\camil \subsection{Exercises} \emph{NB: these exercises are to be added to the current section 5.5.} % After the exam documentclass; http://compgroups.net/comp.text.tex/-if-else-fi-in-new-environment/263869 \newif\ifshowanswers\showanswerstrue \newenvironment{answer}% {\ifshowanswers\par\bgroup\small\textit{Answer:}\else\setbox0\vbox\bgroup\fi}% {\egroup} \newcommand{\hint}[1]{\par\textit{Hint: #1}} \begin{exercise} For the PLTL formulas over $AP=\{a,b\}$ given below, determine whether they are \wffn, \wffp, \wfff\ or neither. \begin{multicols}{2} \begin{enumerate}[label=(\alph*)] \item $\Xop a$. \item $a \Sop b$. \item $(\lnot (a \land b)) \land (\lnot (\lnot a \land \lnot b))$. \item $a \Uop a$. \item $a \land ((b \Uop a) \lor \lnot(b \Uop a))$. \item $\bot \rightarrow (a \Uop b)$. \end{enumerate} \end{multicols} \begin{answer} (a) \wfff; (b) \wffp; (c) \wffn; (d) \wfff; (e) neither; (f) neither. Note that the definition of the classes is syntactic, not semantic. \end{answer} \end{exercise} \begin{exercise} \label{ex:dual-modalities} On page~\pageref{pltl:dual-modalities}, we discussed informally why the dual modalities $\lozenge^{-1}\square^{-1}\phi$ and $\square^{-1}\lozenge^{-1}\phi$ are both equivalent to \enquote{at the first moment in time, $\phi$}. Prove this formally, i.e.\ that for all infinite words $\sigma$ and $i\in\mathbb N$, \[ \sigma \vDash_i \lozenge^{-1}\square^{-1}\phi \quad\Leftrightarrow\quad \sigma \vDash_i \square^{-1}\lozenge^{-1}\phi \quad\Leftrightarrow\quad \sigma \vDash_0 \phi. \] \begin{answer} The proof follows from the two equivalences \begin{itemize} \def\spacearrow{\enspace\Leftrightarrow\enspace} \item $\sigma \vDash_i \lozenge^{-1}\square^{-1}\phi \spacearrow \exists_{0\le j\le i}[\sigma \vDash_j \square^{-1}\phi] \spacearrow \exists_{0\le j\le i}\forall_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow \sigma \vDash_0 \phi$ \enspace\ and \item $\sigma \vDash_i \square^{-1}\lozenge^{-1}\phi \spacearrow \forall_{0\le j\le i}[\sigma \vDash_j \lozenge^{-1}\phi] \spacearrow \forall_{0\le j\le i}\exists_{0\le k\le j}[\sigma \vDash_k \phi] \spacearrow \sigma \vDash_0 \phi$. \end{itemize} \end{answer} \end{exercise} \begin{exercise} \label{ex:succinctness} In this exercise we prove that PLTL formulas can be exponentially more succinct. The proof followed here is that of \citet{Markey2003} which, in turn, is based on work by \citet{Etessami2002}. The proof is achieved by giving an example of a formula which can be expressed in $\mathcal O(n)$ in PLTL but requires $\Omega(n)$ in LTL. Take $n\in\mathbb N$ and $AP=\{p_0,\dots,p_n\}$. We first show that there is no polynomial-size LTL formula expressing property~\ref{ex:proof-markey:prop-agreement}. \begin{equation} \phi_n(\sigma) \defeq \forall_{i,j\in\mathbb N} \left[ \forall_{k\in[1,n]} [(A_i\vDash p_k) \Leftrightarrow (A_j\vDash p_k)] \rightarrow ((A_i\vDash p_0) \Leftrightarrow (A_j\vDash p_0)) \right] \label{ex:proof-markey:prop-agreement} \end{equation} where $\sigma=A_0A_1A_2\dots$. In other words, if two points on path $\sigma$ agree on $p_k$ for all $k\in[1,n]$, the points must also agree on $p_0$. \begin{enumerate}[label=(\alph*)] \item Find an $\mathcal O\left(2^n\right)$ LTL formula expressing property~\ref{ex:proof-markey:prop-agreement}. \hint{if the formula can be $\mathcal O\left(2^n\right)$, what are you allowed to quantify over?} \begin{answer}% \footnote{Note that this is slightly different from the version in \citet[p. 4]{Markey2003}. The limit on the leftmost $\wedge$ has $i\in[1,n]$ rather than $i\in[0,n]$ in the original paper. We believe this to be an error, because otherwise $a_0$ is a free variable.} \[\phi_n(\sigma) = \bigwedge_{\substack{a_i\in\{\top,\bot\}\\i\in[0,n]}} \left[ \left(\lozenge(\bigwedge\nolimits_{i=0}^n p_i=a_i)\right) \rightarrow \square\left((\bigwedge\nolimits_{i=1}^n p_i=a_i) \rightarrow p_0=a_0\right) \right] \] \end{answer} \item Assume a polynomial-size LTL formula exists for property~\ref{ex:proof-markey:prop-agreement}. What can you say of the size of a B\"uchi automaton $\mathcal A$ recognizing $\textsl{Words}(\phi_n)$? \label{ex:proof-markey:assumption} \hint{consider Theorem 5.41.} \begin{answer} There exists a B\"uchi automaton of size $\mathcal O(2^{n^k})$ for some $k\in\mathbb N$. \end{answer} \item Let $A=a_0,\dots,a_{2^n-1}$ be any permutation of $2^{AP\setminus\{p_0\}}$. Define the series $w_K=b_{K,0}\dots b_{K,2^n-1}$ with \[ b_{K,i} \defeq \begin{cases} a_i & \text{iff $i\notin K$}\\ a_i \cup \{p_0\} & \text{iff $i\in K$.} \end{cases} \] Show that if $K,K' \subseteq \{0,\dots,2^n-1\}$ and $K\ne K'$, also $w_K \ne w_{K'}$. \label{ex:proof-markey:different-w_K} \begin{answer} Without loss of generality, assume there exists an $i\in K$ with $i\notin K'$. Then $p_0\in b_{K,i}$ but $p_0\notin b_{K',i}$. Hence, $w_K\ne w_{K'}$. \end{answer} \item How many distinct words $w_K$ exist? \label{ex:proof-markey:nr-of-w_k} \begin{answer} There are $2^{|\{0,\dots,2^n-1\}|} = 2^{2^n}$ distinct $K$ (and equally many distinct $w_K$). \end{answer} \item Show that $w_K^\omega$ is accepted by $\mathcal A$. \begin{answer} Since all $a_i$ are distinct, two points $b_{K,j}, b_{K,k}$ on $w_K^\omega$ agree on all $p_i$ for $i\in[1,n]$ iff $j\equiv k \pmod{2^n}$. In this case, they also agree on $p_0$. \end{answer} \item It follows that there are paths $\pi_K$ and $\pi_{K'}$ in $\mathcal A$ accepting $w_K^\omega$ and $w_{K'}^\omega$ respectively. Let $q_K$ and $q_{K'}$ be the $2^n$-th states of each of these paths. Assume that $q_K = q_{K'}$. Construct from $w_K$ and $w_{K'}$ an infinite word $v$ that is accepted by $\mathcal A$ but does not satisfy $\phi_n$. \hint{take the simplest infinite word using both words that you can think of.} \begin{answer} Take $v=w_Kw_{K'}^\omega$. Apart from the prefix of size $2^n$, the path of this word is equal to that of $w_{K'}^\omega$, which is accepted. So $v$ is accepted. From \ref{ex:proof-markey:different-w_K} we have an $i$ such that $p_0\in b_{K,i}$ but $p_0\notin b_{K',i}$. However, for all $i\in[1,n]$, $p_i\in b_{K,i} \Leftrightarrow p_i\in b_{K',i}$. Therefore, $i=i, j=i+2^n$ is a counterexample to the outermost quantifier of $\phi_n$. \end{answer} \item Show that this contradicts the assumption from \ref{ex:proof-markey:assumption}. \begin{answer} Since we have $2^{2^n}$ distinct $w_K$ [cf. \ref{ex:proof-markey:nr-of-w_k}] and the $2^n$-th states of their accepting paths must all be distinct, $\mathcal A$ has at least $2^{2^n}$ states. But $2^{2^n} \notin \mathcal O(2^{n^k})$. \end{answer} \item We now turn to a slightly different property: \begin{equation} \psi_n(\sigma) \defeq \forall_{i\in\mathbb N} \left[ \forall_{k\in[1,n]} [(A_i\vDash p_k) \Leftrightarrow (A_0\vDash p_k)] \rightarrow ((A_i\vDash p_0) \Leftrightarrow (A_0\vDash p_0)) \right] \label{ex:proof-markey:prop-agreement-2} \end{equation} Property \ref{ex:proof-markey:prop-agreement-2} holds if all points on $\sigma$ that agree with all $p_k$ for $k\in[1,n]$ with $A_n$ also agree on $p_0$. Give an $\mathcal O(n)$ PLTL formula expressing property \ref{ex:proof-markey:prop-agreement-2}. \hint{recall the semantics of the dual modalities in PLTL.} \begin{answer} \[\psi_n(\sigma) = \square\left[ \left(\bigwedge\nolimits_{i=1}^n (p_i \Leftrightarrow \lozenge^{-1}\square^{-1}p_i)\right) \Rightarrow (p_0 \Leftrightarrow \lozenge^{-1}\square^{-1}p_0) \right] \] \end{answer} \item Construct an LTL formula for $\phi_n$ using the PLTL formula for $\psi_n$ and conclude the proof. \hint{first construct an LTL formula for $\psi_n$.} \begin{answer} Take $\phi'_n \defeq \square\psi'_n$, where $\psi'_n$ is an LTL formula initially equivalent to $\psi_n$. By virtue of the $\square$ operator, $\phi_n\equiv\phi'_n$. But $\phi_n$ is $\mathcal O(2^n$, so also $\phi'_n$ is exponential. Since $\phi'_n$ is $\mathcal O(2^n)$ and $\psi_n$ is $\mathcal O(n)$, the PLTL formula for property~\ref{ex:proof-markey:prop-agreement-2} is exponentially more succinct than the LTL formula. \qed \end{answer} \end{enumerate} \end{exercise} \cbend