implementation module comparedefimp
/* compare definition and implementation module
Difficulty: The icl module's type definitions have been tranformed during checking while
the dcl module's type definitions have not. When the root of the rhs of a (icl) type definition was
originally an application of a synonym type then this type will have been expanded. The comparision
algorithm performs expansion of _dcl_ synonym types 'on the fly' by binding lhs argument type variables
to the types of the actual type application. e.g.
dcl: icl:
:: T1 :== T2 Int :: T1 :== Int // previously expanded, was originally :: T1 :== T2 Int
:: T2 x :== x :: T2 y :== y
causes x to be bound to Int while processing type T1.
While T2 is processed x and y will be bound to a correspondence number to abstract from variable names
(see type HeapWithNumber). The same happens with attribute variables and variables in macros/functions.
*/
import syntax, checksupport, compare_constructor, utilities, StdCompare
import RWSDebug
:: TypesCorrespondState =
{ tc_type_vars
:: !.HeapWithNumber TypeVarInfo
, tc_attr_vars
:: !.HeapWithNumber AttrVarInfo
, tc_dcl_modules
:: !.{#DclModule}
, tc_icl_type_defs
:: !{CheckedTypeDef}
, tc_type_conversions
:: !Conversions
, tc_visited_syn_types // to detect cycles in type synonyms
:: !.{#Bool}
, tc_main_dcl_module_n
:: !Int
}
:: TypesCorrespondMonad
:== !*TypesCorrespondState -> *(!Bool, !*TypesCorrespondState)
:: ExpressionsCorrespondState =
{ ec_correspondences // ec_correspondences.[i]==j <=> (functions i and j are already compared
:: !.{# Int } // || j==cNoCorrespondence)
, ec_var_heap
:: !.HeapWithNumber VarInfo
, ec_expr_heap
:: !.ExpressionHeap
, ec_icl_functions
:: !.{# FunDef }
, ec_error_admin
:: !.ErrorAdmin
, ec_tc_state
:: !.TypesCorrespondState
, ec_untransformed
:: !{! FunctionBody }
}
:: ExpressionsCorrespondMonad
:== !*ExpressionsCorrespondState -> *ExpressionsCorrespondState
:: Conversions :== {#Index}
:: HeapWithNumber a
= { hwn_heap
:: !.Heap a
, hwn_number
:: !Int
}
:: OptionalCorrespondenceNumber = CorrespondenceNumber !Int | Bound | Unbound
class t_corresponds a :: !a !a -> *TypesCorrespondMonad
// whether two types correspond
class e_corresponds a :: !a !a -> ExpressionsCorrespondMonad
// check for correspondence of expressions
class getIdentPos a :: a -> IdentPos
class CorrespondenceNumber a where
toCorrespondenceNumber :: .a -> OptionalCorrespondenceNumber
fromCorrespondenceNumber :: Int -> .a
initial_hwn hwn_heap = { hwn_heap = hwn_heap, hwn_number = 0 }
compareDefImp :: !{#Int} !{!FunctionBody} !Int !*{# DclModule} !*IclModule !*Heaps !*ErrorAdmin
-> (!.{# DclModule}, !.IclModule,!.Heaps,!.ErrorAdmin)
compareDefImp size_uncopied_icl_defs untransformed main_dcl_module_n dcl_modules icl_module heaps error_admin
// icl definitions with indices >= size_uncopied_icl_defs.[def_type] don't have to be compared,
// because they are copies of definitions that appear exclusively in the dcl module
// # (main_dcl_module, dcl_modules) = dcl_modules![cIclModIndex]
# (main_dcl_module, dcl_modules) = dcl_modules![main_dcl_module_n]
= case main_dcl_module.dcl_conversions of
No -> (dcl_modules, icl_module, heaps, error_admin)
Yes conversion_table
# {dcl_functions, dcl_macros, dcl_common, dcl_instances} = main_dcl_module
{icl_common, icl_functions}
= icl_module
{hp_var_heap, hp_expression_heap, hp_type_heaps={th_vars, th_attrs}}
= heaps
{ com_type_defs=icl_com_type_defs, com_cons_defs=icl_com_cons_defs,
com_selector_defs=icl_com_selector_defs, com_class_defs=icl_com_class_defs,
com_member_defs=icl_com_member_defs, com_instance_defs = icl_com_instance_defs }
= icl_common
(icl_type_defs, icl_com_type_defs) = memcpy icl_com_type_defs
tc_state
= { tc_type_vars = initial_hwn th_vars
, tc_attr_vars = initial_hwn th_attrs
, tc_dcl_modules = dcl_modules
, tc_icl_type_defs = icl_type_defs
, tc_type_conversions = conversion_table.[cTypeDefs]
, tc_visited_syn_types = createArray (size dcl_common.com_type_defs) False
, tc_main_dcl_module_n = main_dcl_module_n
}
(icl_com_type_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cTypeDefs] conversion_table.[cTypeDefs]
dcl_common.com_type_defs icl_com_type_defs tc_state error_admin
(icl_com_cons_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cConstructorDefs] conversion_table.[cConstructorDefs]
dcl_common.com_cons_defs icl_com_cons_defs tc_state error_admin
(icl_com_selector_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cSelectorDefs] conversion_table.[cSelectorDefs]
dcl_common.com_selector_defs icl_com_selector_defs tc_state error_admin
(icl_com_class_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cClassDefs] conversion_table.[cClassDefs]
dcl_common.com_class_defs icl_com_class_defs tc_state error_admin
(icl_com_member_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cMemberDefs] conversion_table.[cMemberDefs]
dcl_common.com_member_defs icl_com_member_defs tc_state error_admin
(icl_com_instance_defs, tc_state, error_admin)
= compareWithConversions
size_uncopied_icl_defs.[cInstanceDefs] conversion_table.[cInstanceDefs]
dcl_common.com_instance_defs icl_com_instance_defs tc_state error_admin
(icl_functions, hp_var_heap, hp_expression_heap, tc_state, error_admin)
= compareMacrosWithConversion conversion_table.[cMacroDefs] dcl_macros untransformed
icl_functions hp_var_heap hp_expression_heap tc_state error_admin
(icl_functions, tc_state, error_admin)
= compareFunctionTypesWithConversions conversion_table.[cFunctionDefs]
dcl_functions icl_functions tc_state error_admin
{ tc_type_vars, tc_attr_vars, tc_dcl_modules }
= tc_state
icl_common
= { icl_common & com_type_defs=icl_com_type_defs, com_cons_defs=icl_com_cons_defs,
com_selector_defs=icl_com_selector_defs, com_class_defs=icl_com_class_defs,
com_member_defs=icl_com_member_defs, com_instance_defs = icl_com_instance_defs }
heaps
= { hp_var_heap = hp_var_heap, hp_expression_heap = hp_expression_heap,
hp_type_heaps = { th_vars = tc_type_vars.hwn_heap, th_attrs = tc_attr_vars.hwn_heap}}
-> ( tc_dcl_modules, { icl_module & icl_common = icl_common, icl_functions = icl_functions },
heaps, error_admin )
where
memcpy :: !*{#CheckedTypeDef} -> (!.{CheckedTypeDef}, !.{#CheckedTypeDef})
memcpy original
#! size = size original
# new = createArray size (abort "don't make that array strict !")
= iFoldSt (\i (dst, src=:{[i]=src_i}) -> ({ dst & [i] = src_i }, src)) 0 size (new, original)
compareWithConversions size_uncopied_icl_defs conversions dclDefs iclDefs tc_state error_admin
= iFoldSt (compareWithConversion size_uncopied_icl_defs conversions dclDefs) 0 (size conversions)
(iclDefs, tc_state, error_admin)
compareWithConversion :: !Int !{#Int} !(b c) !Int !(!u:(b c), !*TypesCorrespondState, !*ErrorAdmin)
-> (!v:(b c), !.TypesCorrespondState, !.ErrorAdmin)
//1.3
| Array .b & getIdentPos , select_u , t_corresponds , uselect_u c, [u <= v]
//3.1
/*2.0
| Array b c & t_corresponds, getIdentPos c, [u <= v]
0.2*/
compareWithConversion size_uncopied_icl_defs conversions dclDefs dclIndex (iclDefs, tc_state, error_admin)
# icl_index = conversions.[dclIndex]
| icl_index>=size_uncopied_icl_defs
= (iclDefs, tc_state, error_admin)
# (iclDef, iclDefs) = iclDefs![icl_index]
(corresponds, tc_state) = t_corresponds dclDefs.[dclIndex] iclDef tc_state
| corresponds
= (iclDefs, tc_state, error_admin)
= generate_error error_message iclDef iclDefs tc_state error_admin
compareFunctionTypesWithConversions conversions dcl_fun_types icl_functions tc_state error_admin
= iFoldSt (compareTwoFunctionTypes conversions dcl_fun_types) 0 (size conversions)
(icl_functions, tc_state, error_admin)
compareTwoFunctionTypes :: !{#Int} !{#FunType} !Int !*(!u:{#FunDef},!*TypesCorrespondState,!*ErrorAdmin)
-> (!v:{#FunDef},!.TypesCorrespondState,!.ErrorAdmin) , [u <= v]
compareTwoFunctionTypes conversions dcl_fun_types dclIndex (icl_functions, tc_state, error_admin)
# (fun_def=:{fun_type}, icl_functions) = icl_functions![conversions.[dclIndex]]
= case fun_type of
No -> generate_error "type of exported function is missing" fun_def icl_functions tc_state error_admin
Yes icl_symbol_type
# dcl_symbol_type = dcl_fun_types.[dclIndex].ft_type
tc_state = init_attr_vars (dcl_symbol_type.st_attr_vars++icl_symbol_type.st_attr_vars)
tc_state
tc_state = init_type_vars (dcl_symbol_type.st_vars++icl_symbol_type.st_vars) tc_state
(corresponds, tc_state)
= t_corresponds dcl_symbol_type icl_symbol_type tc_state // --->("comparing:", dcl_symbol_type ,icl_symbol_type)
| corresponds
-> (icl_functions, tc_state, error_admin)
-> generate_error error_message fun_def icl_functions tc_state error_admin
init_type_vars type_vars tc_state=:{tc_type_vars}
# tc_type_vars = init_type_vars` type_vars tc_type_vars
= { tc_state & tc_type_vars = tc_type_vars }
where
init_type_vars` type_vars tc_type_vars=:{hwn_heap}
# hwn_heap = foldSt init_type_var type_vars hwn_heap
= { tc_type_vars & hwn_heap = hwn_heap }
init_type_var {tv_info_ptr} heap
= writePtr tv_info_ptr TVI_Empty heap
generate_error message iclDef iclDefs tc_state error_admin
# ident_pos = getIdentPos iclDef
error_admin = pushErrorAdmin ident_pos error_admin
error_admin = checkError ident_pos.ip_ident message error_admin
= (iclDefs, tc_state, popErrorAdmin error_admin)
compareMacrosWithConversion conversions macro_range untransformed icl_functions var_heap expr_heap tc_state error_admin
#! nr_of_functions = size icl_functions
# correspondences = createArray nr_of_functions cNoCorrespondence
ec_state = { ec_correspondences = correspondences, ec_var_heap = initial_hwn var_heap,
ec_expr_heap = expr_heap, ec_icl_functions = icl_functions,
ec_error_admin = error_admin, ec_tc_state = tc_state,
ec_untransformed = untransformed }
ec_state = iFoldSt (compareMacroWithConversion conversions macro_range.ir_from) macro_range.ir_from macro_range.ir_to
ec_state
{ec_icl_functions, ec_var_heap, ec_expr_heap, ec_error_admin, ec_tc_state} = ec_state
= (ec_icl_functions, ec_var_heap.hwn_heap, ec_expr_heap, ec_tc_state, ec_error_admin)
compareMacroWithConversion conversions ir_from dclIndex ec_state
= compareTwoMacroFuns dclIndex conversions.[dclIndex-ir_from] ec_state
compareTwoMacroFuns :: !.Int !.Int !*ExpressionsCorrespondState -> .ExpressionsCorrespondState;
compareTwoMacroFuns dclIndex iclIndex
ec_state=:{ec_correspondences, ec_icl_functions, ec_untransformed}
| dclIndex==iclIndex
= ec_state
# (dcl_function, ec_icl_functions) = ec_icl_functions![dclIndex]
(icl_function, ec_icl_functions) = ec_icl_functions![iclIndex]
ec_correspondences = { ec_correspondences & [dclIndex]=iclIndex, [iclIndex]=dclIndex }
ec_state = { ec_state & ec_correspondences = ec_correspondences, ec_icl_functions = ec_icl_functions }
need_to_be_compared
= case (dcl_function.fun_body, icl_function.fun_body) of
(TransformedBody _, CheckedBody _)
// the macro definition in the icl module is not used, so we don't need to compare
-> False
_ -> True
| not need_to_be_compared
= ec_state
# adjusted_icl_body
= case (dcl_function.fun_body, icl_function.fun_body) of
(CheckedBody _, TransformedBody _)
// the macro definition in the icl module is has been transformed but not the dcl
// module's definition: use the untransformed icl original for comparision
-> ec_untransformed.[iclIndex]
_ -> icl_function.fun_body
ident_pos = getIdentPos dcl_function
ec_error_admin = pushErrorAdmin ident_pos ec_state.ec_error_admin
ec_state = e_corresponds dcl_function.fun_body adjusted_icl_body { ec_state & ec_error_admin = ec_error_admin }
= { ec_state & ec_error_admin = popErrorAdmin ec_state.ec_error_admin }
instance getIdentPos (TypeDef a) where
getIdentPos {td_name, td_pos}
= newPosition td_name td_pos
instance getIdentPos ConsDef where
getIdentPos {cons_symb, cons_pos}
= newPosition cons_symb cons_pos
instance getIdentPos SelectorDef where
getIdentPos {sd_symb, sd_pos}
= newPosition sd_symb sd_pos
instance getIdentPos ClassDef where
getIdentPos {class_name, class_pos}
= newPosition class_name class_pos
instance getIdentPos MemberDef where
getIdentPos {me_symb, me_pos}
= newPosition me_symb me_pos
instance getIdentPos ClassInstance where
getIdentPos {ins_ident, ins_pos}
= newPosition ins_ident ins_pos
instance getIdentPos FunDef where
getIdentPos {fun_symb, fun_pos}
= newPosition fun_symb fun_pos
instance CorrespondenceNumber VarInfo where
toCorrespondenceNumber (VI_CorrespondenceNumber number)
= CorrespondenceNumber number
toCorrespondenceNumber _
// VarInfoPtrs are not initialized in this module. This doesnt harm because VI_CorrespondenceNumber should
// not be used outside this module
= Unbound
fromCorrespondenceNumber number
= VI_CorrespondenceNumber number
instance CorrespondenceNumber TypeVarInfo where
toCorrespondenceNumber (TVI_CorrespondenceNumber number)
= CorrespondenceNumber number
toCorrespondenceNumber TVI_Empty
= Unbound
toCorrespondenceNumber (TVI_AType _)
= Bound
fromCorrespondenceNumber number
= TVI_CorrespondenceNumber number
instance CorrespondenceNumber AttrVarInfo where
toCorrespondenceNumber (AVI_CorrespondenceNumber number)
= CorrespondenceNumber number
toCorrespondenceNumber AVI_Empty
= Unbound
fromCorrespondenceNumber number
= AVI_CorrespondenceNumber number
assignCorrespondenceNumber ptr1 ptr2 {hwn_heap, hwn_number}
= let var_info = fromCorrespondenceNumber hwn_number
in { hwn_heap
= writePtr ptr1 var_info (writePtr ptr2 var_info hwn_heap)
, hwn_number
= hwn_number + 1
}
tryToUnifyVars ptr1 ptr2 heapWithNumber
#! info1 = sreadPtr ptr1 heapWithNumber.hwn_heap
info2 = sreadPtr ptr2 heapWithNumber.hwn_heap
= case (toCorrespondenceNumber info1, toCorrespondenceNumber info2) of
(CorrespondenceNumber number1, CorrespondenceNumber number2)
-> (number1==number2, heapWithNumber)
(Unbound, Unbound)
-> (True, assignCorrespondenceNumber ptr1 ptr2 heapWithNumber)
_ -> (False, heapWithNumber)
instance t_corresponds [a] | t_corresponds a where
t_corresponds [] []
= return True
t_corresponds [dclDef:dclDefs] [iclDef:iclDefs]
= t_corresponds dclDef iclDef
&&& t_corresponds dclDefs iclDefs
t_corresponds _ _
= return False
/*2.0
instance t_corresponds {# a} | t_corresponds a & Array {#} a
0.2*/
//1.3
instance t_corresponds {# a} | ArrayElem , t_corresponds a
//3.1
where
t_corresponds dclArray iclArray
# size_dclArray = size dclArray
| size_dclArray<>size iclArray
= return False
= loop (size_dclArray-1) dclArray iclArray
where
/*2.0
loop :: !Int !{# a} !{# a} -> *TypesCorrespondMonad | t_corresponds a & Array {#} a // 2.0
0.2*/
//1.3
loop :: !Int !{# a} !{# a} -> *TypesCorrespondMonad | t_corresponds, select_u a
//3.1
loop i dclArray iclArray
| i<0
= return True
= t_corresponds dclArray.[i] iclArray.[i]
&&& loop (i-1) dclArray iclArray
instance t_corresponds (Optional a) | t_corresponds a where
t_corresponds No No
= return True
t_corresponds (Yes dclYes) (Yes iclYes)
= t_corresponds dclYes iclYes
t_corresponds _ _
= return False
instance t_corresponds (Global DefinedSymbol) where
t_corresponds dclDef iclDef
= t_corresponds dclDef.glob_object iclDef.glob_object
&&& equal dclDef.glob_module iclDef.glob_module
instance t_corresponds (TypeDef TypeRhs) where
t_corresponds dclDef iclDef
= t_corresponds_TypeDef dclDef iclDef
where
t_corresponds_TypeDef dclDef iclDef tc_state
// | False--->("comparing:", dclDef, iclDef)
// = undef
# tc_state = { tc_state & tc_visited_syn_types.[dclDef.td_index] = True }
tc_state = init_attr_vars dclDef.td_attrs tc_state
tc_state = init_attr_vars iclDef.td_attrs tc_state
tc_state = init_atype_vars dclDef.td_args tc_state
tc_state = init_atype_vars iclDef.td_args tc_state
(corresponds, tc_state) = t_corresponds dclDef.td_args iclDef.td_args tc_state
| not corresponds
= (corresponds, tc_state)
# icl_root_has_anonymous_attr = root_has_anonymous_attr iclDef.td_attribute iclDef.td_rhs
| icl_root_has_anonymous_attr<>root_has_anonymous_attr dclDef.td_attribute dclDef.td_rhs
&& isnt_abstract dclDef.td_rhs
= (False, tc_state)
# coerced_icl_rhs = if icl_root_has_anonymous_attr (coerce iclDef.td_rhs) iclDef.td_rhs
(corresponds, tc_state) = t_corresponds dclDef.td_rhs coerced_icl_rhs tc_state
tc_state = { tc_state & tc_visited_syn_types.[dclDef.td_index] = False }
| not corresponds
= (corresponds, tc_state)
# (corresponds, tc_state) = t_corresponds dclDef.td_context iclDef.td_context tc_state
| not corresponds
= (corresponds, tc_state)
# attributes_correspond = (is_TA_Unique dclDef.td_attribute)==(is_TA_Unique iclDef.td_attribute)
= (attributes_correspond, tc_state)
root_has_anonymous_attr (TA_Var lhs_attr_var) syn_type=:(SynType a_type=:{at_attribute=TA_Var rhs_attr_var})
= rhs_attr_var.av_info_ptr==lhs_attr_var.av_info_ptr
root_has_anonymous_attr _ _
= False
coerce (SynType atype)
= SynType { atype & at_attribute = TA_Anonymous }
isnt_abstract (AbstractType _) = False
isnt_abstract _ = True
is_TA_Unique TA_Unique = True
is_TA_Unique _ = False
instance t_corresponds TypeContext where
t_corresponds dclDef iclDef
= t_corresponds dclDef.tc_class iclDef.tc_class
&&& t_corresponds dclDef.tc_types iclDef.tc_types
instance t_corresponds DefinedSymbol where
t_corresponds dclDef iclDef
= equal dclDef.ds_ident iclDef.ds_ident
instance t_corresponds ATypeVar where
t_corresponds dclDef iclDef
= t_corresponds dclDef.atv_attribute iclDef.atv_attribute
&&& equal dclDef.atv_annotation iclDef.atv_annotation
&&& t_corresponds dclDef.atv_variable iclDef.atv_variable
instance t_corresponds AType where
t_corresponds dclDef iclDef
= t_corresponds_at_type dclDef iclDef
where
t_corresponds_at_type dclDef iclDef tc_state
| dclDef.at_annotation<>iclDef.at_annotation
= (False, tc_state)
# (corresponds, tc_state) = simple_corresponds dclDef iclDef tc_state
| corresponds
= (corresponds, tc_state)
= case dclDef.at_type of
TA dcl_type_symb dcl_args
-> corresponds_with_expanded_syn_type dcl_type_symb.type_index dcl_args iclDef tc_state
TV {tv_info_ptr}
#! x = sreadPtr tv_info_ptr tc_state.tc_type_vars.hwn_heap
-> case x of
TVI_AType dcl_atype
-> t_corresponds { dcl_atype & at_annotation = dclDef.at_annotation } iclDef tc_state
_ -> (False, tc_state)
_ -> (False, tc_state)
where
simple_corresponds dclDef iclDef
= t_corresponds dclDef.at_attribute iclDef.at_attribute
&&& t_corresponds dclDef.at_type iclDef.at_type
corresponds_with_expanded_syn_type {glob_module, glob_object} dclArgs icl_atype
tc_state
// # is_defined_in_main_dcl = glob_module==cIclModIndex
# is_defined_in_main_dcl = glob_module==tc_state.tc_main_dcl_module_n
| is_defined_in_main_dcl && tc_state.tc_visited_syn_types.[glob_object]
= (False, tc_state) // cycle in synonym types in main dcl
# ({dcl_common}, tc_state) = tc_state!tc_dcl_modules.[glob_module]
type_def = dcl_common.com_type_defs.[glob_object]
= case type_def.td_rhs of
SynType {at_type=TV type_var, at_attribute}
// a "projection" type. attributes are treated in a special way
# arg_pos = get_arg_pos type_var type_def.td_args 0
dcl_arg = dclArgs!!arg_pos
coerced_dcl_arg = { dcl_arg & at_attribute = determine_type_attribute type_def.td_attribute }
-> t_corresponds coerced_dcl_arg icl_atype tc_state
SynType atype
# tc_state = { tc_state & tc_type_vars
= bind_type_vars type_def.td_args dclArgs tc_state.tc_type_vars }
tc_state = init_attr_vars type_def.td_attrs tc_state
tc_state = opt_set_visited_bit is_defined_in_main_dcl glob_object True tc_state
atype = { atype & at_attribute = determine_type_attribute type_def.td_attribute }
(corresponds, tc_state) = t_corresponds atype icl_atype tc_state
tc_state = opt_set_visited_bit is_defined_in_main_dcl glob_object False tc_state
-> (corresponds, tc_state)
AbstractType _
| not is_defined_in_main_dcl
-> (False, tc_state)
#! icl_type_def = tc_state.tc_icl_type_defs.[tc_state.tc_type_conversions.[glob_object]]
# tc_state = { tc_state & tc_type_vars
= bind_type_vars icl_type_def.td_args dclArgs tc_state.tc_type_vars }
tc_state = init_attr_vars icl_type_def.td_attrs tc_state
-> case icl_type_def.td_rhs of
SynType atype
# atype = { atype & at_attribute = determine_type_attribute type_def.td_attribute }
-> t_corresponds atype icl_atype tc_state
_ -> (False, tc_state)
_ -> (False, tc_state)
where
bind_type_vars formal_args actual_args tc_type_vars
# hwn_heap = bind_type_vars` formal_args actual_args tc_type_vars.hwn_heap
= { tc_type_vars & hwn_heap = hwn_heap }
bind_type_vars` [{atv_variable}:formal_args] [actual_arg:actual_args] type_var_heap
# (actual_arg, type_var_heap) = possibly_dereference actual_arg type_var_heap
= bind_type_vars` formal_args actual_args
(writePtr atv_variable.tv_info_ptr (TVI_AType actual_arg) type_var_heap)
// --->("binding", atv_variable.tv_name,"to",actual_arg)
bind_type_vars` _ _ type_var_heap
= type_var_heap
possibly_dereference atype=:{at_type=TV {tv_info_ptr}} type_var_heap
#! dereferenced = sreadPtr tv_info_ptr type_var_heap
= case dereferenced of
TVI_AType atype2
-> (atype2, type_var_heap)
_ -> (atype, type_var_heap)
possibly_dereference atype type_var_heap
= (atype, type_var_heap)
opt_set_visited_bit True glob_object bit tc_state
= { tc_state & tc_visited_syn_types.[glob_object] = bit }
opt_set_visited_bit False _ _ tc_state
= tc_state
determine_type_attribute TA_Unique = TA_Unique
determine_type_attribute _ = TA_Multi
get_arg_pos x [h:t] count
| x==h.atv_variable = count
= get_arg_pos x t (inc count)
instance t_corresponds TypeAttribute where
t_corresponds TA_Unique TA_Unique
= return True
t_corresponds TA_Multi TA_Multi
= return True
t_corresponds (TA_Var dclDef) (TA_Var iclDef)
= t_corresponds dclDef iclDef
t_corresponds (TA_RootVar dclDef) (TA_RootVar iclDef)
= PA_BUG (return True) (t_corresponds dclDef iclDef)
t_corresponds _ TA_Anonymous
= return True
t_corresponds TA_None icl
= case icl of
TA_Multi-> return True
TA_None -> return True
_ -> return False
t_corresponds TA_Multi icl
= case icl of
TA_Multi-> return True
TA_None -> return True
_ -> return False
t_corresponds _ _
= return False
instance t_corresponds AttributeVar where
t_corresponds dclDef iclDef
= corresponds` dclDef iclDef
where
corresponds` dclDef iclDef tc_state=:{tc_attr_vars}
# (unifiable, tc_attr_vars) = tryToUnifyVars dclDef.av_info_ptr iclDef.av_info_ptr tc_attr_vars
= (unifiable, { tc_state & tc_attr_vars = tc_attr_vars })
instance t_corresponds Type where
t_corresponds (TA dclIdent dclArgs) icl_type=:(TA iclIdent iclArgs)
= equal dclIdent.type_name iclIdent.type_name
&&& equal dclIdent.type_index.glob_module iclIdent.type_index.glob_module
&&& t_corresponds dclArgs iclArgs
t_corresponds (dclFun --> dclArg) (iclFun --> iclArg)
= t_corresponds dclFun iclFun
&&& t_corresponds dclArg iclArg
t_corresponds (dclVar :@: dclArgs) (iclVar :@: iclArgs)
= t_corresponds dclVar iclVar
&&& t_corresponds dclArgs iclArgs
t_corresponds (TB dclDef) (TB iclDef)
= equal dclDef iclDef
t_corresponds (TV dclDef) (TV iclDef)
= t_corresponds dclDef iclDef
t_corresponds (GTV dclDef) (GTV iclDef)
= t_corresponds dclDef iclDef
t_corresponds _ _
= return False
instance t_corresponds ConsVariable where
t_corresponds (CV dclVar) (CV iclVar)
= t_corresponds dclVar iclVar
instance t_corresponds TypeVar where
t_corresponds dclDef iclDef
= corresponds_TypeVar dclDef iclDef
where
corresponds_TypeVar dclDef iclDef tc_state=:{tc_type_vars}
# (unifiable, tc_type_vars) = tryToUnifyVars dclDef.tv_info_ptr iclDef.tv_info_ptr tc_type_vars
= (unifiable, { tc_state & tc_type_vars = tc_type_vars })
instance t_corresponds TypeRhs where
t_corresponds (AlgType dclConstructors) (AlgType iclConstructors)
= t_corresponds dclConstructors iclConstructors
t_corresponds (SynType dclType) (SynType iclType)
= t_corresponds dclType iclType
t_corresponds (RecordType dclRecord) (RecordType iclRecord)
= t_corresponds dclRecord iclRecord
t_corresponds (AbstractType _) _
= return True
// sanity check ...
t_corresponds UnknownType _
= undef <<- "t_corresponds (TypeRhs): dclDef == UnknownType"
t_corresponds _ UnknownType
= undef <<- "t_corresponds (TypeRhs): iclDef == UnknownType"
// ... sanity check
t_corresponds _ _
= return False
instance t_corresponds RecordType where
t_corresponds dclRecord iclRecord
= t_corresponds dclRecord.rt_constructor iclRecord.rt_constructor
&&& t_corresponds dclRecord.rt_fields iclRecord.rt_fields
instance t_corresponds FieldSymbol where
t_corresponds dclField iclField
= equal dclField.fs_name iclField.fs_name
instance t_corresponds ConsDef where
t_corresponds dclDef iclDef
= do (init_atype_vars (dclDef.cons_exi_vars++iclDef.cons_exi_vars))
&&& t_corresponds dclDef.cons_type iclDef.cons_type
&&& equal dclDef.cons_symb iclDef.cons_symb
&&& equal dclDef.cons_priority iclDef.cons_priority
instance t_corresponds SelectorDef where
t_corresponds dclDef iclDef
= do (init_atype_vars (dclDef.sd_exi_vars++iclDef.sd_exi_vars))
&&& t_corresponds dclDef.sd_type iclDef.sd_type
&&& equal dclDef.sd_field_nr iclDef.sd_field_nr
init_atype_vars atype_vars
tc_state=:{tc_type_vars}
# type_heap = foldSt init_type_var atype_vars tc_type_vars.hwn_heap
tc_type_vars = { tc_type_vars & hwn_heap = type_heap }
= { tc_state & tc_type_vars = tc_type_vars }
where
init_type_var {atv_variable} type_heap = writePtr atv_variable.tv_info_ptr TVI_Empty type_heap
instance t_corresponds SymbolType where
t_corresponds dclDef iclDef
= t_corresponds dclDef.st_args iclDef.st_args
&&& t_corresponds dclDef.st_result iclDef.st_result
&&& t_corresponds dclDef.st_context iclDef.st_context
&&& t_corresponds dclDef.st_attr_env iclDef.st_attr_env
instance t_corresponds AttrInequality where
t_corresponds dclDef iclDef
= t_corresponds dclDef.ai_demanded iclDef.ai_demanded
&&& t_corresponds dclDef.ai_offered iclDef.ai_offered
instance t_corresponds ClassDef where
t_corresponds dclDef iclDef
= do (init_type_vars (dclDef.class_args++iclDef.class_args))
&&& equal dclDef.class_name iclDef.class_name
&&& t_corresponds dclDef.class_args iclDef.class_args
&&& t_corresponds dclDef.class_context iclDef.class_context
&&& t_corresponds dclDef.class_members iclDef.class_members
instance t_corresponds MemberDef where
t_corresponds dclDef iclDef
= do (init_type_vars (dclDef.me_type.st_vars++iclDef.me_type.st_vars))
&&& do (init_attr_vars (dclDef.me_type.st_attr_vars++iclDef.me_type.st_attr_vars))
&&& equal dclDef.me_symb iclDef.me_symb
&&& equal dclDef.me_offset iclDef.me_offset
&&& equal dclDef.me_priority iclDef.me_priority
&&& t_corresponds dclDef.me_type iclDef.me_type
instance t_corresponds ClassInstance where
t_corresponds dclDef iclDef
= t_corresponds` dclDef.ins_type iclDef.ins_type
where
t_corresponds` dclDef iclDef tc_state
# tc_state
= init_attr_vars (dclDef.it_attr_vars++iclDef.it_attr_vars) tc_state
tc_state
= init_type_vars (dclDef.it_vars++iclDef.it_vars) tc_state
(corresponds, tc_state)
= t_corresponds dclDef.it_types iclDef.it_types tc_state
| not corresponds
= (corresponds, tc_state)
= t_corresponds dclDef.it_context iclDef.it_context tc_state
instance t_corresponds DynamicType where
t_corresponds dclDef iclDef
= t_corresponds dclDef.dt_type iclDef.dt_type
instance e_corresponds (Optional a) | e_corresponds a where
e_corresponds No No
= do_nothing
e_corresponds (Yes dclYes) (Yes iclYes)
= e_corresponds dclYes iclYes
e_corresponds _ _
= give_error ""
instance e_corresponds (a, b) | e_corresponds a & e_corresponds b where
e_corresponds (a1, b1) (a2, b2)
= (e_corresponds a1 a2)
o` (e_corresponds b1 b2)
instance e_corresponds [a] | e_corresponds a where
e_corresponds [] []
= do_nothing
e_corresponds [dclDef:dclDefs] [iclDef:iclDefs]
= e_corresponds dclDef iclDef
o` e_corresponds dclDefs iclDefs
e_corresponds _ _
= give_error ""
instance e_corresponds (Global a) | e_corresponds a where
e_corresponds dclDef iclDef
= equal2 dclDef.glob_module iclDef.glob_module
o` e_corresponds dclDef.glob_object iclDef.glob_object
instance e_corresponds DefinedSymbol where
e_corresponds dclDef iclDef
= equal2 dclDef.ds_ident iclDef.ds_ident
instance e_corresponds FunctionBody where
// both bodies are either CheckedBodies or TransformedBodies
e_corresponds dclDef iclDef
// | False--->("e_corresponds", from_body dclDef, from_body iclDef)
// = undef
= e_corresponds (from_body dclDef) (from_body iclDef)
where
from_body (TransformedBody {tb_args, tb_rhs}) = (tb_args, [tb_rhs])
from_body (CheckedBody {cb_args, cb_rhs}) = (cb_args, [ca_rhs \\ {ca_rhs} <- cb_rhs])
instance e_corresponds FreeVar where
e_corresponds dclVar iclVar
= e_corresponds_VarInfoPtr iclVar.fv_name dclVar.fv_info_ptr iclVar.fv_info_ptr
instance e_corresponds Expression where
// the following alternatives don't occur anymore: Lambda, Conditional, WildCard
e_corresponds (Var dcl) (Var icl)
= e_corresponds dcl icl
e_corresponds (App dcl_app) (App icl_app)
= e_corresponds_app_symb dcl_app.app_symb icl_app.app_symb
o` e_corresponds dcl_app.app_args icl_app.app_args
e_corresponds (dclFun @ dclArgs) (iclFun @ iclArgs)
= e_corresponds dclFun iclFun
o` e_corresponds dclArgs iclArgs
e_corresponds (Let dcl) (Let icl)
= e_corresponds dcl icl
e_corresponds (Case dcl) (Case icl)
= e_corresponds dcl icl
e_corresponds (Selection dcl_is_unique dcl_expr dcl_selections) (Selection icl_is_unique icl_expr icl_selections)
| not (equal_constructor dcl_is_unique icl_is_unique)
= give_error ""
= e_corresponds dcl_expr icl_expr
o` e_corresponds dcl_selections icl_selections
e_corresponds (Update dcl_expr_1 dcl_selections dcl_expr_2) (Update icl_expr_1 icl_selections icl_expr_2)
= e_corresponds dcl_expr_1 icl_expr_1
o` e_corresponds dcl_selections icl_selections
o` e_corresponds dcl_expr_2 icl_expr_2
e_corresponds (RecordUpdate dcl_type dcl_expr dcl_selections) (RecordUpdate icl_type icl_expr icl_selections)
= e_corresponds dcl_type icl_type
o` e_corresponds dcl_expr icl_expr
o` e_corresponds dcl_selections icl_selections
e_corresponds (TupleSelect dcl_ds dcl_field_nr dcl_expr) (TupleSelect icl_ds icl_field_nr icl_expr)
= e_corresponds dcl_ds icl_ds
o` equal2 dcl_field_nr icl_field_nr
o` e_corresponds dcl_expr icl_expr
e_corresponds (BasicExpr dcl_value dcl_type) (BasicExpr icl_value icl_type)
= equal2 dcl_value icl_value
o` equal2 dcl_type icl_type
e_corresponds (AnyCodeExpr dcl_ins dcl_outs dcl_code_sequence) (AnyCodeExpr icl_ins icl_outs icl_code_sequence)
= e_corresponds dcl_ins icl_ins
o` e_corresponds dcl_outs icl_outs
o` equal2 dcl_code_sequence icl_code_sequence
e_corresponds (ABCCodeExpr dcl_lines dcl_do_inline) (ABCCodeExpr icl_lines icl_do_inline)
= equal2 dcl_lines icl_lines
o` equal2 dcl_do_inline icl_do_inline
e_corresponds (MatchExpr dcl_opt_tuple_type dcl_cons_symbol dcl_src_expr)
(MatchExpr icl_opt_tuple_type icl_cons_symbol icl_src_expr)
= e_corresponds dcl_opt_tuple_type icl_opt_tuple_type
o` e_corresponds dcl_cons_symbol icl_cons_symbol
o` e_corresponds dcl_src_expr icl_src_expr
e_corresponds (FreeVar dcl) (FreeVar icl)
= e_corresponds dcl icl
e_corresponds (DynamicExpr dcl) (DynamicExpr icl)
= e_corresponds dcl icl
e_corresponds (TypeCodeExpression dcl) (TypeCodeExpression icl)
= e_corresponds dcl icl
e_corresponds EE EE
= do_nothing
e_corresponds (NoBind _) (NoBind _)
= do_nothing
e_corresponds _ _
= give_error ""
instance e_corresponds Let where
e_corresponds dclLet iclLet
= e_corresponds dclLet.let_strict_binds iclLet.let_strict_binds
o` e_corresponds dclLet.let_lazy_binds iclLet.let_lazy_binds
o` e_corresponds dclLet.let_expr iclLet.let_expr
instance e_corresponds LetBind where
e_corresponds dcl icl
= e_corresponds dcl.lb_src icl.lb_src
o` e_corresponds dcl.lb_dst icl.lb_dst
instance e_corresponds (Bind a b) | e_corresponds a & e_corresponds b where
e_corresponds dcl icl
= e_corresponds dcl.bind_src icl.bind_src
o` e_corresponds dcl.bind_dst icl.bind_dst
instance e_corresponds Case where
e_corresponds dclCase iclCase
= e_corresponds dclCase.case_expr iclCase.case_expr
o` e_corresponds dclCase.case_guards iclCase.case_guards
o` e_corresponds dclCase.case_default iclCase.case_default
instance e_corresponds CasePatterns where
e_corresponds (AlgebraicPatterns dcl_alg_type dcl_patterns) (AlgebraicPatterns icl_alg_type icl_patterns)
= e_corresponds dcl_patterns icl_patterns
e_corresponds (BasicPatterns dcl_basic_type dcl_patterns) (BasicPatterns icl_basic_type icl_patterns)
= equal2 dcl_basic_type icl_basic_type
o` e_corresponds dcl_patterns icl_patterns
e_corresponds (DynamicPatterns dcl_patterns) (DynamicPatterns icl_patterns)
= e_corresponds dcl_patterns icl_patterns
e_corresponds NoPattern NoPattern
= do_nothing
e_corresponds _ _
= give_error ""
instance e_corresponds AlgebraicPattern where
e_corresponds dcl icl
= e_corresponds dcl.ap_symbol icl.ap_symbol
o` e_corresponds dcl.ap_vars icl.ap_vars
o` e_corresponds dcl.ap_expr icl.ap_expr
instance e_corresponds BasicPattern where
e_corresponds dcl icl
= equal2 dcl.bp_value icl.bp_value
o` e_corresponds dcl.bp_expr icl.bp_expr
instance e_corresponds DynamicPattern where
e_corresponds dcl icl
= e_corresponds dcl.dp_var icl.dp_var
o` e_corresponds dcl.dp_rhs icl.dp_rhs
o` e_corresponds_dp_type dcl.dp_type icl.dp_type
where
e_corresponds_dp_type dcl_expr_ptr icl_expr_ptr ec_state=:{ec_expr_heap, ec_tc_state}
#! dcl_type
= sreadPtr dcl_expr_ptr ec_expr_heap
icl_type
= sreadPtr icl_expr_ptr ec_expr_heap
# (EI_DynamicTypeWithVars _ dcl_dyn_type _)
= dcl_type
(EI_DynamicTypeWithVars _ icl_dyn_type _)
= icl_type
(corresponds, ec_tc_state)
= t_corresponds dcl_dyn_type icl_dyn_type ec_tc_state
ec_state
= { ec_state & ec_tc_state = ec_tc_state }
| corresponds
= ec_state
= give_error "" ec_state
instance e_corresponds Selection where
e_corresponds (RecordSelection dcl_selector dcl_field_nr) (RecordSelection icl_selector icl_field_nr)
= e_corresponds dcl_selector icl_selector
o` equal2 dcl_field_nr icl_field_nr
e_corresponds (ArraySelection dcl_selector _ dcl_index_expr) (ArraySelection icl_selector _ icl_index_expr)
= e_corresponds dcl_selector icl_selector
o` e_corresponds dcl_index_expr icl_index_expr
e_corresponds (DictionarySelection dcl_dict_var dcl_selections _ dcl_index_expr)
(DictionarySelection icl_dict_var icl_selections _ icl_index_expr)
= e_corresponds dcl_dict_var icl_dict_var
o` e_corresponds dcl_selections icl_selections
o` e_corresponds dcl_index_expr icl_index_expr
instance e_corresponds DynamicExpr where
e_corresponds dcl icl
= e_corresponds_dyn_opt_type dcl.dyn_opt_type icl.dyn_opt_type
o` e_corresponds dcl.dyn_expr icl.dyn_expr
where
e_corresponds_dyn_opt_type dcl icl ec_state
# (corresponds, ec_tc_state) = t_corresponds dcl icl ec_state.ec_tc_state
ec_state = { ec_state & ec_tc_state = ec_tc_state }
| corresponds
= ec_state
= give_error "" ec_state
instance e_corresponds TypeCodeExpression where
e_corresponds TCE_Empty TCE_Empty
= do_nothing
e_corresponds _ _
= abort "comparedefimp:e_corresponds (TypeCodeExpression): currently only TCE_Empty can appear"
instance e_corresponds {#Char} where
e_corresponds s1 s2
= equal2 s1 s2
instance e_corresponds BoundVar where
e_corresponds dcl icl
= e_corresponds_VarInfoPtr icl.var_name dcl.var_info_ptr icl.var_info_ptr
instance e_corresponds FieldSymbol where
e_corresponds dclField iclField
= equal2 dclField.fs_name iclField.fs_name
e_corresponds_VarInfoPtr ident dclPtr iclPtr ec_state=:{ec_var_heap}
# (unifiable, ec_var_heap) = tryToUnifyVars dclPtr iclPtr ec_var_heap
ec_state = { ec_state & ec_var_heap = ec_var_heap }
| not unifiable
= { ec_state & ec_error_admin = checkError ident error_message ec_state.ec_error_admin }
= ec_state
/* e_corresponds_app_symb checks correspondence of the function symbols in an App expression.
The problem: also different symbols can correspond with each other, because for macros
all local functions (also lambda functions) will be generated twice.
*/
e_corresponds_app_symb dcl_app_symb=:{symb_name, symb_kind=SK_Function dcl_glob_index}
icl_app_symb=:{symb_kind=SK_Function icl_glob_index}
ec_state
| dcl_glob_index<>icl_glob_index
= give_error symb_name ec_state
= ec_state
e_corresponds_app_symb dcl_app_symb=:{symb_name, symb_kind=SK_OverloadedFunction dcl_glob_index}
icl_app_symb=:{symb_kind=SK_OverloadedFunction icl_glob_index}
ec_state
| dcl_glob_index<>icl_glob_index
= give_error symb_name ec_state
= ec_state
e_corresponds_app_symb dcl_app_symb=:{symb_kind=SK_LocalMacroFunction dcl_index}
icl_app_symb=:{symb_kind=SK_LocalMacroFunction icl_index}
ec_state
= continuation_for_possibly_twice_defined_macros
dcl_app_symb dcl_index icl_app_symb icl_index ec_state
e_corresponds_app_symb dcl_app_symb=:{symb_kind=SK_Macro dcl_glob_index}
icl_app_symb=:{symb_kind=SK_Macro icl_glob_index}
ec_state
= continuation_for_possibly_twice_defined_macros
dcl_app_symb dcl_glob_index.glob_object icl_app_symb icl_glob_index.glob_object ec_state
e_corresponds_app_symb {symb_name=dcl_symb_name, symb_kind=SK_Constructor dcl_glob_index}
{symb_name=icl_symb_name, symb_kind=SK_Constructor icl_glob_index}
ec_state
| dcl_glob_index.glob_module==icl_glob_index.glob_module && dcl_symb_name.id_name==icl_symb_name.id_name
= ec_state
= give_error icl_symb_name ec_state
e_corresponds_app_symb {symb_name} _ ec_state
= give_error symb_name ec_state
continuation_for_possibly_twice_defined_macros dcl_app_symb dcl_index icl_app_symb icl_index
ec_state
| dcl_index==icl_index
= ec_state
// two different functions were referenced. In case of macro functions they still could correspond
| not (names_are_compatible dcl_index icl_index ec_state.ec_icl_functions)
= give_error icl_app_symb.symb_name ec_state
| both_funs_have_not_been_checked_before dcl_index icl_index ec_state.ec_correspondences
// going into recursion is save
= compareTwoMacroFuns dcl_index icl_index ec_state
| both_funs_correspond dcl_index icl_index ec_state.ec_correspondences
= ec_state
= give_error icl_app_symb.symb_name ec_state
where
names_are_compatible dcl_index icl_index icl_functions
# dcl_function = icl_functions.[dcl_index]
icl_function = icl_functions.[icl_index]
dcl_name_is_loc_dependent = name_is_location_dependent dcl_function.fun_kind
icl_name_is_loc_dependent = name_is_location_dependent icl_function.fun_kind
= (dcl_name_is_loc_dependent==icl_name_is_loc_dependent)
&& (implies (not dcl_name_is_loc_dependent) (dcl_function.fun_symb.id_name==icl_function.fun_symb.id_name))
// functions that originate from e.g. lambda expressions can correspond although their names differ
where
name_is_location_dependent (FK_Function name_is_loc_dependent)
= name_is_loc_dependent
name_is_location_dependent _
= False
both_funs_have_not_been_checked_before dcl_index icl_index correspondences
= correspondences.[dcl_index]==cNoCorrespondence && correspondences.[icl_index]==cNoCorrespondence
both_funs_correspond dcl_index icl_index correspondences
= correspondences.[dcl_index]==icl_index && correspondences.[icl_index]==dcl_index
init_attr_vars attr_vars tc_state=:{tc_attr_vars}
# hwn_heap = foldSt init_attr_var attr_vars tc_attr_vars.hwn_heap
tc_attr_vars = { tc_attr_vars & hwn_heap = hwn_heap }
= { tc_state & tc_attr_vars = tc_attr_vars }
where
init_attr_var {av_info_ptr} attr_heap
= writePtr av_info_ptr AVI_Empty attr_heap
error_message :== "definition in the impl module conflicts with the def module"
cNoCorrespondence :== -1
implies a b :== not a || b
(==>) infix 0 // :: w:(St .s .a) v:(.a -> .(St .s .b)) -> u:(St .s .b), [u <= v, u <= w]
(==>) f g :== \st0 -> let (r,st1) = f st0 in g r st1
(o`) infixr 0
(o`) f g :== \state -> g (f state)
do f = \state -> (True, f state)
(&&&) infixr
(&&&) m1 m2
:== m1 ==> \b
-> if b
m2
(return False)
equal a b
= return (a == b)
equal2 a b
| a<>b
= give_error ""
= do_nothing
do_nothing ec_state
= ec_state
give_error s ec_state
= { ec_state & ec_error_admin = checkError s error_message ec_state.ec_error_admin }