collectVariables case_default free_vars cos
= ({ kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default }, free_vars, cos)
instance collectVariables CasePatterns
where
collectVariables (AlgebraicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (AlgebraicPatterns type patterns, free_vars, cos)
collectVariables (BasicPatterns type patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (BasicPatterns type patterns, free_vars, cos)
collectVariables (DynamicPatterns patterns) free_vars cos
# (patterns, free_vars, cos) = collectVariables patterns free_vars cos
= (DynamicPatterns patterns, free_vars, cos)
instance collectVariables AlgebraicPattern
where
collectVariables pattern=:{ap_vars,ap_expr} free_vars cos
# (ap_expr, free_vars, cos) = collectVariables ap_expr free_vars { cos & cos_var_heap = clearCount ap_vars cIsALocalVar cos.cos_var_heap}
(ap_vars, cos_var_heap) = retrieveRefCounts ap_vars cos.cos_var_heap
= ({ pattern & ap_expr = ap_expr, ap_vars = ap_vars }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BasicPattern
where
collectVariables pattern=:{bp_expr} free_vars cos
# (bp_expr, free_vars, cos) = collectVariables bp_expr free_vars cos
= ({ pattern & bp_expr = bp_expr }, free_vars, cos)
instance collectVariables DynamicPattern
where
collectVariables pattern=:{dp_var,dp_rhs} free_vars cos
# (dp_rhs, free_vars, cos) = collectVariables dp_rhs free_vars { cos & cos_var_heap = clearCount dp_var cIsALocalVar cos.cos_var_heap}
(dp_var, cos_var_heap) = retrieveRefCount dp_var cos.cos_var_heap
= ({ pattern & dp_rhs = dp_rhs, dp_var = dp_var }, free_vars, { cos & cos_var_heap = cos_var_heap })
instance collectVariables BoundVar
where
collectVariables var=:{var_name,var_info_ptr,var_expr_ptr} free_vars cos=:{cos_var_heap}
#! var_info = sreadPtr var_info_ptr cos_var_heap
= case var_info of
VI_Alias alias
# (original, free_vars, cos) = collectVariables alias free_vars cos
-> ({ original & var_expr_ptr = var_expr_ptr }, free_vars, cos)
VI_Count count is_global
| count > 0 || is_global
-> (var, free_vars, { cos & cos_var_heap = writePtr var_info_ptr (VI_Count (inc count) is_global) cos.cos_var_heap })
-> (var, [{fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0} : free_vars ],
{ cos & cos_var_heap = writePtr var_info_ptr (VI_Count 1 is_global) cos.cos_var_heap })
_
-> abort "collectVariables [BoundVar] (transform, 1227)" <<- (var_info ---> var_name)
instance <<< (Ptr a)
where
(<<<) file p = file <<< ptrToInt p
instance <<< FunCall
where
(<<<) file {fc_index} = file <<< fc_index
instance <<< VarInfo
where
(<<<) file (VI_Expression expr) = file <<< expr
(<<<) file vi = file <<< "VI??"