\subsubsection{Semantics} \erin The semantics of LTL and PLTL are defined in a very similar way. However, we must make some modifications to the definitions. \camil In particular, the $\vDash$ operator must be redefined. Recall that for LTL we wrote $\sigma \vDash \phi$ when $\sigma$ satisfies $\phi$ and $\sigma[i\dots]$ for the suffix of $\sigma$ starting in the $(j+1)$st symbol. The latter notation effectively loses information about the prefix. In the case of PLTL, we cannot lose this information. For this reason, we use a satisfaction relation at a specific index. We will write this as $\sigma \vDash_i \phi$, read as \enquote{$\sigma$ satisfies $\phi$ at $i$}.% \footnote{% The notation used in literature varies. \citet{Lichtenstein1985} use $(\sigma,i) \vDash \phi$; \citet{Markey2003} uses $\sigma,i \vDash \phi$. Although the difference is minor, we find $\vDash_i$ more intuitive because it shows that the object being checked is the same in $\sigma\vDash_i\phi$ and $\sigma\vDash_j\phi$.} We use $\sigma \vDash \phi$ as a shorthand for $\sigma \vDash_0 \phi$. \erin \begin{definition}[Semantics of PLTL (Interpretation over Words)] Let $\phi$ be a PLTL formula over $AP$. The LT property induced by $\phi$ is \[Words(\phi) = \{\sigma \in \left(2^{AP}\right)^\omega \mid \sigma \vDash \phi\}\] where $\vDash\ \subseteq \left(2^{AP}\right)^\omega \times \mathbb{N} \times PLTL$ is the smallest relation with the properties in \cref{fig:PLTL-semantics}. \end{definition} \camil Note that we must redefine the satisfaction relation for the LTL operators, because $\vDash$ is now a ternary relation. The difference with LTL formulae is well illustrated by the $\bigcirc$ operator. In the LTL case, $\sigma=A_0A_1A_2\dots\vDash\bigcirc\phi$ iff $\sigma[1\dots]=A_1A_2\dots\vDash\phi$. Thus, whether $\bigcirc\phi$ holds for $\sigma$ cannot depend on $A_0$. In the PLTL case, $\sigma\vDash_i\bigcirc\phi$ iff $\sigma\vDash_{i+1}\phi$. The information about $A_0$ is not lost, so whether $\bigcirc\phi$ holds for $\sigma$ may depend on $A_0$, as is trivially the case with $\bigcirc\bigcirc^{-1}a$. \begin{figure} \centering \begin{mdframed} \[ \begin{matrix*}[l] \sigma &\vDash_i & \text{true}\\ \sigma &\vDash_i & a &\text{iff} & a\in A_i\\ \sigma &\vDash_i & \phi_1\land\phi_2 &\text{iff} & \text{$\sigma\vDash_i\phi_1$ and $\sigma\vDash_i\phi_2$}\\ \sigma &\vDash_i & \lnot\phi &\text{iff} & \sigma \nvDash_i \phi\\ \sigma &\vDash_i & \bigcirc\phi &\text{iff} & \sigma \vDash_{i+1} \phi\\ \sigma &\vDash_i & \phi_1\Uop\phi_2 &\text{iff} & \exists_{j \ge 0}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_i \phi_1$ for all $0 \le i < j$}\\ \sigma &\vDash_i & \phi_1\Sop\phi_2 &\text{iff} & \exists_{0 \le j \le i}.\text{$\sigma \vDash_j \phi_2$ and $\sigma \vDash_k \phi_1$ for all $j < k \le i$}\\ \sigma &\vDash_i & \Pop\phi &\text{iff} & \text{$i \geq 1$ and $\sigma \vDash_{i-1} \phi$} \end{matrix*} \] \end{mdframed} \caption{PLTL semantics for infinite words $\sigma=A_0A_1A_2\dots \in \left(2^{AP}\right)^\omega$.} \label{fig:PLTL-semantics} \end{figure} \erin \begin{definition}[Semantics of PLTL over Paths and States] Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let $\phi$ be an PLTL-formula over AP. \begin{itemize} \item For infinite path fragments $\pi$ of $TS$, the satisfaction relation is defined by \[\pi \vDash \phi \Leftrightarrow trace(\pi) \vDash \phi\] \item For state $s \in S$, the satisfaction relation $\vDash$ is defined by \[s \vDash \phi \Leftrightarrow \forall_{\pi \in Paths(s)}[\pi \vDash \phi]\] \item $TS$ satisfies $\phi$, denoted by $TS \vDash \phi$ if $Traces \vDash \phi$, if $Traces(TS) \subseteq Words(\phi)$ \qedhere \end{itemize} \end{definition} In order to make these definitions suitable for use with our PLTL operators, we must provide their semantics. \Cref{fig:PLTL-semantics} shows the formal semantics of the operators defined in the grammar. Note that we need to add a index $i$, since we must also be able to look in the past. Given these definitions, it is possible to derive the formal semantics of the $\Fop^{-1}$ and $\Gop^{-1}$ operators as well: \[ \begin{matrix*}[l] \sigma &\vDash_i &\Fop^{-1}\phi &\text{iff} &\exists_{0 \leq k \leq i}[\sigma \vDash_k \phi]\\ \sigma &\vDash_i &\Gop^{-1}\phi &\text{iff} &\forall_{0 \leq k \leq i}[\sigma \vDash_k \phi] \end{matrix*} \]