From dc77e1c88e7973ef2b7ec3afa2d22ec830a82dbe Mon Sep 17 00:00:00 2001 From: Camil Staps Date: Mon, 21 Sep 2015 15:17:40 +0200 Subject: Assignment 1 continuing, only 1.2.2c-e to be done --- Assignment 1/ex13.py | 88 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 Assignment 1/ex13.py (limited to 'Assignment 1/ex13.py') diff --git a/Assignment 1/ex13.py b/Assignment 1/ex13.py new file mode 100644 index 0000000..b91d885 --- /dev/null +++ b/Assignment 1/ex13.py @@ -0,0 +1,88 @@ +# exercise 3.2.1 + +from __future__ import print_function +from pylab import * +from scipy.io import loadmat +from similarity import similarity + +# Image to use as query +i = 635 + +# Similarity: 'SMC', 'Jaccard', 'ExtendedJaccard', 'Cosine', 'Correlation' +similarity_measure = 'jaccard' + +# Load the CBCL face database +# Load Matlab data file to python dict structure +X = loadmat('./Data/wildfaces_grayscale.mat')['X'] +N, M = shape(X) + + +# Search the face database for similar faces +# Index of all other images than i +noti = range(0,i) + range(i+1,N) +# Compute similarity between image i and all others +sim = similarity(X[i,:], X[noti,:], similarity_measure) +sim = sim.tolist()[0] +# Tuples of sorted similarities and their indices +sim_to_index = sorted(zip(sim,noti)) + + +# Visualize query image and 5 most/least similar images +figure(figsize=(12,8)) +subplot(3,1,1) +imshow(np.reshape(X[i],(40,40)).T, cmap=cm.gray) +xticks([]); yticks([]) +title('Query image') +ylabel('image #{0}'.format(i)) + + +for ms in range(5): + + # 5 most similar images found + subplot(3,5,6+ms) + im_id = sim_to_index[-ms-1][1] + im_sim = sim_to_index[-ms-1][0] + imshow(np.reshape(X[im_id],(40,40)).T, cmap=cm.gray) + xlabel('sim={0:.3f}'.format(im_sim)) + ylabel('image #{0}'.format(im_id)) + xticks([]); yticks([]) + if ms==2: title('Most similar images') + + # 5 least similar images found + subplot(3,5,11+ms) + im_id = sim_to_index[ms][1] + im_sim = sim_to_index[ms][0] + imshow(np.reshape(X[im_id],(40,40)).T, cmap=cm.gray) + xlabel('sim={0:.3f}'.format(im_sim)) + ylabel('image #{0}'.format(im_id)) + xticks([]); yticks([]) + if ms==2: title('Least similar images') + +show() + +# 1.3.1 +# For any two similarity measures, the five least similar are quite different. +# Based on the five most similar images, SMC and Jaccard produce similar +# results. Correlation and Cosine produce some similar results. +# Using image 2 it is clear that SMC and ExtendedJaccard are sensitive to +# lighting conditions, and thus maybe not a very good choice to compare faces. +# Also Correlation seems a little sensitive to this. Lastly Cosine seems to +# recognise faces somewhat better than Jaccard (take e.g. #635). + +# 1.3.2 +measures = {'Cosine': 'cos', 'ExtJac': 'ext', 'Correl': 'cor'} +scalar = 0.5 # Note: pick from (0,1), values > 1 aren't handled nicely +translation = 0.1 # Note: pick a small value, for similar reasons + +# Round list to resist numerical variances (hint #2) +X = np.around(X, decimals = 4) + +for name, measure in measures.iteritems(): + sim1 = similarity(scalar * X[i,:], X[noti,:], measure) + sim2 = similarity(X[i,:], X[noti,:], measure) + print("Scalar,", name, ":", (sim1 == sim2).all()) + +for name, measure in measures.iteritems(): + sim1 = similarity(translation + X[i,:], X[noti,:], measure) + sim2 = similarity(X[i,:], X[noti,:], measure) + print("Translation,", name, ":", (sim1 == sim2).any()) -- cgit v1.2.3