/*
module owner: Ronny Wichers Schreur
*/
implementation module convertcases
import syntax, transform, checksupport, StdCompare, check, utilities, trans, general; //, RWSDebug
// exactZip fails when its arguments are of unequal length
exactZip` :: ![.a] ![.b] -> [(.a,.b)]
exactZip` [] []
= []
exactZip` [x:xs][y:ys]
= [(x,y) : exactZip xs ys]
exactZip
:== exactZip`
getIdent :: (Optional Ident) Int -> Ident
getIdent (Yes ident) fun_nr
= ident
getIdent No fun_nr
= { id_name = "_f" +++ toString fun_nr, id_info = nilPtr }
addLetVars :: [LetBind] [AType] [(FreeVar, AType)] -> [(FreeVar, AType)]
addLetVars [{lb_dst} : binds] [bind_type : bind_types] bound_vars
= addLetVars binds bind_types [ (lb_dst, bind_type) : bound_vars ]
addLetVars [] [] bound_vars
= bound_vars
convertCasesOfFunctions :: !*{! Group} !Int !{# {# FunType} } !{# CommonDefs} !*{#FunDef} !*{#{# CheckedTypeDef}}
!ImportedConstructors !*VarHeap !*TypeHeaps !*ExpressionHeap
-> (!ImportedFunctions, !*{! Group}, !*{#FunDef}, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap)
convertCasesOfFunctions groups main_dcl_module_n dcl_functions common_defs fun_defs imported_types imported_conses var_heap type_heaps expr_heap
#! nr_of_funs = size fun_defs
# (groups, (fun_defs, collected_imports, {cs_new_functions, cs_var_heap, cs_expr_heap, cs_fun_heap}))
= convert_groups 0 groups dcl_functions common_defs main_dcl_module_n
(fun_defs, [], { cs_new_functions = [], cs_fun_heap = newHeap, cs_var_heap = var_heap, cs_expr_heap = expr_heap, cs_next_fun_nr = nr_of_funs })
(groups, new_fun_defs, imported_types, imported_conses, type_heaps, cs_var_heap)
= addNewFunctionsToGroups common_defs cs_fun_heap cs_new_functions main_dcl_module_n groups imported_types imported_conses type_heaps cs_var_heap
(imported_functions, imported_conses) = foldSt split collected_imports ([], imported_conses)
= (imported_functions, groups, { fundef \\ fundef <- [ fundef \\ fundef <-: fun_defs ] ++ new_fun_defs },
imported_types, imported_conses, cs_var_heap, type_heaps, /* abort "that's enough" */ cs_expr_heap)
where
convert_groups group_nr groups dcl_functions common_defs main_dcl_module_n fun_defs_and_ci
| group_nr == size groups
= (groups, fun_defs_and_ci)
// otherwise
# (group, groups) = groups![group_nr]
= convert_groups (inc group_nr) groups dcl_functions common_defs main_dcl_module_n
(foldSt (convert_function group_nr dcl_functions common_defs main_dcl_module_n) group.group_members fun_defs_and_ci)
convert_function group_index dcl_functions common_defs main_dcl_module_n fun (fun_defs, collected_imports, cs)
# (fun_def, fun_defs) = fun_defs![fun]
# {fun_body,fun_type} = fun_def -*-> ("*** converting ****", fun_def.fun_ident.id_name)
(fun_body, (collected_imports, cs)) = eliminate_code_sharing_in_function dcl_functions main_dcl_module_n common_defs fun_body /* (fun_body
("convert_function", fun_def.fun_ident, fun_body)) */ (collected_imports, cs)
(fun_body, cs) = convertCasesInBody fun_body fun_type group_index common_defs cs
= ({fun_defs & [fun].fun_body = fun_body }, collected_imports, cs)
eliminate_code_sharing_in_function dcl_functions main_dcl_module_n common_defs (TransformedBody body=:{tb_rhs}) (collected_imports, cs=:{cs_expr_heap,cs_var_heap})
# {rcs_var_heap, rcs_expr_heap, rcs_imports} = weightedRefCount {rci_imported = {cii_dcl_functions=dcl_functions, cii_common_defs=common_defs, cii_main_dcl_module_n = main_dcl_module_n}, rci_depth=1} tb_rhs
{ rcs_var_heap = cs_var_heap, rcs_expr_heap = cs_expr_heap, rcs_free_vars = [],
rcs_imports = collected_imports}
-*-> ("eliminate_code_sharing_in_function (weightedRefCount)", tb_rhs)
ds = { ds_lets = [], ds_var_heap = rcs_var_heap, ds_expr_heap = rcs_expr_heap}
(tb_rhs, ds) = distributeLets {di_depth=1,di_explicit_case_depth=0} tb_rhs ds -*-> "dis"
(tb_rhs, {ds_var_heap, ds_expr_heap}) = buildLetExpr tb_rhs ds -*-> "build"
{ss_expr_heap, ss_var_heap}
= findSplitCases {si_next_alt=No, si_force_next_alt=False} tb_rhs
{ss_var_heap=ds_var_heap, ss_expr_heap = ds_expr_heap}
= (TransformedBody {body & tb_rhs = tb_rhs }, (rcs_imports, { cs & cs_var_heap = ss_var_heap, cs_expr_heap = ss_expr_heap}))
-*-> ("eliminate_code_sharing_in_function (distributeLets)", 2, tb_rhs)
split :: SymbKind (ImportedFunctions, ImportedConstructors) -> (ImportedFunctions, ImportedConstructors)
split (SK_Function fun_ident) (collected_functions, collected_conses)
= ([fun_ident : collected_functions], collected_conses)
split (SK_Constructor cons_ident) (collected_functions, collected_conses)
= (collected_functions, [ cons_ident : collected_conses])
// sanity check ...
class checkCaseTypes a :: !a !*ExpressionHeap -> (!Bool, !*ExpressionHeap)
instance checkCaseTypes Expression where
checkCaseTypes (Let {let_expr}) expr_heap
= checkCaseTypes let_expr expr_heap
checkCaseTypes (Case kees) expr_heap
= checkCaseTypes kees expr_heap
checkCaseTypes _ expr_heap
= (True, expr_heap)
instance checkCaseTypes Case where
checkCaseTypes kees=:{case_expr, case_guards, case_default, case_explicit, case_info_ptr} expr_heap
# (info, expr_heap)
= readPtr case_info_ptr expr_heap
# {ct_cons_types}
= case_type info
# (guards_ok, expr_heap) = checkCaseTypesCasePatterns case_guards ct_cons_types expr_heap
# (default_ok, expr_heap)= checkCaseTypes case_default expr_heap
= (guards_ok && default_ok, expr_heap)
where
case_type (EI_CaseTypeAndSplits type _)
= type
case_type (EI_CaseType type)
= type
checkCaseTypesCasePatterns :: CasePatterns [[AType]] *ExpressionHeap -> (Bool, *ExpressionHeap)
checkCaseTypesCasePatterns (BasicPatterns bt patterns) _ expr_heap
= (True, expr_heap)
checkCaseTypesCasePatterns (AlgebraicPatterns gi patterns) arg_types expr_heap
| length patterns <> length arg_types
= abort ("checkCaseTypesCasePatterns error number of cases " +++ toString (length patterns) +++ " <> " +++ toString (length arg_types)) <<- arg_types
= checkCaseTypesAlgebraicPatterns (exactZip patterns arg_types) expr_heap
checkCaseTypesCasePatterns (OverloadedListPatterns type decons_expr patterns) arg_types expr_heap
| length patterns <> length arg_types
= abort ("checkCaseTypesCasePatterns error number of cases " +++ toString (length patterns) +++ " <> " +++ toString (length arg_types)) <<- arg_types
= checkCaseTypesAlgebraicPatterns (exactZip patterns arg_types) expr_heap
checkCaseTypesAlgebraicPatterns :: [(AlgebraicPattern, [AType])] *ExpressionHeap -> (Bool, *ExpressionHeap)
checkCaseTypesAlgebraicPatterns l expr_heap
# (oks, expr_heap)
= mapSt checkCaseTypesAlgebraicPattern l expr_heap
= (and oks, expr_heap)
where
checkCaseTypesAlgebraicPattern :: (AlgebraicPattern, [AType]) *ExpressionHeap -> (Bool, *ExpressionHeap)
checkCaseTypesAlgebraicPattern (pattern=:{ap_expr, ap_vars}, arg_types) expr_heap
| length ap_vars <> length arg_types
= abort ("checkCaseTypesCasePattern error number of pattern args " +++ toString (length ap_vars) +++ " <> " +++ toString (length arg_types)) <<- arg_types
= (length ap_vars == length arg_types, expr_heap)
instance checkCaseTypes (Optional a) | checkCaseTypes a where
checkCaseTypes (Yes expr) cs
= checkCaseTypes expr cs
checkCaseTypes No cs
= (True, cs)
instance checkCaseTypes [a] | checkCaseTypes a where
checkCaseTypes l cs
# (oks, expr_heap)
= mapSt checkCaseTypes l cs
= (and oks, expr_heap)
instance checkCaseTypes BasicPattern where
checkCaseTypes pattern=:{bp_expr} cs
= checkCaseTypes bp_expr cs
// ... sanity check
:: CaseLevel = CaseLevelRoot | CaseLevelAfterGuardRoot
:: ConvertInfo =
{ ci_bound_vars :: ![(FreeVar, AType)]
, ci_group_index :: !Index
, ci_common_defs :: !{#CommonDefs}
, ci_case_level :: !CaseLevel
}
convertCasesInBody :: FunctionBody (Optional SymbolType) Int {#CommonDefs} *ConvertState -> (FunctionBody, *ConvertState)
convertCasesInBody (TransformedBody body) (Yes type) group_index common_defs cs
# (body, cs) = convertRootCases
{ ci_bound_vars = exactZip body.tb_args type.st_args
, ci_group_index = group_index
, ci_common_defs = common_defs
, ci_case_level=CaseLevelRoot
}
body cs
= (TransformedBody body, cs)
/*
weightedRefCount determines the reference counts of variables in an expr. Runtime behaviour
of constructs is taken into account: multiple occurrences of variables in different
alternatives of the same case clause are counted only once. The outcome is used to distribute
shared exprs (via let declarations) over cases. In this way code sharing is eliminated.
As a side effect, weightedRefCount returns a list of all imported functions that have been used
inside the expr.
*/
:: CheckImportedInfo =
{ cii_dcl_functions :: !{# {# FunType} }
, cii_common_defs :: !{# CommonDefs}
, cii_main_dcl_module_n :: !Int
}
:: RCInfo =
{ rci_imported :: !CheckImportedInfo
, rci_depth :: !Int
}
:: RCState =
{ rcs_free_vars :: ![VarInfoPtr]
, rcs_imports :: ![SymbKind]
, rcs_var_heap :: !.VarHeap
, rcs_expr_heap :: !.ExpressionHeap
}
:: LetVarInfo =
{ lvi_count :: !Int
, lvi_depth :: !Int
, lvi_new :: !Bool
, lvi_var :: !Ident
, lvi_expression :: !Expression
, lvi_previous :: ![PreviousLetVarInfo]
}
:: PreviousLetVarInfo =
{ plvi_count :: !Int
, plvi_depth :: !Int
, plvi_new :: !Bool
}
:: RefCountsInCase =
{ rcc_all_variables :: ![CountedVariable]
, rcc_default_variables :: ![CountedVariable]
, rcc_pattern_variables :: ![[CountedVariable]]
}
:: CountedVariable =
{ cv_variable :: !VarInfoPtr
, cv_count :: !Int
}
checkImportedSymbol :: SymbKind VarInfoPtr ([SymbKind], *VarHeap) -> ([SymbKind], *VarHeap)
checkImportedSymbol symb_kind symb_type_ptr (collected_imports, var_heap)
# (type_info, var_heap) = readPtr symb_type_ptr var_heap
= case type_info of
VI_Used
-> (collected_imports, var_heap)
_
-> ([symb_kind : collected_imports ], var_heap <:= (symb_type_ptr, VI_Used))
weightedRefCountOfVariable depth var_info_ptr lvi=:{lvi_count,lvi_var,lvi_depth,lvi_previous,lvi_new} ref_count new_vars
| lvi_depth < depth
= (True, {lvi & lvi_count = ref_count, lvi_depth = depth, lvi_new = True, lvi_previous =
[{plvi_count = lvi_count, plvi_depth = lvi_depth, plvi_new = lvi_new } : lvi_previous]}, [var_info_ptr : new_vars])
// -*-> (lvi_var, " PUSHED ",lvi_depth)
| lvi_count == 0
= (True, { lvi & lvi_count = ref_count }, [var_info_ptr : new_vars])
// otherwise
= (lvi_new, { lvi & lvi_count = lvi_count + ref_count }, new_vars)
class weightedRefCount e :: RCInfo !e !*RCState -> *RCState
instance weightedRefCount BoundVar
where
weightedRefCount rci=:{rci_depth} {var_ident,var_info_ptr} rs=:{rcs_var_heap}
# (var_info, rcs_var_heap) = readPtr var_info_ptr rcs_var_heap
rs = { rs & rcs_var_heap = rcs_var_heap }
= case var_info of
VI_LetVar lvi
# (is_new, lvi=:{lvi_expression}, rcs_free_vars) = weightedRefCountOfVariable rci_depth var_info_ptr lvi 1 rs.rcs_free_vars
| is_new
# rs = weightedRefCount rci lvi_expression
{ rs & rcs_free_vars = rcs_free_vars,
rcs_var_heap = rs.rcs_var_heap <:= (var_info_ptr, VI_LetVar {lvi & lvi_expression = EE, lvi_new = False})}
(VI_LetVar lvi, rcs_var_heap) = readPtr var_info_ptr rs.rcs_var_heap
-> { rs & rcs_var_heap = rcs_var_heap <:= (var_info_ptr, VI_LetVar { lvi & lvi_expression = lvi_expression }) }
// -*-> (var_ident, var_info_ptr, depth, lvi.lvi_count)
// otherwise
-> { rs & rcs_var_heap = rs.rcs_var_heap <:= (var_info_ptr, VI_LetVar lvi) }
_
-> rs
instance weightedRefCount Expression
where
weightedRefCount rci (Var var) rs
= weightedRefCount rci var rs
weightedRefCount rci (App app) rs
= weightedRefCount rci app rs
weightedRefCount rci (fun_expr @ exprs) rs
= weightedRefCount rci (fun_expr, exprs) rs
weightedRefCount rci=:{rci_depth} (Let {let_strict_binds,let_lazy_binds,let_expr, let_info_ptr}) rs =:{rcs_var_heap}
# rs = weightedRefCount rci let_strict_binds { rs & rcs_var_heap = foldSt (store_binding rci_depth) let_lazy_binds rcs_var_heap }
rs = weightedRefCount rci let_expr rs
(let_info, rcs_expr_heap) = readPtr let_info_ptr rs.rcs_expr_heap
rs = { rs & rcs_expr_heap = rcs_expr_heap }
= case let_info of
EI_LetType let_type
# (ref_counts, rcs_var_heap) = mapSt get_ref_count let_lazy_binds rs.rcs_var_heap
(rcs_free_vars, rcs_var_heap) = foldl remove_variable (rs.rcs_free_vars, rcs_var_heap) let_lazy_binds
-> { rs & rcs_free_vars = rcs_free_vars, rcs_var_heap = rcs_var_heap,
rcs_expr_heap = rs.rcs_expr_heap <:= (let_info_ptr, EI_LetTypeAndRefCounts let_type ref_counts)}
// -*-> ("weightedRefCount (EI_LetType)", ptrToInt let_info_ptr, [ x.bind_dst \\ x <- let_lazy_binds])
_
# (rcs_free_vars, rcs_var_heap) = foldl remove_variable (rs.rcs_free_vars, rs.rcs_var_heap) let_lazy_binds
-> { rs & rcs_free_vars = rcs_free_vars, rcs_var_heap = rcs_var_heap }
// -*-> ("weightedRefCount (_)", ptrToInt let_info_ptr, [ x.bind_dst \\ x <- let_lazy_binds])
where
remove_variable ([], var_heap) let_bind
= ([], var_heap)
remove_variable ([var_ptr : var_ptrs], var_heap) bind=:{lb_dst={fv_ident,fv_info_ptr}}
| fv_info_ptr == var_ptr
# (VI_LetVar {lvi_count,lvi_depth}, var_heap) = readPtr fv_info_ptr var_heap
= (var_ptrs, var_heap)
// -*-> ("remove_variable (lvi_count,lvi_dpeth) ", fv_ident, lvi_count, lvi_depth)
// otherwise
# (var_ptrs, var_heap) = remove_variable (var_ptrs, var_heap) bind
= ([var_ptr : var_ptrs], var_heap)
store_binding depth {lb_dst={fv_ident,fv_info_ptr},lb_src} var_heap
= var_heap <:= (fv_info_ptr, VI_LetVar {lvi_count = 0, lvi_depth = depth, lvi_previous = [],
lvi_new = True, lvi_expression = lb_src, lvi_var = fv_ident})
get_ref_count {lb_dst={fv_ident,fv_info_ptr}} var_heap
# (VI_LetVar {lvi_count}, var_heap) = readPtr fv_info_ptr var_heap
= (lvi_count, var_heap)
// -*-> (fv_ident,fv_info_ptr,lvi_count)
weightedRefCount rci (Case case_expr) rs=:{rcs_expr_heap}
/*
// sanity check ...
# (ok, rcs_expr_heap) = checkCaseTypes case_expr rcs_expr_heap
| not ok
= abort "error in case types (weightedRefCount)"
// ... sanity check
*/
# (case_info, rcs_expr_heap) = readPtr case_expr.case_info_ptr rcs_expr_heap
= weightedRefCountOfCase rci case_expr case_info { rs & rcs_expr_heap = rcs_expr_heap }
weightedRefCount rci expr=:(BasicExpr _) rs
= rs
weightedRefCount rci (MatchExpr constructor expr) rs
= weightedRefCount rci expr rs
weightedRefCount rci (Selection opt_tuple expr selections) rs
= weightedRefCount rci (expr, selections) rs
weightedRefCount rci (Update expr1 selections expr2) rs
= weightedRefCount rci (expr1, (selections, expr2)) rs
weightedRefCount rci (RecordUpdate cons_symbol expr exprs) rs
= weightedRefCount rci (expr, exprs) rs
weightedRefCount rci (TupleSelect tuple_symbol arg_nr expr) rs
= weightedRefCount rci expr rs
weightedRefCount rci (AnyCodeExpr _ _ _) rs
= rs
weightedRefCount rci (ABCCodeExpr _ _) rs
= rs
weightedRefCount rci (TypeCodeExpression type_code_expr) rs
= weightedRefCount rci type_code_expr rs
weightedRefCount rci EE rs
= rs
weightedRefCount rci (NoBind ptr) rs
= rs
weightedRefCount rci (FailExpr _) rs
= rs
weightedRefCount rci expr rs
= abort ("weightedRefCount [Expression] (convertcases, 864))" -*-> expr)
addPatternVariable depth {cv_variable = var_info_ptr, cv_count = ref_count} (free_vars, var_heap)
# (var_info, var_heap) = readPtr var_info_ptr var_heap
= case var_info of
VI_LetVar lvi
# (_, lvi, free_vars) = weightedRefCountOfVariable depth var_info_ptr lvi ref_count free_vars
-> (free_vars, var_heap <:= (var_info_ptr, VI_LetVar lvi))
_
-> (free_vars, var_heap)
weightedRefCountOfCase rci=:{rci_depth} this_case=:{case_expr, case_guards, case_default, case_info_ptr} (EI_CaseType case_type)
rs=:{ rcs_var_heap, rcs_expr_heap, rcs_imports }
# (local_vars, vars_and_heaps) = weighted_ref_count_in_case_patterns {rci & rci_depth=rci_depth+1} case_guards rcs_imports rcs_var_heap rcs_expr_heap
(default_vars, (all_vars, rcs_imports, var_heap, expr_heap)) = weighted_ref_count_in_default {rci & rci_depth=rci_depth+1} case_default vars_and_heaps
rs = { rs & rcs_var_heap = var_heap, rcs_expr_heap = expr_heap, rcs_imports = rcs_imports }
rs = weighted_ref_count_of_decons_expr rci case_guards rs
rs = weightedRefCount rci case_expr rs
(rcs_free_vars, rcs_var_heap) = foldSt (addPatternVariable rci_depth) all_vars (rs.rcs_free_vars, rs.rcs_var_heap)
rcs_expr_heap = rs.rcs_expr_heap <:= (case_info_ptr, EI_CaseTypeAndRefCounts case_type
{ rcc_all_variables = all_vars, rcc_default_variables = default_vars, rcc_pattern_variables = local_vars })
= { rs & rcs_var_heap = rcs_var_heap, rcs_expr_heap = rcs_expr_heap, rcs_free_vars = rcs_free_vars }
// -*-> ("weightedRefCountOfCase", ptrToInt case_info_ptr, case_expr)
where
weighted_ref_count_in_default rci (Yes expr) info
= weightedRefCountInPatternExpr rci expr info
weighted_ref_count_in_default rci No info
= ([], info)
weighted_ref_count_in_case_patterns rci (AlgebraicPatterns type patterns) collected_imports var_heap expr_heap
= mapSt (weighted_ref_count_in_algebraic_pattern rci) patterns ([], collected_imports, var_heap, expr_heap)
weighted_ref_count_in_case_patterns rci (BasicPatterns type patterns) collected_imports var_heap expr_heap
= mapSt (\{bp_expr} -> weightedRefCountInPatternExpr rci bp_expr) patterns ([], collected_imports, var_heap, expr_heap)
weighted_ref_count_in_case_patterns rci (OverloadedListPatterns type _ patterns) collected_imports var_heap expr_heap
= mapSt (weighted_ref_count_in_algebraic_pattern rci) patterns ([], collected_imports, var_heap, expr_heap)
weighted_ref_count_in_case_patterns rci (DynamicPatterns patterns) collected_imports var_heap expr_heap
= mapSt (\{dp_rhs} -> weightedRefCountInPatternExpr rci dp_rhs) patterns ([], collected_imports, var_heap, expr_heap)
weighted_ref_count_in_algebraic_pattern rci=:{rci_imported} {ap_expr,ap_symbol} wrcs_state
# (free_vars_with_rc, (all_free_vars, collected_imports, var_heap, expr_heap))
= weightedRefCountInPatternExpr rci ap_expr wrcs_state
(collected_imports, var_heap)
= check_symbol rci_imported ap_symbol collected_imports var_heap
= (free_vars_with_rc, (all_free_vars, collected_imports, var_heap, expr_heap))
where
check_symbol {cii_main_dcl_module_n, cii_common_defs} {glob_module, glob_object={ds_index}} collected_imports var_heap
| glob_module <> cii_main_dcl_module_n
# {cons_type_ptr} = cii_common_defs.[glob_module].com_cons_defs.[ds_index]
(collected_imports, var_heap) = checkImportedSymbol (SK_Constructor {glob_module = glob_module, glob_object = ds_index})
cons_type_ptr (collected_imports, var_heap)
= (collected_imports, var_heap)
// otherwise
= (collected_imports, var_heap)
weighted_ref_count_of_decons_expr rci (OverloadedListPatterns _ decons_exp _) rs
= weightedRefCount rci decons_exp rs;
weighted_ref_count_of_decons_expr rci case_guards rs
= rs;
weightedRefCountOfCase rci=:{rci_depth} this_case=:{case_expr, case_guards, case_default, case_info_ptr} (EI_CaseTypeAndRefCounts case_type {rcc_all_variables})
rs=:{ rcs_var_heap, rcs_expr_heap, rcs_imports }
# rs = weightedRefCount rci case_expr rs
(rcs_free_vars, rcs_var_heap) = foldSt (addPatternVariable rci_depth) rcc_all_variables (rs.rcs_free_vars, rs.rcs_var_heap)
= { rs & rcs_var_heap = rcs_var_heap, rcs_free_vars = rcs_free_vars }
// -*-> ("weightedRefCountOfCase 2", ptrToInt case_info_ptr, case_expr)
instance weightedRefCount Selection
where
weightedRefCount rci=:{rci_imported} (ArraySelection {glob_module,glob_object={ds_index}} _ index_expr) rs
# rs = weightedRefCount rci index_expr rs
= checkImportOfDclFunction rci_imported glob_module ds_index rs
weightedRefCount rci (DictionarySelection _ selectors _ index_expr) rs
# rs = weightedRefCount rci index_expr rs
= weightedRefCount rci selectors rs
weightedRefCount {rci_imported} (RecordSelection selector _) rs
= checkRecordSelector rci_imported selector rs
weightedRefCountInPatternExpr rci=:{rci_depth} pattern_expr (previous_free_vars, collected_imports, var_heap, expr_heap)
# {rcs_free_vars,rcs_var_heap,rcs_imports,rcs_expr_heap} = weightedRefCount rci pattern_expr
{ rcs_var_heap = var_heap, rcs_expr_heap = expr_heap, rcs_free_vars = [], rcs_imports = collected_imports}
(free_vars_with_rc, rcs_var_heap) = mapSt get_ref_count rcs_free_vars rcs_var_heap
(previous_free_vars, rcs_var_heap) = foldSt (select_unused_free_variable rci_depth) previous_free_vars ([], rcs_var_heap)
(all_free_vars, rcs_var_heap) = foldSt (collect_free_variable rci_depth) rcs_free_vars (previous_free_vars, rcs_var_heap)
// -*-> ("remove_vars ", depth, free_vars_with_rc)
= (free_vars_with_rc, (all_free_vars, rcs_imports, rcs_var_heap, rcs_expr_heap))
where
select_unused_free_variable depth var=:{cv_variable = var_ptr, cv_count = var_count} (collected_vars, var_heap)
# (VI_LetVar info=:{lvi_count,lvi_depth}, var_heap) = readPtr var_ptr var_heap
| lvi_depth == depth && lvi_count > 0
= (collected_vars, var_heap <:= (var_ptr, VI_LetVar {info & lvi_count = max lvi_count var_count}))
// otherwise
= ([ var : collected_vars], var_heap)
get_ref_count var_ptr var_heap
# (VI_LetVar {lvi_count}, var_heap) = readPtr var_ptr var_heap
= ({cv_variable = var_ptr, cv_count = lvi_count}, var_heap)
collect_free_variable depth var_ptr (collected_vars, var_heap)
# (VI_LetVar lvi=:{lvi_count,lvi_depth,lvi_previous}, var_heap) = readPtr var_ptr var_heap
| depth == lvi_depth
= case lvi_previous of
[{plvi_depth, plvi_count, plvi_new} : lvi_previous ]
-> ([ {cv_variable = var_ptr, cv_count = lvi_count} : collected_vars ],
(var_heap <:= (var_ptr, VI_LetVar {lvi & lvi_count = plvi_count, lvi_depth = plvi_depth,
lvi_new = plvi_new, lvi_previous = lvi_previous})))
[]
-> (collected_vars, var_heap)
= ([ {cv_variable = var_ptr, cv_count = lvi_count} : collected_vars ], var_heap)
/*
Here we examine the appplication to see whether an imported function has been used. If so,
the 'ft_type_ptr' is examined. Initially this pointer contains VI_Empty. After the first
occurrence the pointer will be set to 'VI_Used'.
*/
checkImportOfDclFunction :: CheckImportedInfo Int Int *RCState -> *RCState
checkImportOfDclFunction {cii_main_dcl_module_n, cii_dcl_functions} mod_index fun_index rs=:{rcs_imports, rcs_var_heap}
| mod_index <> cii_main_dcl_module_n
# {ft_type_ptr} = cii_dcl_functions.[mod_index].[fun_index]
(rcs_imports, rcs_var_heap) = checkImportedSymbol (SK_Function {glob_module=mod_index,glob_object=fun_index}) ft_type_ptr (rcs_imports, rcs_var_heap)
= { rs & rcs_imports = rcs_imports, rcs_var_heap = rcs_var_heap }
// otherwise
= rs
checkRecordSelector {cii_main_dcl_module_n, cii_common_defs} {glob_module, glob_object={ds_index}} rs=:{rcs_imports,rcs_var_heap}
| glob_module <> cii_main_dcl_module_n
# {com_selector_defs,com_cons_defs,com_type_defs} = cii_common_defs.[glob_module]
{sd_type_index} = com_selector_defs.[ds_index]
{td_rhs = RecordType {rt_constructor={ds_index=cons_index}}} = com_type_defs.[sd_type_index]
{cons_type_ptr} = com_cons_defs.[cons_index]
(rcs_imports, rcs_var_heap) = checkImportedSymbol (SK_Constructor {glob_module = glob_module, glob_object = cons_index})
cons_type_ptr (rcs_imports, rcs_var_heap)
= { rs & rcs_imports = rcs_imports, rcs_var_heap = rcs_var_heap }
// otherwise
= rs
instance weightedRefCount App
where
weightedRefCount rci=:{rci_imported} {app_symb,app_args} rs
# rs = weightedRefCount rci app_args rs
= check_import rci_imported app_symb rs
where
check_import cii {symb_kind=SK_Function {glob_module,glob_object}} rs=:{rcs_imports, rcs_var_heap}
= checkImportOfDclFunction cii glob_module glob_object rs
check_import {cii_main_dcl_module_n, cii_common_defs} {symb_ident,symb_kind=symb_kind=:(SK_Constructor {glob_module,glob_object})} rs=:{rcs_imports, rcs_var_heap}
| glob_module <> cii_main_dcl_module_n
# {cons_type_ptr} = cii_common_defs.[glob_module].com_cons_defs.[glob_object]
(rcs_imports, rcs_var_heap) = checkImportedSymbol symb_kind cons_type_ptr (rcs_imports, rcs_var_heap)
= { rs & rcs_imports = rcs_imports, rcs_var_heap = rcs_var_heap }
= rs
check_import _ _ rs
= rs
instance weightedRefCount TypeCodeExpression
where
weightedRefCount rci type_code_expr rs
= rs
instance weightedRefCount [a] | weightedRefCount a
where
weightedRefCount rci l rs
= foldr (weightedRefCount rci) rs l
instance weightedRefCount (a,b) | weightedRefCount a & weightedRefCount b
where
weightedRefCount rci (x,y) rs
= weightedRefCount rci y (weightedRefCount rci x rs)
instance weightedRefCount LetBind
where
weightedRefCount rci {lb_src} rs
= weightedRefCount rci lb_src rs
instance weightedRefCount (Bind a b) | weightedRefCount a
where
weightedRefCount rci bind=:{bind_src} rs
= weightedRefCount rci bind_src rs
/*
distributeLets tries to move shared exprs as close as possible to the location at which they are used.
Case-exprs may require unsharing if the shared expr is used in different alternatives. Of course
only if the expr is neither used in the pattern nor in a surrounding expr.
*/
:: LetExpressionStatus = LES_Untouched | LES_Moved | LES_Updated !Expression
:: LetExpressionInfo =
{ lei_count :: !Int
, lei_depth :: !Int
, lei_var :: !FreeVar
, lei_expression :: !Expression
, lei_status :: !LetExpressionStatus
, lei_type :: !AType
}
:: DistributeInfo =
{ di_depth :: !Int
, di_explicit_case_depth :: !Int
}
:: DistributeState =
{ ds_lets :: ![VarInfoPtr]
, ds_var_heap :: !.VarHeap
, ds_expr_heap :: !.ExpressionHeap
}
class distributeLets e :: !DistributeInfo !e !*DistributeState -> (!e, !*DistributeState)
instance distributeLets Expression
where
distributeLets di=:{di_depth} (Var var=:{var_ident,var_info_ptr}) ds=:{ds_var_heap}
#! var_info = sreadPtr var_info_ptr ds_var_heap
= case var_info of
VI_LetExpression lei
| lei.lei_depth == di_depth
| lei.lei_count == 1 && (case lei.lei_status of LES_Updated _ -> False; _ -> True)
# (lei_updated_expr, ds) = distributeLets di lei.lei_expression ds
-> (lei_updated_expr, { ds & ds_var_heap = ds.ds_var_heap <:=
(var_info_ptr, VI_LetExpression { lei & lei_status = LES_Updated lei_updated_expr }) })
# ds = distributeLetsInLetExpression di var_info_ptr lei ds
-> (Var { var & var_info_ptr = lei.lei_var.fv_info_ptr }, ds)
// otherwise
-> (Var { var & var_info_ptr = lei.lei_var.fv_info_ptr }, ds)
VI_CaseVar var_info_ptr
-> (Var { var & var_info_ptr = var_info_ptr }, ds)
_
-> (Var var, ds)
distributeLets di (Case kees) ds
# (kees, ds) = distributeLets di kees ds
= (Case kees, ds)
distributeLets di (App app=:{app_args}) ds
# (app_args, ds) = distributeLets di app_args ds
= (App {app & app_args = app_args}, ds)
distributeLets di (fun_expr @ exprs) ds
# (fun_expr, ds) = distributeLets di fun_expr ds
(exprs, ds) = distributeLets di exprs ds
= (fun_expr @ exprs, ds)
distributeLets di expr=:(BasicExpr _) ds
= (expr, ds)
distributeLets di (MatchExpr constructor expr) ds
# (expr, ds) = distributeLets di expr ds
= (MatchExpr constructor expr, ds)
distributeLets di (Selection opt_tuple expr selectors) ds
# (expr, ds) = distributeLets di expr ds
# (selectors, ds) = distributeLets di selectors ds
= (Selection opt_tuple expr selectors, ds)
distributeLets di (Update expr1 selectors expr2) ds
# (expr1, ds) = distributeLets di expr1 ds
# (selectors, ds) = distributeLets di selectors ds
# (expr2, ds) = distributeLets di expr2 ds
= (Update expr1 selectors expr2, ds)
distributeLets di (RecordUpdate cons_symbol expr exprs) ds
# (expr, ds) = distributeLets di expr ds
# (exprs, ds) = distributeLets di exprs ds
= (RecordUpdate cons_symbol expr exprs, ds)
distributeLets di (TupleSelect tuple_symbol arg_nr expr) ds
# (expr, ds) = distributeLets di expr ds
= (TupleSelect tuple_symbol arg_nr expr, ds)
distributeLets di=:{di_depth} (Let lad=:{let_strict_binds,let_lazy_binds,let_expr,let_info_ptr}) ds=:{ds_expr_heap,ds_var_heap}
# (let_info, ds_expr_heap) = readPtr let_info_ptr ds_expr_heap
# (EI_LetTypeAndRefCounts let_type ref_counts) = let_info
nr_of_strict_lets = length let_strict_binds
ds_var_heap = set_let_expr_info di_depth let_lazy_binds ref_counts (drop nr_of_strict_lets let_type) ds_var_heap
ds_var_heap = foldSt set_strict_let_expr_info let_strict_binds ds_var_heap
(let_expr, ds) = distributeLets di let_expr { ds & ds_var_heap = ds_var_heap, ds_expr_heap = ds_expr_heap }
(let_strict_binds, ds) = distributeLets di let_strict_binds ds
ds = foldSt (distribute_lets_in_non_distributed_let di) let_lazy_binds ds
| nr_of_strict_lets == 0
= (let_expr, ds)
// otherwise
= case let_expr of
Let inner_let=:{let_info_ptr=inner_let_info_ptr}
# (EI_LetType strict_inner_types, ds_expr_heap) = readPtr inner_let_info_ptr ds.ds_expr_heap
# (inner_let_info_ptr, ds_expr_heap)
= newPtr (EI_LetType ((take nr_of_strict_lets let_type)++strict_inner_types)) ds_expr_heap
-> (Let { inner_let & let_strict_binds = let_strict_binds++inner_let.let_strict_binds,
let_info_ptr = inner_let_info_ptr},
{ds & ds_expr_heap = ds_expr_heap})
_ # (let_info_ptr, ds_expr_heap)
= newPtr (EI_LetType (take nr_of_strict_lets let_type)) ds.ds_expr_heap
-> (Let { lad & let_strict_binds = let_strict_binds, let_expr = let_expr, let_lazy_binds = [], let_info_ptr = let_info_ptr},
{ds & ds_expr_heap = ds_expr_heap})
where
set_let_expr_info depth [{lb_src,lb_dst}:binds] [ref_count:ref_counts] [type:types] var_heap
# (new_info_ptr, var_heap) = newPtr VI_LocalLetVar var_heap
lei = { lei_count = ref_count, lei_depth = depth, lei_var = { lb_dst & fv_info_ptr = new_info_ptr },
lei_expression = lb_src, lei_type = type, lei_status = LES_Untouched }
// -*-> ("set_let_expr_info", lb_dst.fv_info_ptr, new_info_ptr)
->> ("set_let_expr_info", lb_dst.fv_ident.id_name, depth)
= set_let_expr_info depth binds ref_counts types (var_heap <:= (lb_dst.fv_info_ptr, VI_LetExpression lei))
set_let_expr_info _ [] _ _ var_heap
= var_heap
set_strict_let_expr_info {lb_dst} var_heap
= var_heap <:= (lb_dst.fv_info_ptr, VI_LocalLetVar)
distribute_lets_in_non_distributed_let di {lb_dst={fv_ident,fv_info_ptr}} ds=:{ds_var_heap}
# (VI_LetExpression lei=:{lei_count}, ds_var_heap) = readPtr fv_info_ptr ds_var_heap
| lei_count > 0
// | not lei_moved && lei_count > 0
= distributeLetsInLetExpression di fv_info_ptr lei { ds & ds_var_heap = ds_var_heap }
// otherwise
= { ds & ds_var_heap = ds_var_heap }
-*-> ("distribute_lets_in_non_distributed_let (moved or not used)", lei_count, fv_ident)
distributeLets _ expr=:(TypeCodeExpression _) ds
= (expr, ds)
distributeLets _ (AnyCodeExpr in_params out_params code_expr) ds=:{ds_var_heap}
# (in_params, ds_var_heap) = mapSt determine_input_parameter in_params ds_var_heap
= (AnyCodeExpr in_params out_params code_expr, { ds & ds_var_heap = ds_var_heap })
where
determine_input_parameter bind=:{bind_dst} var_heap
# (var_info, var_heap) = readPtr bind_dst.var_info_ptr var_heap
= case var_info of
VI_CaseVar new_info_ptr
-> ({ bind & bind_dst = { bind_dst & var_info_ptr = new_info_ptr }}, var_heap)
_
-> (bind, var_heap)
distributeLets _ expr=:(ABCCodeExpr _ _) ds
= (expr, ds)
distributeLets _ EE ds
= (EE, ds)
distributeLets _ (NoBind ptr) ds
= (NoBind ptr, ds)
distributeLets _ (FailExpr id) ds
= (FailExpr id, ds)
instance distributeLets Case
where
distributeLets di=:{di_depth,di_explicit_case_depth} kees=:{case_info_ptr,case_guards,case_default,case_expr,case_explicit} ds=:{ds_var_heap, ds_expr_heap}
# (case_old_info, ds_expr_heap) = readPtr case_info_ptr ds_expr_heap
(EI_CaseTypeAndRefCounts type
{ rcc_all_variables = tot_ref_counts ,
rcc_default_variables = ref_counts_in_default,
rcc_pattern_variables = ref_counts_in_patterns }) = case_old_info
new_depth = di_depth + 1
new_di
= { di
& di_depth = new_depth
, di_explicit_case_depth = if case_explicit new_depth di_explicit_case_depth
}
(local_lets, ds_var_heap) = mark_local_let_vars new_depth tot_ref_counts ds_var_heap
// -*-> ("ref_counts", case_expr, tot_ref_counts, ref_counts_in_patterns)
with
mark_local_let_vars new_depth tot_ref_counts var_heap
| case_explicit
# (local_vars,local_select_vars,var_heap) = foldSt (mark_local_let_var_of_explicit_case new_depth) tot_ref_counts ([],[],var_heap)
= foldSt (mark_local_let_select_var_of_explicit_case new_depth) local_select_vars (local_vars,var_heap)
= foldSt (mark_local_let_var new_depth) tot_ref_counts ([],var_heap)
ds = {ds & ds_var_heap=ds_var_heap, ds_expr_heap=ds_expr_heap}
(case_guards, ds) = distribute_lets_in_patterns new_di ref_counts_in_patterns case_guards ds
(case_default, ds=:{ds_var_heap}) = distribute_lets_in_default new_di ref_counts_in_default case_default ds
(outer_vars, ds_var_heap) = foldSt (is_outer_var new_di) tot_ref_counts (False, ds.ds_var_heap)
# ds_var_heap = foldSt reset_local_let_var local_lets ds_var_heap ->> ("outer_vars", di_depth, di.di_explicit_case_depth, outer_vars)
(case_expr, ds) = distributeLets di case_expr { ds & ds_var_heap = ds_var_heap}
kees = { kees & case_guards = case_guards, case_expr = case_expr,
case_default = case_default}
(kind, ds_var_heap) = case_kind outer_vars kees ds.ds_var_heap
case_new_info = EI_CaseTypeAndSplits type {sic_splits = [], sic_next_alt = No, sic_case_kind = kind}
(case_info_ptr, ds_expr_heap) = newPtr case_new_info ds.ds_expr_heap
kees = { kees & case_info_ptr = case_info_ptr } ->> ("case_kind", di_depth, kind, case_explicit, ptrToInt case_info_ptr)
= (kees, { ds & ds_expr_heap = ds_expr_heap, ds_var_heap = ds_var_heap})
where
case_kind _ {case_guards, case_default, case_explicit, case_expr} var_heap
| is_guard case_guards case_default case_explicit case_expr
= (CaseKindGuard, var_heap)
case_kind outer_vars {case_expr, case_explicit} var_heap
| case_explicit || outer_vars || not (is_lhs_var case_expr var_heap)
= (CaseKindTransform, var_heap)
// otherwise
= (CaseKindLeave, var_heap)
where
is_lhs_var (Var {var_info_ptr, var_ident}) var_heap
= case sreadPtr var_info_ptr var_heap of
VI_LocalLetVar
-> False ->> (var_ident.id_name, "rhs1")
VI_LetExpression _
-> False ->> (var_ident.id_name, "rhs2")
info
-> True ->> (var_ident.id_name, "lhs", info)
is_lhs_var _ _
= False
is_guard (BasicPatterns BT_Bool patterns) case_default case_explicit case_expr
= is_guard_case patterns case_default case_explicit case_expr
is_guard _ _ _ _
= False
distribute_lets_in_patterns di ref_counts (AlgebraicPatterns conses patterns) ds
# (patterns, ds) = mapSt (distribute_lets_in_alg_pattern di) (exactZip ref_counts patterns) ds
= (AlgebraicPatterns conses patterns, ds)
distribute_lets_in_patterns di ref_counts (BasicPatterns type patterns) ds
# (patterns, ds) = mapSt (distribute_lets_in_basic_pattern di) (exactZip ref_counts patterns) ds
= (BasicPatterns type patterns, ds)
where
distribute_lets_in_basic_pattern di (ref_counts,pattern) ds
# (bp_expr, ds) = distribute_lets_in_pattern_expr di ref_counts pattern.bp_expr ds
= ({ pattern & bp_expr = bp_expr }, ds)
distribute_lets_in_patterns di ref_counts (OverloadedListPatterns conses decons_expr patterns) heaps
# (patterns, heaps) = mapSt (distribute_lets_in_alg_pattern di) (exactZip ref_counts patterns) heaps
= (OverloadedListPatterns conses decons_expr patterns, heaps)
distribute_lets_in_alg_pattern di (ref_counts,pattern) ds=:{ds_var_heap}
# (ap_vars, ds_var_heap) = mapSt refresh_variable pattern.ap_vars ds_var_heap
ds = {ds & ds_var_heap = ds_var_heap}
(ap_expr, ds) = distribute_lets_in_pattern_expr di ref_counts pattern.ap_expr ds
= ({ pattern & ap_vars = ap_vars, ap_expr = ap_expr }, ds)
distribute_lets_in_default di ref_counts_in_default (Yes expr) ds
# (expr, ds) = distribute_lets_in_pattern_expr di ref_counts_in_default expr ds
= (Yes expr, ds)
distribute_lets_in_default _ ref_counts_in_default No ds
= (No, ds)
refresh_variable fv=:{fv_info_ptr} var_heap
# (new_info_ptr, var_heap) = newPtr (VI_Labelled_Empty "refresh_variable") var_heap
= ({ fv & fv_info_ptr = new_info_ptr }, var_heap <:= (fv_info_ptr, VI_CaseVar new_info_ptr))
mark_local_let_var depth {cv_variable, cv_count} (local_vars, var_heap)
# (VI_LetExpression lei=:{lei_count,lei_depth,lei_var}, var_heap) = readPtr cv_variable var_heap
| lei_count == cv_count && lei_depth==depth-1 // -*-> ("mark_test", lei_count, cv_count)
= ([(cv_variable, lei_count, lei_depth) : local_vars ], var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
// -*-> ("mark_local_let_var ", lei.lei_var.fv_ident, cv_variable, (lei.lei_var.fv_info_ptr, cv_count, depth))
->> ("mark_local_let_var ", lei_var.fv_ident.id_name, lei_depth, " ->> ", depth)
// otherwise
= (local_vars, var_heap)
mark_local_let_var_of_explicit_case depth {cv_variable, cv_count} (local_vars,local_select_vars,var_heap)
# (VI_LetExpression lei=:{lei_count,lei_depth,lei_expression}, var_heap) = readPtr cv_variable var_heap
| lei_count == cv_count && lei_depth==depth-1
= case lei_expression of
TupleSelect _ _ (Var var=:{var_ident,var_info_ptr})
# (var_info,var_heap) = readPtr var_info_ptr var_heap
-> case var_info of
VI_LetExpression lei2
-> (local_vars,[(cv_variable,lei_depth):local_select_vars],var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
_
-> ([(cv_variable, lei_count, lei_depth) : local_vars ],local_select_vars,var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
Selection NormalSelector (Var var=:{var_ident,var_info_ptr}) [RecordSelection _ _]
# (var_info,var_heap) = readPtr var_info_ptr var_heap
-> case var_info of
VI_LetExpression lei2
-> (local_vars,[(cv_variable,lei_depth):local_select_vars],var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
_
-> ([(cv_variable, lei_count, lei_depth) : local_vars ],local_select_vars,var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
_
-> ([(cv_variable, lei_count, lei_depth) : local_vars ],local_select_vars,var_heap <:= (cv_variable, VI_LetExpression { lei & lei_depth = depth}))
= (local_vars,local_select_vars,var_heap)
mark_local_let_select_var_of_explicit_case depth (cv_variable,old_depth) (local_vars,var_heap)
# (VI_LetExpression lei=:{lei_count,lei_expression}, var_heap) = readPtr cv_variable var_heap
= case lei_expression of
TupleSelect _ _ (Var var=:{var_ident,var_info_ptr})
# (var_info,var_heap) = readPtr var_info_ptr var_heap
-> case var_info of
VI_LetExpression lei2
| lei2.lei_depth < depth
-> (local_vars,var_heap <:= (cv_variable, VI_LetExpression {lei & lei_depth = old_depth}))
_
-> ([(cv_variable, lei_count, old_depth) : local_vars ],var_heap)
Selection NormalSelector (Var var=:{var_ident,var_info_ptr}) [RecordSelection _ _]
# (var_info,var_heap) = readPtr var_info_ptr var_heap
-> case var_info of
VI_LetExpression lei2
| lei2.lei_depth < depth
-> (local_vars,var_heap <:= (cv_variable, VI_LetExpression {lei & lei_depth = old_depth}))
_
-> ([(cv_variable, lei_count, old_depth) : local_vars ],var_heap)
reset_local_let_var (var_info_ptr, lei_count, lei_depth) var_heap
# (VI_LetExpression lei, var_heap) = readPtr var_info_ptr var_heap
= var_heap <:= (var_info_ptr, VI_LetExpression { lei & lei_depth = lei_depth, lei_count = lei_count, lei_status = LES_Moved })
// -*-> ("reset_local_let_var", var_info_ptr)
->> ("reset_local_let_var", lei.lei_var.fv_ident.id_name, lei.lei_depth, lei.lei_count, " ->> ", lei_depth, lei_count)
is_outer_var {di_depth, di_explicit_case_depth} {cv_variable} (outer, var_heap)
| outer
= (True,var_heap)
# (VI_LetExpression {lei_depth,lei_status}, var_heap) = readPtr cv_variable var_heap
| di_explicit_case_depth < lei_depth &&
(lei_depth < di_depth || (lei_depth == di_depth && case lei_status of LES_Moved -> False; _ -> True))
= (True,var_heap)
= (False,var_heap);
distribute_lets_in_pattern_expr di=:{di_depth} local_vars pattern_expr ds=:{ds_var_heap}
# ds_var_heap = foldSt (mark_local_let_var_of_pattern_expr di_depth) local_vars ds_var_heap
(ds=:{ds_lets}) = {ds & ds_var_heap = ds_var_heap}
ds = {ds & ds_lets = []}
(pattern_expr, ds) = distributeLets di pattern_expr ds
(ds_lets2, ds) = ds!ds_lets
ds = foldSt (reexamine_local_let_expr di) local_vars ds
# (letExpr, ds) = buildLetExpr pattern_expr ds
-*-> ("distribute_lets_in_pattern_expr", ds_lets2)
ds = {ds & ds_lets = ds_lets}
= (letExpr, ds)
mark_local_let_var_of_pattern_expr depth {cv_variable, cv_count} var_heap
# (VI_LetExpression lei, var_heap) = readPtr cv_variable var_heap
| depth == lei.lei_depth
= (var_heap <:= (cv_variable, VI_LetExpression { lei & lei_count = cv_count, lei_status = LES_Untouched }))
-*-> ("mark_local_let_var_of_pattern_expr ", lei.lei_var.fv_ident, cv_variable, (lei.lei_var.fv_info_ptr, cv_count, depth))
// otherwise
= var_heap
reexamine_local_let_expr di=:{di_depth} {cv_variable, cv_count} ds=:{ds_var_heap}
| cv_count >= 1
# (VI_LetExpression lei, ds_var_heap) = readPtr cv_variable ds_var_heap
| di_depth == lei.lei_depth
= distributeLetsInLetExpression di cv_variable lei { ds & ds_var_heap = ds_var_heap }
= { ds & ds_var_heap = ds_var_heap }
= ds
distributeLetsInLetExpression :: DistributeInfo VarInfoPtr LetExpressionInfo *DistributeState -> *DistributeState
distributeLetsInLetExpression _ let_var_info_ptr {lei_status = LES_Moved, lei_var} ds
= ds -*-> ("distributeLetsInLetExpression, LES_Moved", lei_var.fv_ident.id_name, let_var_info_ptr)
distributeLetsInLetExpression _ let_var_info_ptr {lei_status = LES_Updated _, lei_var} ds
= ds -*-> ("distributeLetsInLetExpression, LES_Updated", lei_var.fv_ident.id_name, let_var_info_ptr)
distributeLetsInLetExpression di let_var_info_ptr lei=:{lei_expression, lei_status = LES_Untouched, lei_var} ds=:{ds_var_heap}
# ds_var_heap = ds_var_heap <:= (let_var_info_ptr, VI_LetExpression { lei & lei_status = LES_Updated EE}) /* to prevent doing this expr twice */ -*-> ("distributeLetsInLetExpression, LES_Untouched", lei_var.fv_ident.id_name, let_var_info_ptr)
(lei_expression, ds) = distributeLets di lei_expression { ds & ds_var_heap = ds_var_heap }
= { ds & ds_lets = [ let_var_info_ptr : ds.ds_lets ],
ds_var_heap = ds.ds_var_heap <:= (let_var_info_ptr, VI_LetExpression { lei & lei_status = LES_Updated lei_expression })}
buildLetExpr :: !Expression !*DistributeState -> (!Expression, !*DistributeState)
buildLetExpr let_expr ds=:{ds_lets=[]}
= (let_expr, ds) -*-> ("buildLetExpr", 0)
buildLetExpr let_expr ds=:{ds_lets, ds_var_heap, ds_expr_heap}
# (lazy_binds, lazy_binds_types, ds_var_heap) = foldr build_bind ([], [], ds_var_heap) ds_lets
ds = {ds & ds_var_heap = ds_var_heap} -*-> ("buildLetExpr", ds_lets)
// otherwise
= case let_expr of
Let inner_let=:{let_info_ptr }
# ds_expr_heap = ds.ds_expr_heap
# (EI_LetType strict_bind_types, ds_expr_heap) = readPtr let_info_ptr ds_expr_heap
ds_expr_heap = writePtr let_info_ptr (EI_LetType (strict_bind_types ++ lazy_binds_types)) ds_expr_heap
-> (Let { inner_let & let_lazy_binds = lazy_binds }, {ds & ds_expr_heap=ds_expr_heap})
_
# ds_expr_heap = ds.ds_expr_heap
# (let_info_ptr, ds_expr_heap) = newPtr (EI_LetType lazy_binds_types) ds_expr_heap
-> (Let { let_strict_binds = [], let_lazy_binds = lazy_binds, let_expr = let_expr,
let_info_ptr = let_info_ptr, let_expr_position = NoPos }, {ds & ds_expr_heap = ds_expr_heap})
where
build_bind :: !VarInfoPtr !(![LetBind], ![AType], !*VarHeap)
-> (![LetBind], ![AType], !*VarHeap)
build_bind info_ptr (lazy_binds, lazy_binds_types, var_heap)
# (let_info, var_heap) = readPtr info_ptr var_heap
# (VI_LetExpression lei=:{lei_var,lei_status,lei_type}) = let_info
(LES_Updated updated_expr) = lei_status
(new_info_ptr, var_heap) = newPtr (VI_Labelled_Empty "build_bind") var_heap
var_heap = var_heap <:= (info_ptr, VI_LetExpression { lei & lei_status = LES_Untouched, lei_var = { lei_var & fv_info_ptr = new_info_ptr }})
-*-> ("build_bind", lei_var.fv_ident, info_ptr, new_info_ptr)
= ([{ lb_src = updated_expr, lb_dst = lei_var, lb_position = NoPos } : lazy_binds], [lei_type : lazy_binds_types ], var_heap)
instance distributeLets Selection
where
distributeLets di (ArraySelection selector expr_ptr expr) cp_info
# (expr, cp_info) = distributeLets di expr cp_info
= (ArraySelection selector expr_ptr expr, cp_info)
distributeLets di (DictionarySelection var selectors expr_ptr expr) cp_info
# (selectors, cp_info) = distributeLets di selectors cp_info
# (expr, cp_info) = distributeLets di expr cp_info
= (DictionarySelection var selectors expr_ptr expr, cp_info)
distributeLets _ selection cp_info
= (selection, cp_info)
instance distributeLets [a] | distributeLets a
where
distributeLets di l cp_info = mapSt (distributeLets di) l cp_info
instance distributeLets LetBind
where
distributeLets di bind=:{lb_src} cp_info
# (lb_src, cp_info) = distributeLets di lb_src cp_info
= ({ bind & lb_src = lb_src }, cp_info)
instance distributeLets (Bind a b) | distributeLets a
where
distributeLets di bind=:{bind_src} cp_info
# (bind_src, cp_info) = distributeLets di bind_src cp_info
= ({ bind & bind_src = bind_src }, cp_info)
/*
Split case expressions.
Splitting a case expression can be necessary because of limitations in
the compiler's backend. The backend can only handle case expressions that
match on left-hand-side variable and are on root positions (right-hand-side
of functions, the resulting expression of let expressions on a root
position and the right-hand side or default of case expressions an on a
root position). The exact test can be found in convertRootCases.
There's a difference in the semantics of implicit cases (which are written
as patterns by the programmer) and explicit cases (written as case expres-
sions by the programmer).
Implicit cases (denoted as case'):
fi x y
= case' x of / fi 1 2 \
1 -> case' y of | syntax tree for = 3 |
2 -> 3 | fi _ _ |
_ -> 4 \ = 4 /
(fi 1 2) reduces to 2
Explicit cases:
fe x y
= case x of
1 -> case y of
2 -> 3
_ -> 4
(fe 1 2) reduces to <<run-time error>>
The frontend introduces functions for cases expressions that are explicit
or that the backend can't handle. For the example above:
fe x y
= _c1 x y
_c1 x y
= case' x of
1 -> _c2
_ -> 4
_c2 y
= case' y of
2 -> 3
This agrees with the semantics: the function _c2 will fail during
evaluation of (fe 1 2).
Problems occur when there's an implicit case expression that can't be
handled by the backend. These case expressions result from transformations
in the compiler (fusion in transform.icl and the conversion of dynamics).
For example, in the function
f
= case' 1 of
1 -> case' 2 of
3 -> 4
_ -> 5
f should reduce to 5, but in the direct translation
f
= _c1 1
_c1 x
= case' x of
1 -> _c2 2
_ -> 5
_c2 y
= case' y of
3 -> 4
f erroneously reduces to <<run-time error>>.
The solution is to split the case in _c1, introduce a function for the
second part (the default alternative of _c1), and call this function from
both _c1 and _c2
f
= _c1 1
_c1 x
= case' x of
1 -> _c2 2
_ -> _f
_c2 y
= case' y of
3 -> 4
_ -> _f
_f
= 5
This transformation is done in two phases. First findSplitCases determines
where cases should be split, and to which alternative of an outer case
a case should pass control if it doesn't have a default. This information
is recorded in the expression heap (accessed through the case_info_ptr).
The actual splitting, the introduction of new functions, and the
introduction of calls to these functions is done in convertRootCases.
*/
:: SplitCase =
{ sc_alt_nr :: CaseAltNr // the number of the alternative, before which
// the case should be split
, sc_call :: Optional Expression // call to the function that was introduced for
// this split case
}
:: NextAlt =
{ na_case :: ExprInfoPtr // the case_info_ptr of the case
, na_alt_nr :: CaseAltNr // the number of the alternative
}
:: CaseAltNr :== Int // the sequence number of the alternative (zero based), the
// default alternative is indicated by the number of the last
// alternative + 1
:: CaseKind
= CaseKindUnknown {#Char}
| CaseKindGuard // a boolean case that can be handled by the backend
| CaseKindLeave // a case that can be handled by the backend
| CaseKindTransform // a case that should be transformed
instance == CaseKind where
(==) (CaseKindUnknown _) (CaseKindUnknown _)
= True
(==) CaseKindGuard CaseKindGuard
= True
(==) CaseKindLeave CaseKindLeave
= True
(==) CaseKindTransform CaseKindTransform
= True
(==) _ _
= False
:: SplitsInCase =
{ sic_next_alt :: Optional NextAlt // the alternative of an outer default, to which
// control should pass
, sic_splits :: [SplitCase] // the positions where this case should be split
, sic_case_kind :: CaseKind
}
:: SplitState =
{ ss_expr_heap :: !.ExpressionHeap
, ss_var_heap :: !.VarHeap
}
:: SplitInfo =
{ si_next_alt :: !Optional NextAlt
, si_force_next_alt :: !Bool
}
class findSplitCases e :: !SplitInfo !e !*SplitState -> *SplitState
(:-) infixl
(:-) a f
:== f a
instance findSplitCases (Optional a) | findSplitCases a where
findSplitCases _ No ss
= ss <<- "findSplitCases (Opt No)"
findSplitCases si (Yes x) ss
= findSplitCases si x ss <<- "findSplitCases (Opt No)"
instance findSplitCases Expression where
findSplitCases si (Let lad) ss
= findSplitCases si lad ss <<- "findSplitCases (Exp Let)"
findSplitCases si (Case kees) ss
= findSplitCases si kees ss <<- "findSplitCases (Exp Case)"
findSplitCases _ _ ss
= ss <<- "findSplitCases (Exp _)"
instance findSplitCases Case where
findSplitCases si kees=:{case_info_ptr, case_guards, case_default, case_explicit} ss
# ss
= split_guards {si & si_next_alt = first_next_alt, si_force_next_alt=False} use_outer_alt case_guards ss
# ss
= nextAlts si kees ss
= ss
where
first_next_alt
= Yes {na_case = case_info_ptr, na_alt_nr = 1}
use_outer_alt
= use_outer_alt_for_last_alt case_default si
// split_guards :: SplitInfo (Optional (Optional NextAlt)) CasePatterns *SplitState -> (Bool, *SplitState)
split_guards si use_outer_alt (AlgebraicPatterns _ alts) ss
= split_alts si use_outer_alt alts ss
split_guards si use_outer_alt (BasicPatterns _ alts) ss
= split_alts si use_outer_alt alts ss
split_guards si use_outer_alt (OverloadedListPatterns _ _ alts) ss
= split_alts si use_outer_alt alts ss
// split_alts :: SplitInfo (Optional (Optional NextAlt)) [a] *SplitState -> (Bool, *SplitState) | findSplitCases a
split_alts _ _ [] ss
= ss
split_alts _ (Yes si) [last] ss
# ss
= findSplitCases si last ss
= ss
split_alts si last_next_alt [pattern : patterns] ss
# ss
= findSplitCases si pattern ss
= split_alts (incAltNr si) last_next_alt patterns ss
// use_outer_alt_for_last_alt :: (Optional Expression) ExprInfoPtr SplitInfo -> Optional (Optional NextAlt)
use_outer_alt_for_last_alt No si
/*
This case has no default. If the last alternative fails,
control is passed to the outer case.
*/
= Yes si
use_outer_alt_for_last_alt (Yes _) si
= No
// debug ...
instance toString (Optional a) | toString a where
toString No
= ""
toString (Yes x)
= toString x
// ... debug
class incAltNr a :: a -> a
instance incAltNr Int where
incAltNr alt_nr
= alt_nr + 1
instance incAltNr NextAlt where
incAltNr next_alt=:{na_alt_nr}
= {next_alt & na_alt_nr = incAltNr na_alt_nr}
instance incAltNr (Optional a) | incAltNr a where
incAltNr No
= No
incAltNr (Yes x)
= Yes (incAltNr x)
instance incAltNr SplitInfo where
incAltNr si=:{si_next_alt}
= {si & si_next_alt = incAltNr si_next_alt}
instance findSplitCases AlgebraicPattern where
findSplitCases si {ap_expr} ss
= findSplitCases si ap_expr ss <<- "findSplitCases (AlgebraicPattern)"
instance findSplitCases BasicPattern where
findSplitCases si {bp_expr} ss
= findSplitCases si bp_expr ss <<- "findSplitCases (BasicPattern)"
instance findSplitCases Let where
findSplitCases si {let_expr} ss
= findSplitCases si let_expr ss <<- "findSplitCases (Let)"
nextAlts :: SplitInfo Case *SplitState -> *SplitState
nextAlts si=:{si_next_alt=Yes next_alt, si_force_next_alt} kees=:{case_info_ptr, case_default} ss
# (EI_CaseTypeAndSplits type splits, ss_expr_heap)
= readPtr case_info_ptr ss.ss_expr_heap
# ss
= {ss & ss_expr_heap = ss_expr_heap}
# jumps
= not kees.case_explicit && (si_force_next_alt || jumps_to_next_alt splits kees)
# ss
= findSplitCases {si & si_force_next_alt=jumps} case_default ss
| jumps && not (hasOption case_default)
// update the info for this case
# ss_expr_heap
= ss.ss_expr_heap <:= (case_info_ptr,
EI_CaseTypeAndSplits type {splits & sic_next_alt = Yes next_alt})
// update the info for the outer case
# (EI_CaseTypeAndSplits type splits, ss_expr_heap)
= readPtr next_alt.na_case ss_expr_heap
split
= {sc_alt_nr = next_alt.na_alt_nr, sc_call = No}
ss_expr_heap
= ss_expr_heap <:= (next_alt.na_case,
EI_CaseTypeAndSplits type {splits & sic_splits = [split : splits.sic_splits]})
ss_expr_heap
= ss_expr_heap
->> (toString kees.case_ident, ptrToInt case_info_ptr,
"jumps to ", ptrToInt next_alt.na_case, next_alt.na_alt_nr)
= {ss & ss_expr_heap = ss_expr_heap}
// otherwise
= ss
where
/* stress test, convert all cases without a default
jumps_to_next_alt _ {case_default = No} ss
= (True, ss)
*/
/* stress test, convert all explicit cases (may change semantics for failing programs)
jumps_to_next_alt _ {case_default = No, case_explicit = True, case_expr}
= (True, ss) ->> (toString (ptrToInt case_info_ptr) +++ " jumps, because explicit")
*/
jumps_to_next_alt {sic_splits=[_:_]} {case_explicit = False}
= True ->> (toString (ptrToInt case_info_ptr) +++ " jumps, because alt was moved")
jumps_to_next_alt {sic_case_kind=CaseKindTransform} {case_explicit = False}
= True ->> (toString (ptrToInt case_info_ptr) +++ " jumps, because implicit no lhs var")
jumps_to_next_alt _ _
= False ->> (toString (ptrToInt case_info_ptr) +++ " doesn't jumps " +++ toString kees.case_explicit)
nextAlts si kees=:{case_default} ss
= findSplitCases si case_default ss ->> ("nextAlts no outerdefault" +++ toString kees.case_explicit)
newFunction :: !(Optional Ident) !FunctionBody ![FreeVar] ![AType] !AType !Int !(!Int, ![FunctionInfoPtr],!*FunctionHeap)
-> (! SymbIdent, !(!Int, ![FunctionInfoPtr],!*FunctionHeap))
newFunction opt_id fun_bodies local_vars arg_types result_type group_index state
= newFunctionWithType opt_id fun_bodies local_vars fun_type group_index state
where
(_,fun_type) = removeAnnotations
{ st_vars = []
, st_args = arg_types
, st_args_strictness=NotStrict
, st_arity = length arg_types // -*-> ("newFunction", fun_id.id_name)
, st_result = result_type
, st_context = []
, st_attr_vars = []
, st_attr_env = []
}
newFunctionWithType :: !(Optional Ident) !FunctionBody ![FreeVar] !SymbolType !Int !(!Int, ![FunctionInfoPtr],!*FunctionHeap)
-> (! SymbIdent, !(!Int, ![FunctionInfoPtr],!*FunctionHeap))
newFunctionWithType opt_id fun_bodies local_vars fun_type group_index (cs_next_fun_nr, cs_new_functions, cs_fun_heap)
# (fun_def_ptr, cs_fun_heap) = newPtr FI_Empty cs_fun_heap
fun_id = getIdent opt_id cs_next_fun_nr
arity
= fun_type.st_arity
fun_def =
{ fun_ident = fun_id
, fun_arity = arity
, fun_priority = NoPrio
, fun_body = fun_bodies
, fun_type = Yes fun_type
, fun_pos = NoPos
, fun_kind = FK_Function cNameNotLocationDependent
, fun_lifted = 0
, fun_info = { EmptyFunInfo & fi_group_index = group_index, fi_local_vars = local_vars }
}
= ({ symb_ident = fun_id, symb_kind = SK_GeneratedFunction fun_def_ptr cs_next_fun_nr },
(inc cs_next_fun_nr, [fun_def_ptr : cs_new_functions],
cs_fun_heap <:= (fun_def_ptr, FI_Function { gf_fun_def = fun_def, gf_instance_info = II_Empty,
gf_fun_index = cs_next_fun_nr, gf_cons_args = {cc_size=0, cc_args = [], cc_linear_bits = [], cc_producer = False} })))
addNewFunctionsToGroups :: !{#.CommonDefs} FunctionHeap ![FunctionInfoPtr] !Int !*{! Group} !*{#{# CheckedTypeDef}} !ImportedFunctions !*TypeHeaps !*VarHeap
-> (!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
addNewFunctionsToGroups common_defs fun_heap new_functions main_dcl_module_n groups imported_types imported_conses type_heaps var_heap
= foldSt (add_new_function_to_group fun_heap common_defs) new_functions (groups, [], imported_types, imported_conses, type_heaps, var_heap)
where
add_new_function_to_group :: !FunctionHeap !{# CommonDefs} !FunctionInfoPtr
!(!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
-> (!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap)
add_new_function_to_group fun_heap common_defs fun_ptr (groups, fun_defs, imported_types, imported_conses, type_heaps, var_heap)
# (FI_Function {gf_fun_def,gf_fun_index}) = sreadPtr fun_ptr fun_heap
{fun_type = Yes ft, fun_info = {fi_group_index, fi_properties}} = gf_fun_def
(ft, imported_types, imported_conses, type_heaps, var_heap)
= convertSymbolType (fi_properties bitand FI_HasTypeSpec == 0) common_defs ft main_dcl_module_n
imported_types imported_conses type_heaps var_heap
# (group, groups) = groups![fi_group_index]
= ({ groups & [fi_group_index] = { group & group_members = [gf_fun_index : group.group_members]} },
[ { gf_fun_def & fun_type = Yes ft }: fun_defs], imported_types, imported_conses, type_heaps, var_heap)
:: ConvertState =
{ cs_new_functions :: ![FunctionInfoPtr]
, cs_fun_heap :: !.FunctionHeap
, cs_var_heap :: !.VarHeap
, cs_expr_heap :: !.ExpressionHeap
, cs_next_fun_nr :: !Index
}
is_guard_case [{bp_value=BVB True,bp_expr},{bp_value=BVB False,bp_expr=false_expr}] (Yes _) False case_expr
= is_then_or_else bp_expr && is_then_or_else false_expr
is_guard_case [{bp_value=BVB True,bp_expr},{bp_value=BVB False,bp_expr=else_expr}] No True case_expr
= boolean_case_is_if case_expr bp_expr else_expr
is_guard_case [{bp_value=BVB True,bp_expr}:patterns] case_default False case_expr
= has_no_rooted_case bp_expr
is_guard_case [{bp_value=BVB True,bp_expr=then_expr}] (Yes else_expr) True case_expr
= boolean_case_is_if case_expr then_expr else_expr
is_guard_case [{bp_value=BVB False,bp_expr},{bp_value=BVB True,bp_expr=true_expr}] (Yes _) False case_expr
= is_then_or_else bp_expr && is_then_or_else true_expr
is_guard_case [{bp_value=BVB False,bp_expr}:patterns] case_default False case_expr
= then_part_exists_and_has_no_rooted_case patterns case_default
where
then_part_exists_and_has_no_rooted_case [ alt=:{bp_value=BVB sign_of_alt,bp_expr} : alts ] case_default
| sign_of_alt
= has_no_rooted_case bp_expr
= then_part_exists_and_has_no_rooted_case alts case_default
then_part_exists_and_has_no_rooted_case [ ] No
= False
then_part_exists_and_has_no_rooted_case [ ] (Yes then_expr)
= False // only when the first alt cannot fail use: has_no_rooted_case then_expr
is_guard_case _ _ _ _
= False
has_no_rooted_case (Case {case_guards=BasicPatterns BT_Bool patterns, case_default,case_explicit,case_expr})
= is_guard_case patterns case_default case_explicit case_expr
has_no_rooted_case (Case {case_explicit})
= case_explicit
has_no_rooted_case (Let {let_expr})
= has_no_rooted_case let_expr
has_no_rooted_case _
= True
is_then_or_else (Case {case_expr,case_guards,case_default})
= is_if_case case_expr case_guards case_default
is_then_or_else (Let {let_expr})
= is_then_or_else let_expr
is_then_or_else _
= True
is_if_case case_expr (BasicPatterns BT_Bool [{bp_value=BVB True,bp_expr=then_expr},{bp_value=BVB False,bp_expr=else_expr}]) No
= boolean_case_is_if case_expr then_expr else_expr
is_if_case case_expr (BasicPatterns BT_Bool [{bp_value=BVB True,bp_expr=then_expr}]) (Yes else_expr)
= boolean_case_is_if case_expr then_expr else_expr
is_if_case case_expr case_guards case_default
= False
boolean_case_is_if case_expr then_expr else_expr
= has_no_rooted_non_if_cases case_expr && is_then_or_else then_expr && is_then_or_else else_expr
has_no_rooted_non_if_cases (Case {case_expr,case_guards,case_default})
= is_if_case case_expr case_guards case_default
has_no_rooted_non_if_cases (Let _)
= False
has_no_rooted_non_if_cases _
= True
convert_let_binds let_strict_binds let_lazy_binds let_info_ptr ci=:{ci_bound_vars} cs=:{cs_expr_heap}
# (EI_LetType let_type, cs_expr_heap) = readPtr let_info_ptr cs_expr_heap
ci_bound_vars = addLetVars (let_strict_binds ++ let_lazy_binds) let_type ci_bound_vars
ci = {ci & ci_bound_vars = ci_bound_vars}
(let_strict_binds,cs) = convertCases ci let_strict_binds { cs & cs_expr_heap = cs_expr_heap }
(let_lazy_binds,cs) = convertCases ci let_lazy_binds cs
= (let_strict_binds,let_lazy_binds,ci,cs)
convert_case_to_if case_expr then_expr else_expr ci cs
# (case_expr,cs)=convert_condition case_expr ci cs
# (then_expr,cs)=convert_then_or_else then_expr ci cs
# (else_expr,cs)=convert_then_or_else else_expr ci cs
= (Conditional { if_cond = case_expr, if_then = then_expr, if_else = Yes else_expr },cs)
where
convert_then_or_else (Let lad=:{let_strict_binds,let_lazy_binds,let_expr,let_info_ptr}) ci=:{ci_bound_vars} cs=:{cs_expr_heap}
# (let_strict_binds,let_lazy_binds,ci,cs) = convert_let_binds let_strict_binds let_lazy_binds let_info_ptr ci cs
(let_expr,cs) = convert_condition let_expr ci cs
= (Let { lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr }, cs)
convert_then_or_else expr ci cs
= convert_condition expr ci cs
convert_condition (Case {case_expr,case_guards=(BasicPatterns BT_Bool [{bp_value=BVB True,bp_expr=then_expr},{bp_value=BVB False,bp_expr=else_expr}]),case_default=No}) ci cs
= convert_case_to_if case_expr then_expr else_expr ci cs
convert_condition (Case {case_expr,case_guards=(BasicPatterns BT_Bool [{bp_value=BVB True,bp_expr=then_expr}]),case_default=Yes else_expr}) ci cs
= convert_case_to_if case_expr then_expr else_expr ci cs
convert_condition expr ci cs
= convertCases ci expr cs
class convertRootCases a :: !ConvertInfo !a *ConvertState -> (a, *ConvertState)
instance convertRootCases TransformedBody where
convertRootCases ci body=:{tb_rhs} cs
# (tb_rhs, cs) = convertRootCases ci tb_rhs cs
= ({body & tb_rhs=tb_rhs}, cs)
instance convertRootCases Expression where
convertRootCases ci (Let lad=:{let_strict_binds,let_lazy_binds,let_expr,let_info_ptr}) cs=:{cs_var_heap}
# (let_strict_binds,let_lazy_binds,ci,cs) = convert_let_binds let_strict_binds let_lazy_binds let_info_ptr ci cs
(let_expr, cs) = convertRootCases (if (isEmpty let_strict_binds) ci {ci & ci_case_level=CaseLevelAfterGuardRoot}) let_expr cs
= (Let { lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr }, cs)
convertRootCases ci caseExpr=:(Case kees=:{case_expr, case_guards, case_default, case_explicit, case_info_ptr}) cs
# (EI_CaseTypeAndSplits _ {sic_case_kind}, cs_expr_heap)
= readPtr case_info_ptr cs.cs_expr_heap
cs = {cs & cs_expr_heap = cs_expr_heap}
| sic_case_kind == CaseKindGuard
= case case_guards of
BasicPatterns BT_Bool patterns
# ({case_expr, case_guards, case_default, case_explicit, case_info_ptr}, cs)
= splitCase ci kees cs
-> convert_boolean_case_into_guard ci case_expr patterns case_default case_info_ptr cs
_
-> abort "convertcases, convertRootCases: bool patterns expected"
| sic_case_kind == CaseKindLeave
# (kees=:{case_expr, case_guards, case_default, case_explicit, case_info_ptr}, cs)
= splitCase ci kees cs
# (EI_CaseTypeAndSplits case_type _, cs_expr_heap)
= readPtr case_info_ptr cs.cs_expr_heap
# (case_expr, cs) = convertCases ci case_expr {cs & cs_expr_heap=cs_expr_heap}
# (case_guards, cs) = convertRootCasesCasePatterns ci case_guards case_type.ct_cons_types cs
# (case_default, cs)= convertRootCases ci case_default cs
= (Case {kees & case_expr=case_expr,
case_guards=case_guards, case_default=case_default}, cs)
| sic_case_kind == CaseKindTransform
= convertNonRootCase ci kees cs
// otherwise
= case sic_case_kind of
CaseKindUnknown label
-> abort ("convertRootCases, unknown casekind " +++ label)
where
convert_boolean_case_into_guard ci guard [ alt=:{bp_value=BVB sign_of_then_part,bp_expr} : alts ] case_default case_info_ptr cs
# (guard, cs) = convert_guard guard ci cs
# (then_part, cs) = convertRootCases {ci & ci_case_level=CaseLevelAfterGuardRoot} bp_expr cs
# (opt_else_part, cs) = convert_to_else_part ci sign_of_then_part alts case_default cs
= (build_conditional sign_of_then_part guard then_part opt_else_part, cs)
where
build_conditional True guard then_expr opt_else_expr
= Conditional { if_cond = guard, if_then = then_expr, if_else = opt_else_expr }
build_conditional false guard then_expr (Yes else_expr)
= Conditional { if_cond = guard, if_then = else_expr, if_else = Yes then_expr }
build_conditional false guard then_expr No
= Conditional { if_cond = Conditional { if_cond = guard, if_then = BasicExpr (BVB False), if_else = Yes (BasicExpr (BVB True)) },
if_then = then_expr, if_else = No }
convert_to_else_part ci sign_of_then_part [ alt=:{bp_value=BVB sign_of_else_part,bp_expr} : alts ] case_default cs
# (else_part, cs) = convertRootCases {ci & ci_case_level=CaseLevelAfterGuardRoot} bp_expr cs
| sign_of_then_part == sign_of_else_part
= convert_to_else_part ci sign_of_then_part alts case_default cs
= (Yes else_part, cs)
convert_to_else_part ci sign_of_then_part [ ] (Yes else_part) cs
# (else_part, cs) = convertRootCases {ci & ci_case_level=CaseLevelAfterGuardRoot} else_part cs
= (Yes else_part, cs)
convert_to_else_part ci sign_of_then_part [ ] No cs
= (No, cs)
convert_guard guard ci cs
| has_no_rooted_non_if_cases guard
= convert_condition guard ci cs
= convertCases ci guard cs
convertRootCases ci failExpr=:(FailExpr _) cs
= (failExpr, cs)
convertRootCases ci expr cs
= convertCases ci expr cs
splitCase :: ConvertInfo Case *ConvertState -> (Case, *ConvertState)
splitCase ci kees=:{case_info_ptr} cs=:{cs_expr_heap}
# (EI_CaseTypeAndSplits case_type splits=:{sic_next_alt, sic_splits}, cs_expr_heap)
= readPtr case_info_ptr cs_expr_heap
# (kees, cs_expr_heap)
= addDefault sic_next_alt kees cs_expr_heap
| isEmpty sic_splits
// optimisation for the common case
= (kees, {cs & cs_expr_heap = cs_expr_heap}) ->> ("split: no", toString kees.case_ident, ptrToInt kees.case_info_ptr)
# sic_splits
= uniq (sortBy (>) sic_splits)
# cs_expr_heap
= cs_expr_heap <:= (case_info_ptr,
EI_CaseTypeAndSplits case_type {splits & sic_splits = []})
# (kees, case_type, cs=:{cs_expr_heap})
= split ci sic_splits (kees, case_type, {cs & cs_expr_heap = cs_expr_heap})->> ("split: yes", toString kees.case_ident, ptrToInt kees.case_info_ptr) //, sic_splits)
= (kees, {cs & cs_expr_heap = cs_expr_heap})
class split a :: ConvertInfo a (Case, CaseType, *ConvertState) -> (Case, CaseType, *ConvertState)
instance split [a] | split a where
split ci splits state
= foldSt (split ci) splits state
instance split SplitCase where
split ci split=:{sc_alt_nr} (kees, case_type, cs=:{cs_expr_heap})
# (kees1, kees2)
= splitIt sc_alt_nr kees
# (case_type1, case_type2)
= splitIt sc_alt_nr case_type
# case_type_and_splits2
= EI_CaseTypeAndSplits case_type2 {sic_splits = [], sic_next_alt = No, sic_case_kind = CaseKindUnknown "2"}
# (case_info_ptr2, cs_expr_heap)
= newPtr case_type_and_splits2 cs_expr_heap
# kees2
= {kees2 & case_info_ptr = case_info_ptr2}
# (call, cs)
= convertNonRootCase ci kees2 {cs & cs_expr_heap = cs_expr_heap}
# kees1
= {kees1 & case_default = Yes call}
# (EI_CaseTypeAndSplits _ splits1, cs_expr_heap)
= readPtr kees.case_info_ptr cs.cs_expr_heap
# case_type_and_splits1
= EI_CaseTypeAndSplits case_type1 {splits1 & sic_splits = [{split & sc_call = Yes call} : splits1.sic_splits]}
# cs_expr_heap
= cs_expr_heap <:= (kees.case_info_ptr, case_type_and_splits1)
= (kees1, case_type1, {cs & cs_expr_heap = cs_expr_heap})
class splitIt a :: CaseAltNr a -> (a, a)
instance splitIt Case where
splitIt alt_nr kees=:{case_guards}
# (case_guards1, case_guards2)
= splitIt alt_nr case_guards
# kees1
= {kees & case_guards = case_guards1, case_default=No}
# kees2
= {kees & case_guards = case_guards2}
= (kees1, kees2)
instance splitIt CaseType where
splitIt alt_nr case_type=:{ct_cons_types}
# (ct_cons_types1, ct_cons_types2)
= splitIt alt_nr ct_cons_types
# case_type1
= {case_type & ct_cons_types = ct_cons_types1}
# case_type2
= {case_type & ct_cons_types = ct_cons_types2}
= (case_type1, case_type2)
instance splitIt CasePatterns where
splitIt alt_nr (AlgebraicPatterns type alts)
# (alts1, alts2)
= splitIt alt_nr alts
= (AlgebraicPatterns type alts1, AlgebraicPatterns type alts2)
splitIt alt_nr (BasicPatterns type alts)
# (alts1, alts2)
= splitIt alt_nr alts
= (BasicPatterns type alts1, BasicPatterns type alts2)
splitIt alt_nr (OverloadedListPatterns type decons alts)
# (alts1, alts2)
= splitIt alt_nr alts
= (OverloadedListPatterns type decons alts1, OverloadedListPatterns type decons alts2)
instance splitIt [a] where
splitIt alt_nr l
= (take alt_nr l, drop alt_nr l)
instance < SplitCase where
(<) a b
= a.sc_alt_nr < b.sc_alt_nr
instance == SplitCase where
(==) a b
= a.sc_alt_nr == b.sc_alt_nr
uniq :: [a] -> [a] | Eq a
uniq [a : rest =: [b : t]]
| a == b
= uniq rest
// otherwise
= [a : uniq rest]
uniq l
= l
class addDefault a :: a Case *ExpressionHeap -> (Case, *ExpressionHeap)
instance addDefault (Optional a) | addDefault a where
addDefault (Yes next_alt) kees expr_heap
= addDefault next_alt kees expr_heap
addDefault _ kees expr_heap
= (kees, expr_heap)
instance addDefault NextAlt where
addDefault next_alt kees expr_heap
# (call, expr_heap)
= find_call next_alt expr_heap
= addDefault call kees expr_heap
where
find_call :: NextAlt *ExpressionHeap -> (Expression, *ExpressionHeap)
find_call {na_case, na_alt_nr} expr_heap
# (EI_CaseTypeAndSplits case_type {sic_splits}, expr_heap)
= readPtr na_case expr_heap
# sic_splits = sic_splits ->> ("find_call", ptrToInt na_case, na_alt_nr)
# call
= hd [ call
\\ {sc_call=Yes call, sc_alt_nr} <- sic_splits
| sc_alt_nr==na_alt_nr
]
= (call, expr_heap)
instance addDefault Expression where
addDefault expr kees=:{case_default=No} expr_heap
= ({kees & case_default=Yes expr}, expr_heap) <<- ("default added to ", ptrToInt kees.case_info_ptr)
addDefault expr kees expr_heap
= abort ("trying to overwrite default of " +++ toString (ptrToInt kees.case_info_ptr) +++ " " +++ toString kees.case_ident)
convertRootCasesCasePatterns :: ConvertInfo CasePatterns [[AType]] *ConvertState -> (CasePatterns, *ConvertState)
convertRootCasesCasePatterns ci (BasicPatterns bt patterns) _ cs
# (patterns, cs)
= convertRootCases ci patterns cs
= (BasicPatterns bt patterns, cs)
convertRootCasesCasePatterns ci (AlgebraicPatterns gi patterns) arg_types cs
| length patterns <> length arg_types
= abort ("convertRootCasesCasePatterns error number of cases " +++ toString (length patterns) +++ " <> " +++ toString (length arg_types)) <<- arg_types
# (patterns, cs)
= convertRootCasesAlgebraicPatterns ci (exactZip patterns arg_types) cs
= (AlgebraicPatterns gi patterns, cs)
convertRootCasesCasePatterns ci (OverloadedListPatterns type decons_expr patterns) arg_types cs
# (patterns, cs)
= convertRootCasesAlgebraicPatterns ci (exactZip patterns arg_types) cs
= (OverloadedListPatterns type decons_expr patterns, cs)
convertRootCasesAlgebraicPatterns :: ConvertInfo [(AlgebraicPattern, [AType])] *ConvertState -> ([AlgebraicPattern], *ConvertState)
convertRootCasesAlgebraicPatterns ci l cs
= mapSt (convertRootCasesAlgebraicPattern ci) l cs
where
convertRootCasesAlgebraicPattern :: ConvertInfo (AlgebraicPattern, [AType]) *ConvertState -> (AlgebraicPattern, *ConvertState)
convertRootCasesAlgebraicPattern ci (pattern=:{ap_expr, ap_vars}, arg_types) cs
# ci
= {ci & ci_bound_vars= exactZip ap_vars arg_types ++ ci.ci_bound_vars}
# (ap_expr, cs)
= convertRootCases ci ap_expr cs
= ({pattern & ap_expr=ap_expr}, cs)
instance convertRootCases (Optional a) | convertRootCases a where
convertRootCases ci (Yes expr) cs
# (expr, cs) = convertRootCases ci expr cs
= (Yes expr, cs)
convertRootCases ci No cs
= (No, cs)
instance convertRootCases [a] | convertRootCases a where
convertRootCases ci l cs
= mapSt (convertRootCases ci) l cs
instance convertRootCases BasicPattern where
convertRootCases ci pattern=:{bp_expr} cs
# (bp_expr, cs)
= convertRootCases ci bp_expr cs
= ({pattern & bp_expr=bp_expr}, cs)
class convertCases a :: !ConvertInfo !a !*ConvertState -> (!a, !*ConvertState)
instance convertCases [a] | convertCases a
where
convertCases ci l cs = mapSt (convertCases ci) l cs
instance convertCases (a,b) | convertCases a & convertCases b
where
convertCases ci t cs
= app2St (convertCases ci, convertCases ci) t cs
instance convertCases (Bind a b) | convertCases a
where
convertCases ci bind=:{bind_src} cs
# (bind_src, cs) = convertCases ci bind_src cs
= ({ bind & bind_src = bind_src }, cs)
instance convertCases LetBind
where
convertCases ci bind=:{lb_src} cs
# (lb_src, cs) = convertCases ci lb_src cs
= ({ bind & lb_src = lb_src }, cs)
instance convertCases DynamicExpr
where
convertCases ci dynamik=:{dyn_expr} cs
# (dyn_expr, cs) = convertCases ci dyn_expr cs
= ({ dynamik & dyn_expr = dyn_expr }, cs)
instance convertCases Let
where
convertCases ci=:{ci_bound_vars} lad=:{let_strict_binds,let_lazy_binds,let_expr,let_info_ptr} cs
# (let_strict_binds,let_lazy_binds,ci,cs) = convert_let_binds let_strict_binds let_lazy_binds let_info_ptr ci cs
# (let_expr, cs) = convertCases ci let_expr cs
= ({ lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr }, cs)
/*
convertCases ci=:{ci_bound_vars} lad=:{let_strict_binds,let_lazy_binds,let_expr,let_info_ptr} cs=:{cs_expr_heap}
# (let_info, cs_expr_heap) = readPtr let_info_ptr cs_expr_heap
cs = { cs & cs_expr_heap = cs_expr_heap }
= case let_info of
EI_LetType let_type
# ci_bound_vars = addLetVars (let_strict_binds ++ let_lazy_binds) let_type ci_bound_vars
# (let_strict_binds, cs) = convertCases {ci & ci_bound_vars=ci_bound_vars} let_strict_binds cs
# (let_lazy_binds, cs) = convertCases ci let_lazy_binds cs
# (let_expr, cs) = convertCases ci let_expr cs
-> ({ lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr }, cs)
_
-> abort "convertCases [Let] (convertcases 53)" // <<- let_info
*/
instance convertCases Expression
where
convertCases ci (App app=:{app_args}) cs
# (app_args, cs) = convertCases ci app_args cs
= (App {app & app_args = app_args}, cs)
convertCases ci (fun_expr @ exprs) cs
# ((fun_expr, exprs), cs) = convertCases ci (fun_expr, exprs) cs
= (fun_expr @ exprs, cs)
convertCases ci (Let lad) cs
# (lad, cs) = convertCases ci lad cs
= (Let lad, cs)
convertCases ci (MatchExpr constructor expr) cs
# (expr, cs) = convertCases ci expr cs
= (MatchExpr constructor expr, cs)
convertCases ci (Selection is_unique expr selectors) cs
# (expr, cs) = convertCases ci expr cs
(selectors, cs) = convertCases ci selectors cs
= (Selection is_unique expr selectors, cs)
convertCases ci (Update expr1 selectors expr2) cs
# (expr1, cs) = convertCases ci expr1 cs
(selectors, cs) = convertCases ci selectors cs
(expr2, cs) = convertCases ci expr2 cs
= (Update expr1 selectors expr2, cs)
convertCases ci (RecordUpdate cons_symbol expr exprs) cs
# (expr, cs) = convertCases ci expr cs
(exprs, cs) = convertCases ci exprs cs
= (RecordUpdate cons_symbol expr exprs, cs)
convertCases ci (TupleSelect tuple_symbol arg_nr expr) cs
# (expr, cs) = convertCases ci expr cs
= (TupleSelect tuple_symbol arg_nr expr, cs)
convertCases ci (Case case_expr) cs
// this is a case on a non-root position
# {ss_expr_heap, ss_var_heap}
= findSplitCases {si_next_alt=No, si_force_next_alt=False} case_expr
{ss_var_heap=cs.cs_var_heap,ss_expr_heap = cs.cs_expr_heap}
cs
= {cs & cs_var_heap=ss_var_heap, cs_expr_heap = ss_expr_heap}
= convertNonRootCase ci case_expr cs
convertCases ci (FailExpr ident) cs
# (failExpr, cs)
= convertNonRootFail ci ident cs
= (failExpr, cs)
convertCases ci expr cs
= (expr, cs)
instance convertCases Selection
where
convertCases ci (DictionarySelection record selectors expr_ptr index_expr) cs
# (index_expr, cs) = convertCases ci index_expr cs
(selectors, cs) = convertCases ci selectors cs
= (DictionarySelection record selectors expr_ptr index_expr, cs)
convertCases ci (ArraySelection selector expr_ptr index_expr) cs
# (index_expr, cs) = convertCases ci index_expr cs
= (ArraySelection selector expr_ptr index_expr, cs)
convertCases ci selector cs
= (selector, cs)
convertNonRootFail ci=:{ci_bound_vars, ci_group_index, ci_common_defs} ident cs
# result_type
= { at_attribute = TA_None
, at_type = TV {tv_ident = { id_name = "a", id_info = nilPtr }, tv_info_ptr = nilPtr}
}
# (fun_ident, cs)
= new_case_function (Yes ident) result_type (FailExpr ident) [] []
ci_bound_vars ci_group_index ci_common_defs cs
= (App { app_symb = fun_ident, app_args = [], app_info_ptr = nilPtr }, cs)
convertNonRootCase ci=:{ci_bound_vars, ci_group_index, ci_common_defs} kees=:{ case_expr, case_ident, case_info_ptr} cs
# (is_degenerate, defoult)
= case_is_degenerate kees
| is_degenerate
# (EI_CaseTypeAndSplits case_type _, cs_expr_heap) = readPtr case_info_ptr cs.cs_expr_heap
cs = { cs & cs_expr_heap = cs_expr_heap }
(defoult, cs) = convertRootCases {ci & ci_case_level=CaseLevelRoot} defoult cs
(act_vars, form_vars, local_vars, caseExpr, old_fv_info_ptr_values,cs_var_heap)
= copy_case_expr ci_bound_vars defoult cs.cs_var_heap
cs = { cs & cs_var_heap = cs_var_heap}
(fun_ident, cs) = new_case_function_and_restore_old_fv_info_ptr_values case_ident case_type.ct_result_type caseExpr
form_vars local_vars
ci_bound_vars old_fv_info_ptr_values ci_group_index ci_common_defs cs
= (App { app_symb = fun_ident, app_args = act_vars, app_info_ptr = nilPtr }, cs)
// otherwise
# (EI_CaseTypeAndSplits case_type splits, cs_expr_heap) = readPtr case_info_ptr cs.cs_expr_heap
cs_expr_heap = writePtr case_info_ptr (EI_CaseTypeAndSplits case_type {splits & sic_case_kind=CaseKindLeave}) cs_expr_heap
cs = { cs & cs_expr_heap = cs_expr_heap }
# (new_info_ptr, cs_var_heap) = newPtr (VI_LocalVar) cs.cs_var_heap
cs = { cs & cs_var_heap = cs_var_heap}
= case case_expr of
Var var=:{var_ident,var_info_ptr}
# var_id = {id_name = var_ident.id_name, id_info = nilPtr}
case_var = Var {var_ident = var_id, var_info_ptr = new_info_ptr, var_expr_ptr = nilPtr}
case_free_var = { fv_def_level = NotALevel, fv_ident = var_id, fv_info_ptr = new_info_ptr, fv_count = 0}
# kees = {kees & case_expr=case_var, case_explicit=False}
(caseExpr, cs) = convertRootCases {ci & ci_case_level=CaseLevelRoot} (Case kees) cs
(not__x_variable,act_vars, form_vars, local_vars, caseExpr, old_fv_info_ptr_values,cs_var_heap)
= copy_case_expr_and_use_new_var ci_bound_vars var new_info_ptr caseExpr cs.cs_var_heap
cs = { cs & cs_var_heap = cs_var_heap}
| not__x_variable
# (fun_ident, cs) = new_case_function_and_restore_old_fv_info_ptr_values case_ident case_type.ct_result_type caseExpr
form_vars local_vars
ci_bound_vars old_fv_info_ptr_values ci_group_index ci_common_defs cs
= (App { app_symb = fun_ident, app_args = act_vars, app_info_ptr = nilPtr }, cs)
# (fun_ident, cs) = new_case_function_and_restore_old_fv_info_ptr_values case_ident case_type.ct_result_type caseExpr
[(case_free_var, case_type.ct_pattern_type) : form_vars] local_vars
ci_bound_vars old_fv_info_ptr_values ci_group_index ci_common_defs cs
= (App { app_symb = fun_ident, app_args = [case_expr : act_vars], app_info_ptr = nilPtr }, cs)
_
# var_id = {id_name = "_x", id_info = nilPtr}
case_var = Var {var_ident = var_id, var_info_ptr = new_info_ptr, var_expr_ptr = nilPtr}
case_free_var = { fv_def_level = NotALevel, fv_ident = var_id, fv_info_ptr = new_info_ptr, fv_count = 0}
# kees = {kees & case_expr=case_var, case_explicit=False}
(case_expr, cs) = convertCases ci case_expr cs
(caseExpr, cs) = convertRootCases {ci & ci_case_level=CaseLevelRoot} (Case kees) cs
(act_vars, form_vars, local_vars, caseExpr, old_fv_info_ptr_values,cs_var_heap)
= copy_case_expr ci_bound_vars caseExpr cs.cs_var_heap
cs = { cs & cs_var_heap = cs_var_heap}
# (fun_ident, cs) = new_case_function_and_restore_old_fv_info_ptr_values case_ident case_type.ct_result_type caseExpr
[(case_free_var, case_type.ct_pattern_type) : form_vars] local_vars
ci_bound_vars old_fv_info_ptr_values ci_group_index ci_common_defs cs
= (App { app_symb = fun_ident, app_args = [case_expr : act_vars], app_info_ptr = nilPtr }, cs)
where
case_is_degenerate {case_guards = AlgebraicPatterns _ [], case_default=Yes defoult}
= (True, defoult)
case_is_degenerate {case_guards = BasicPatterns _ [], case_default=Yes defoult}
= (True, defoult)
case_is_degenerate {case_guards = OverloadedListPatterns _ _ [], case_default=Yes defoult}
= (True, defoult)
case_is_degenerate _
= (False, undef)
copy_case_expr bound_vars guards_and_default var_heap
# (old_fv_info_ptr_values,var_heap) = store_VI_BoundVar_in_bound_vars_and_save_old_values bound_vars [] var_heap
(expr, {cp_free_vars, cp_var_heap, cp_local_vars}) = copy guards_and_default { cp_free_vars = [], cp_var_heap = var_heap, cp_local_vars = [] }
(bound_vars, free_typed_vars, var_heap) = retrieve_variables cp_free_vars cp_var_heap
= (bound_vars, free_typed_vars, cp_local_vars, expr, old_fv_info_ptr_values,var_heap)
// -*-> ("copy_case_expr", length bound_vars, length free_typed_vars)
copy_case_expr_and_use_new_var bound_vars {var_ident,var_info_ptr} new_info_ptr guards_and_default var_heap
# (old_fv_info_ptr_values,var_heap) = store_VI_BoundVar_in_bound_vars_and_save_old_values bound_vars [] var_heap
# (var_info, var_heap) = readPtr var_info_ptr var_heap
= case var_info of
VI_BoundVar type
# var_heap = var_heap <:= (var_info_ptr, VI_FreeVar var_ident new_info_ptr 0 type)
(expr, {cp_free_vars, cp_var_heap, cp_local_vars}) = copy guards_and_default { cp_free_vars = [(var_info_ptr, type)], cp_var_heap = var_heap, cp_local_vars = [] }
(bound_vars, free_typed_vars, var_heap) = retrieve_variables cp_free_vars cp_var_heap
-> (True,bound_vars, free_typed_vars, cp_local_vars, expr, old_fv_info_ptr_values,var_heap)
VI_LocalVar
# (expr, {cp_free_vars, cp_var_heap, cp_local_vars}) = copy guards_and_default { cp_free_vars = [], cp_var_heap = var_heap, cp_local_vars = [] }
(bound_vars, free_typed_vars, var_heap) = retrieve_variables cp_free_vars cp_var_heap
-> (False,bound_vars, free_typed_vars, cp_local_vars, expr, old_fv_info_ptr_values,var_heap)
store_VI_BoundVar_in_bound_vars_and_save_old_values [({fv_info_ptr},type):bound_vars] old_fv_info_ptr_values var_heap
# (old_fv_info_ptr_value,var_heap)=readPtr fv_info_ptr var_heap
# var_heap=writePtr fv_info_ptr (VI_BoundVar type) var_heap
# (old_fv_info_ptr_values,var_heap) = store_VI_BoundVar_in_bound_vars_and_save_old_values bound_vars old_fv_info_ptr_values var_heap
= ([old_fv_info_ptr_value:old_fv_info_ptr_values],var_heap)
store_VI_BoundVar_in_bound_vars_and_save_old_values [] old_fv_info_ptr_values var_heap
= (old_fv_info_ptr_values,var_heap)
retrieve_variables cp_free_vars cp_var_heap
= foldSt retrieve_variable cp_free_vars ([], [], cp_var_heap)
where
retrieve_variable (var_info_ptr, type) (bound_vars, free_typed_vars, var_heap)
# (VI_FreeVar name new_ptr count type, var_heap) = readPtr var_info_ptr var_heap
= ( [Var { var_ident = name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr} : bound_vars],
[({ fv_def_level = NotALevel, fv_ident = name, fv_info_ptr = new_ptr, fv_count = count }, type) : free_typed_vars], var_heap)
new_case_function_and_restore_old_fv_info_ptr_values opt_id result_type rhs free_vars local_vars
bound_vars old_fv_info_ptr_values group_index common_defs cs
# (fun_ident,cs) = new_case_function opt_id result_type rhs free_vars local_vars
bound_vars group_index common_defs cs
# cs_var_heap=restore_old_fv_info_ptr_values old_fv_info_ptr_values bound_vars cs.cs_var_heap
= (fun_ident,{ cs & cs_var_heap = cs_var_heap});
where
restore_old_fv_info_ptr_values [old_fv_info_ptr_value:old_fv_info_ptr_values] [({fv_info_ptr},type):bound_vars] var_heap
# var_heap=writePtr fv_info_ptr old_fv_info_ptr_value var_heap
= restore_old_fv_info_ptr_values old_fv_info_ptr_values bound_vars var_heap
restore_old_fv_info_ptr_values [] bound_vars var_heap
= var_heap
new_case_function opt_id result_type rhs free_vars local_vars
bound_vars group_index common_defs cs=:{cs_expr_heap}
# body
= TransformedBody {tb_args=[var \\ (var, _) <- free_vars], tb_rhs=rhs}
(_,type)
= removeAnnotations
{ st_vars = []
, st_args = [ type \\ (_, type) <- free_vars]
, st_args_strictness=NotStrict
, st_arity = length free_vars
, st_result = result_type
, st_context = []
, st_attr_vars = []
, st_attr_env = []
}
// (body, cs)
// = convertCasesInBody body (Yes type) group_index common_defs cs
# (fun_ident, (cs_next_fun_nr, cs_new_functions, cs_fun_heap))
= newFunctionWithType opt_id body local_vars type group_index
(cs.cs_next_fun_nr, cs.cs_new_functions, cs.cs_fun_heap)
= (fun_ident, { cs & cs_fun_heap = cs_fun_heap, cs_next_fun_nr = cs_next_fun_nr, cs_new_functions = cs_new_functions })
splitGuards :: CasePatterns -> [CasePatterns]
splitGuards (AlgebraicPatterns index patterns)
= [AlgebraicPatterns index [pattern] \\ pattern <- patterns]
splitGuards (BasicPatterns basicType patterns)
= [BasicPatterns basicType [pattern] \\ pattern <- patterns]
splitGuards (OverloadedListPatterns type decons_expr patterns)
= [OverloadedListPatterns type decons_expr [pattern] \\ pattern <- patterns]
:: TypedVariable =
{ tv_free_var :: !FreeVar
, tv_type :: !AType
}
copyExpression :: ![TypedVariable] !Expression !*VarHeap -> (![Expression], ![TypedVariable], ![FreeVar], !Expression, !*VarHeap)
copyExpression bound_vars expr var_heap
# var_heap = foldSt (\{tv_free_var={fv_info_ptr},tv_type} -> writePtr fv_info_ptr (VI_BoundVar tv_type)) bound_vars var_heap
(expr, {cp_free_vars, cp_var_heap, cp_local_vars}) = copy expr { cp_free_vars = [], cp_var_heap = var_heap, cp_local_vars = [] }
(bound_vars, free_typed_vars, var_heap) = foldSt retrieve_variable cp_free_vars ([], [], cp_var_heap)
= (bound_vars, free_typed_vars, cp_local_vars, expr, var_heap)
where
retrieve_variable (var_info_ptr, type) (bound_vars, free_typed_vars, var_heap)
# (VI_FreeVar name new_ptr count type, var_heap) = readPtr var_info_ptr var_heap
= ( [Var { var_ident = name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr} : bound_vars],
[{tv_free_var = { fv_def_level = NotALevel, fv_ident = name, fv_info_ptr = new_ptr, fv_count = count }, tv_type = type} : free_typed_vars], var_heap)
:: CopyState =
{ cp_free_vars :: ![(VarInfoPtr,AType)]
, cp_local_vars :: ![FreeVar]
, cp_var_heap :: !.VarHeap
}
class copy e :: !e !*CopyState -> (!e, !*CopyState)
instance copy BoundVar
where
copy var=:{var_ident,var_info_ptr} cp_info=:{cp_var_heap}
# (var_info, cp_var_heap) = readPtr var_info_ptr cp_var_heap
cp_info = { cp_info & cp_var_heap = cp_var_heap }
= case var_info of
VI_FreeVar name new_info_ptr count type
-> ({ var & var_info_ptr = new_info_ptr },
{ cp_info & cp_var_heap = cp_info.cp_var_heap <:= (var_info_ptr, VI_FreeVar name new_info_ptr (inc count) type)})
-*-> ("copy: VI_FreeVar", var_ident.id_name, ptrToInt var_info_ptr)
VI_LocalVar
-> (var, cp_info)
-*-> ("copy: VI_LocalVar", var_ident.id_name)
VI_BoundVar type
# (new_info_ptr, cp_var_heap) = newPtr (VI_Labelled_Empty "copy [BoundVar]") cp_info.cp_var_heap // RWS ???
-> ({ var & var_info_ptr = new_info_ptr },
{ cp_info & cp_free_vars = [ (var_info_ptr, type) : cp_info.cp_free_vars ],
cp_var_heap = cp_var_heap <:= (var_info_ptr, VI_FreeVar var_ident new_info_ptr 1 type) })
-*-> ("copy: VI_BoundVar", var_ident.id_name, ptrToInt new_info_ptr)
_
// | True <<- ("copy BoundVar", var_ident.id_name, ptrToInt var_info_ptr, var_info)
// -> (var,cp_info)
-> abort "copy [BoundVar] (convertcases, 612)" // <<- ("copy BoundVar", var_ident.id_name, ptrToInt var_info_ptr, var_info)
instance copy Expression
where
copy (Var var) cp_info
# (var, cp_info) = copy var cp_info
= (Var var, cp_info)
copy (App app=:{app_args}) cp_info
# (app_args, cp_info) = copy app_args cp_info
= (App {app & app_args = app_args}, cp_info)
copy (fun_expr @ exprs) cp_info
# ((fun_expr, exprs), cp_info) = copy (fun_expr, exprs) cp_info
= (fun_expr @ exprs, cp_info)
copy (Let lad=:{let_strict_binds,let_lazy_binds, let_expr}) cp_info=:{cp_var_heap, cp_local_vars}
# (cp_local_vars, cp_var_heap) = foldSt bind_let_var let_strict_binds (cp_local_vars, cp_var_heap)
# (cp_local_vars, cp_var_heap) = foldSt bind_let_var let_lazy_binds (cp_local_vars, cp_var_heap)
# (let_strict_binds, cp_info) = copy let_strict_binds {cp_info & cp_var_heap = cp_var_heap, cp_local_vars = cp_local_vars }
# (let_lazy_binds, cp_info) = copy let_lazy_binds cp_info
# (let_expr, cp_info) = copy let_expr cp_info
= (Let {lad & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr }, cp_info)
where
bind_let_var {lb_dst} (local_vars, var_heap)
= ([lb_dst : local_vars], var_heap <:= (lb_dst.fv_info_ptr, VI_LocalVar))
copy (Case case_expr) cp_info
# (case_expr, cp_info) = copy case_expr cp_info
= (Case case_expr, cp_info)
copy (Conditional cond) cp_info
# (cond, cp_info) = copy cond cp_info
= (Conditional cond, cp_info)
copy expr=:(BasicExpr _) cp_info
= (expr, cp_info)
copy (MatchExpr constructor expr) cp_info
# (expr, cp_info) = copy expr cp_info
= (MatchExpr constructor expr, cp_info)
copy (Selection is_unique expr selectors) cp_info
# (expr, cp_info) = copy expr cp_info
(selectors, cp_info) = copy selectors cp_info
= (Selection is_unique expr selectors, cp_info)
copy (Update expr1 selectors expr2) cp_info
# (expr1, cp_info) = copy expr1 cp_info
(selectors, cp_info) = copy selectors cp_info
(expr2, cp_info) = copy expr2 cp_info
= (Update expr1 selectors expr2, cp_info)
copy (RecordUpdate cons_symbol expr exprs) cp_info
# (expr, cp_info) = copy expr cp_info
(exprs, cp_info) = copy exprs cp_info
= (RecordUpdate cons_symbol expr exprs, cp_info)
copy (TupleSelect tuple_symbol arg_nr expr) cp_info
# (expr, cp_info) = copy expr cp_info
= (TupleSelect tuple_symbol arg_nr expr, cp_info)
copy fail=:(FailExpr _) cp_info
= (fail, cp_info)
copy EE cp_info
= (EE, cp_info)
copy (NoBind ptr) cp_info
= (NoBind ptr, cp_info)
copy expr cp_info
= abort ("copy (Expression) does not match" ->> expr)
instance copy (Optional a) | copy a
where
copy (Yes expr) cp_info
# (expr, cp_info) = copy expr cp_info
= (Yes expr, cp_info)
copy No cp_info
= (No, cp_info)
instance copy Selection
where
copy (DictionarySelection record selectors expr_ptr index_expr) cp_info
# (index_expr, cp_info) = copy index_expr cp_info
(selectors, cp_info) = copy selectors cp_info
(record, cp_info) = copy record cp_info
= (DictionarySelection record selectors expr_ptr index_expr, cp_info)
copy (ArraySelection selector expr_ptr index_expr) cp_info
# (index_expr, cp_info) = copy index_expr cp_info
= (ArraySelection selector expr_ptr index_expr, cp_info)
copy selector cp_info
= (selector, cp_info)
instance copy Case
where
copy this_case=:{case_expr, case_guards, case_default, case_info_ptr} cp_info
# ((case_expr,(case_guards,case_default)), cp_info) = copy (case_expr,(case_guards,case_default)) cp_info
= ({ this_case & case_expr = case_expr, case_guards = case_guards, case_default = case_default}, cp_info)
instance copy Conditional
where
copy cond=:{if_cond, if_then, if_else} cp_info
# ((if_cond,(if_then, if_else)), cp_info) = copy (if_cond,(if_then, if_else)) cp_info
= ({ cond & if_cond=if_cond, if_then=if_then, if_else=if_else}, cp_info)
instance copy CasePatterns
where
copy (AlgebraicPatterns type patterns) cp_info
# (patterns, cp_info) = copy patterns cp_info
= (AlgebraicPatterns type patterns, cp_info)
copy (BasicPatterns type patterns) cp_info
# (patterns, cp_info) = copy patterns cp_info
= (BasicPatterns type patterns, cp_info)
copy (OverloadedListPatterns type decons_expr patterns) cp_info
# (patterns, cp_info) = copy patterns cp_info
# (decons_expr, cp_info) = copy decons_expr cp_info
= (OverloadedListPatterns type decons_expr patterns, cp_info)
instance copy AlgebraicPattern
where
copy pattern=:{ap_vars,ap_expr} cp_info=:{cp_local_vars, cp_var_heap}
# (cp_local_vars, cp_var_heap) = foldSt bind_pattern_var ap_vars (cp_local_vars, cp_var_heap)
# (ap_expr, cp_info) = copy ap_expr { cp_info & cp_local_vars = cp_local_vars, cp_var_heap = cp_var_heap}
= ({ pattern & ap_expr = ap_expr }, cp_info)
where
bind_pattern_var pattern_var=:{fv_info_ptr} (local_vars, var_heap)
= ([pattern_var : local_vars], var_heap <:= (fv_info_ptr, VI_LocalVar))
instance copy BasicPattern
where
copy pattern=:{bp_expr} cp_info
# (bp_expr, cp_info) = copy bp_expr cp_info
= ({ pattern & bp_expr = bp_expr }, cp_info)
instance copy [a] | copy a
where
copy l cp_info = mapSt copy l cp_info
instance copy (a,b) | copy a & copy b
where
copy t cp_info = app2St (copy, copy) t cp_info
instance copy LetBind
where
copy bind=:{lb_src} cp_info
# (lb_src, cp_info) = copy lb_src cp_info
= ({ bind & lb_src = lb_src }, cp_info)
instance copy (Bind a b) | copy a
where
copy bind=:{bind_src} cp_info
# (bind_src, cp_info) = copy bind_src cp_info
= ({ bind & bind_src = bind_src }, cp_info)
instance <<< ExprInfo
where
(<<<) file EI_Empty = file <<< "*Empty*"
(<<<) file (EI_CaseType _) = file <<< "CaseType"
instance <<< (Ptr a)
where
(<<<) file ptr = file <<< ptrToInt ptr
/*
instance <<< FunctionBody
where
(<<<) file (TransformedBody {tb_rhs}) = file <<< tb_rhs
instance <<< CountedVariable
where
(<<<) file {cv_variable,cv_count} = file <<< '<' <<< cv_variable <<< ',' <<< cv_count <<< '>'
*/
(-*->) infixl
(-*->) a b :== a // ---> b
//import RWSDebug
(->>) infixl
(->>) a b :== a // ---> b
(<<-) infixl
(<<-) a b :== a // ---> b