# -*- coding: utf-8 -*- """ Created on Fri Oct 23 14:45:21 2015 @author: Camil Staps, s4498062 This is Python 2 code. """ import sys sys.path.insert(0, './packages') from scipy import io as sciio from sklearn import tree from sklearn.externals.six import StringIO import pydot # 3.1.1 wine = sciio.loadmat('./Data/wine.mat') data = wine['X'] clss = wine['y'] classNames = [str(n[0][0]) for n in wine['classNames']] # 3.1.2 clf = tree.DecisionTreeClassifier(min_samples_split=100, criterion='gini') clf = clf.fit(data, clss) dot_data = StringIO() tree.export_graphviz(clf, out_file=dot_data) graph = pydot.graph_from_dot_data(dot_data.getvalue()) graph.write_pdf('./report/ex31_wine_tree.pdf') # (that would be nice, a wine tree) # 3.1.3 new_data = [6.9, 1.09, 0.06, 2.1, 0.0061, 12, 31, 0.99, 3.5, 0.64, 12] print(classNames[clf.predict(new_data)[0]]) # 3.1.4 correct = 0 for w, c in zip(data, clss): if clf.predict(w)[0] == c: correct = correct + 1 print(str((100 * correct) / len(data)) + "% classified correctly.")