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Abstract. Functional programming advocates a style of programming
in which the programmer seeks to find a sufficiently small, yet powerful,
set of abstractions that capture an entire class of problems, and use these
abstractions to solve a concrete problem. I illustrate this by means of a
case study in which I implement the game TraxTM . In this turn-based
game two players attempt to create either a closed loop of a line of their
own color, or make the line connect opposite ends of a tile set of some pre-
scribed minimal dimensions. TraxTM is an attractive case because it has
interesting computational problems, for which I use classical functional
techniques, but also because it is a distributed multi-user application,
for which I use the more recently developed iTask formalism.

1 Introduction

During my computer science studies at the University of Nijmegen my first ex-
posure to functional programming was in 1987 – 1988 in a series of courses
taught by Rinus Plasmeijer and Marko van Eekelen. Two appealing aspects of
these courses were that we were asked to develop programs in David Turner’s
programming language Miranda1 [1, 2] and we were taught how functional pro-
grams can be compiled to efficient code using the intermediate language Clean
(version 0.6 at that time). I learned to appreciate the beauty of functional pro-
gramming (languages) and the semantic beauty of term graph rewriting [3, 4] of
which Clean was and still is an implementation.

In this essay I explain why ever since my first exposure to it, functional
programming matters to me. As a starting point, I refer to John Hughes’ seminal
1984 paper [5] in which he argues that functional programming matters because
it offers glue with which to structure programs in an improved modular and
reusable way, through the use of higher order functions and lazy evaluation.
He sets the stage for how to go about solving a problem: “It is also the goal
for which functional programmers must strive - smaller and simpler and more
general modules, glued together with the new glues we shall describe.” ([5], pg.4).

When solving a computational problem, higher order functions improve the
level of abstraction of a solution because instead of solving one particular prob-
lem a solution for an entire class of problems is developed. Lazy evaluation is a

1 Miranda is a trademark of Research Software Ltd.



consequence of the fundamental referential transparency property of pure func-
tional programming languages. No matter in what order a computing device
goes about determining the final result of my program, it is guaranteed to be
uniquely defined if it exists. Hence, during problem solving I can concentrate on
whether my program has a solution and worry much less how this solution is
going to be computed. Developing a functional program feels a lot like playing
a game in which I know that the programming language and compiler stick to
the same rules as myself.

I demonstrate the style of functional programming by showing how to imple-
ment the game TraxTM , which was brought to my attention by Rinus a couple
of years ago. It is a 2-person turn-based tile game in which the players attempt
to create either a closed loop of a line of their color (white or red) or make the
line connect the far ends of the board that must have some minimal dimensions.
Fig. 1 gives two examples of these winning states.

Fig. 1. Winning states for red: a closed loop (left) or a winning line (right).

Although TraxTM is a small and elegant game, it contains a number of suffi-
ciently challenging problems, such as determining what tiles a player is allowed
to place at which locations, determining if a configuration of tiles contains closed
loops or winning lines, and how to prescribe and control the player actions. The
specification of any game consists of two major parts: one part that introduces
its concepts and operations – what the game is about – and one part that spec-
ifies what the valid actions are for each player – how to play the game –. The
first part, described in Sect. 2, uses classical functional programming language
features such as the above mentioned higher order functions and lazy evalua-
tion, but also algebraic and record data types to model the domain of discourse
accurately, generic functions [6, 7] to avoid boiler plate specifications, and list
comprehensions to deal elegantly with collections, finite maps, streams, and op-
erations on them. The second part, described in Sect. 3, uses the iTask formalism
[8, 9]. Following John Hughes’ adage, the peculiarities of TraxTM are abstracted
from first, after which it is easier to actually implement the game. It turns out
that this abstraction has striking similarities with the Racket big-bang approach
[10, 11]. I discuss this in more detail in Sect. 4. Finally, in Sect. 5, I hope to have
explained to you why functional programming matters to me.



2 What Trax is About

This part of the TraxTM specification deals with the elements of the game. I
proceed bottom-up and start with basic elements (Sect. 2.1), show how to match
two tiles (Sect. 2.2), create only correct tile configurations (Sect. 2.3), define the
concept of mandatory moves (Sect. 2.4), and finally compute the sets of closed
loops and winning lines (Sect. 2.5).

2.1 Tiles, Lines, Coordinates

In this section all basic elements are defined that are needed in the TraxTM

specification. This amounts to modeling the entities as well as operations on
these entities by means of data types and access functions.

A TraxTM tile has two sides, each displaying a white line and a red line.
On the one side the lines cross each other, and on the other side they evade
each other. These sides are placed in six different configurations (Fig. 2). A tile

vertical horizontal northwest northeast southeast southwest

Fig. 2. The six possible tile configurations.

configuration is modeled by defining which edges are connected by the red line:

:: Tile = { end1 :: !Edge, end2 :: !Edge }

:: Edge = North | East | South | West

The names vertical, horizontal, and so on are each of type Tile and identify the
tiles as depicted in Fig. 2. For instance:

vertical = { end1 = North, end2 = South }

When modeling entities with data types it is a good habit to think right away
which basic operations (such as comparison, arithmetic, printing, parsing) are
sensible because this unlocks useful general purpose functions (such as sorting,
searching, printing, storage via (de)serialization). These functions exist as higher-
order polymorphic functions and overloaded functions. The basic operation is
typically an argument of these general purpose functions (explicit in case of
higher-order functions and implicit in case of overloaded functions). Many basic
operations can be expressed by induction on the structure of types for which
purpose generic functions can be deployed. The concise declarations:

derive gEq Edge

derive gLexOrd Edge



make structural equality and lexical ordering available for Edge values.
In this case study it is useful to be able to enumerate all elements of a finite

(and small) domain. This is a typical example of a custom generic function:

generic gFDomain a :: [a]

gFDomain{|Bool|} = [False,True]

gFDomain{|Char|} = map toChar [0 .. 255]

gFDomain{|UNIT|} = [UNIT]

gFDomain{|PAIR|} dx dy = [PAIR x y \\ x <- dx, y <- dy]

gFDomain{|EITHER|} dx dy = map LEFT dx ++ map RIGHT dy

gFDomain{|CONS|} dx = map CONS dx

gFDomain{|FIELD|} dx = map FIELD dx

gFDomain{|OBJECT|} dx = map OBJECT dx

A detailed explanation of this function is out of the scope of this essay. In a
nutshell, the last six lines define the induction on the structure of types, and the
first two lines define the meaning for the basic types Bool and Char. Enumeration
of all Edge values can be derived from this recipe:

derive gFDomain Edge

For Tile values the generic scheme generates too many values, so the generic
scheme must be overruled:

gFDomain{|Tile|} = map fromTuple [(West,East),(North,South),(North,West)

,(North,East),(South,East),(South,West)

]

Other sensible basic operations on Tile and Edge values are comparison (==
and <), printing (toString), and taking the opposite value (~). Their definitions
are straightforward:

instance == Tile

where == {end1=a1,end2=a2} {end1=b1,end2=b2}

= (a1,a2) == (b1,b2) || (a2,a1) == (b1,b2)

instance toString Tile

where toString tile = lookup1 tile [(horizontal,"horizontal")

,(vertical, "vertical" )

,(northwest, "northwest" )

,(northeast, "northeast" )

,(southeast, "southeast" )

,(southwest, "southwest" )

]

instance ~ Tile

where ~ tile = lookup1 tile [(horizontal, vertical )

,(vertical, horizontal )

,(northwest, southeast )

,(northeast, southwest )

,(southwest, northeast )

,(southeast, northwest )

]

gEq {|Tile|} t1 t2 = t1 == t2



instance == Edge where == e1 e2 = e1 === e2

instance < Edge where < e1 e2 = (e1 =?= e2) === LT

instance ~ Edge where ~ e = case e of
North = South

South = North

West = East

East = West

On many occasions, it is necessary to find a value v in a list of key-value
pairs (k, v) using a key k. The lookup and lookup1 search functions capture this
pattern (they are similar to the Haskell Prelude lookup function):

lookup :: !k ![(k,v)] -> [v] | Eq k

lookup key table = [v \\ (k,v) <- table | k == key]

lookup1 :: !k ![(k,v)] -> v | Eq k

lookup1 key table = hd (lookup key table)

The line color entity is defined in the same spirit as edges:

:: LineColor = RedLine | WhiteLine

derive gFDomain LineColor

derive gEq LineColor

instance == LineColor where == c1 c2 = c1 === c2

instance ~ LineColor where ~ RedLine = WhiteLine

~ WhiteLine = RedLine

A configuration of tiles such as those depicted in Fig. 1 is called a trax. A
simple way to model a trax is by listing the tiles and their coordinates:

:: Trax = { tiles :: ![(Coordinate,Tile)] }

:: Coordinate = { col :: !Int, row :: !Int }

derive gEq Coordinate

derive gLexOrd Coordinate

derive gPrint Coordinate

instance == Coordinate where == c1 c2 = c1 === c2

instance < Coordinate where < c1 c2 = (c1 =?= c2) === LT

instance toString Coordinate where toString c = printToString c

instance zero Coordinate where zero = {col=zero, row=zero}

instance zero Trax where zero = { tiles = [] }

instance == Trax where == t1 t2 = sortBy fst_smaller t1.tiles

==

sortBy fst_smaller t2.tiles

gEq{|Trax|} t1 t2 = t1 == t2

col {col} = col

row {row} = row

fst_smaller (a,_) (b,_) = a < b

For navigation, we introduce functions to compute next coordinates:



north c = {c & row = c.row-1}

south c = {c & row = c.row+1}

west c = {c & col = c.col-1}

east c = {c & col = c.col+1}

go North = north

go South = south

go West = west

go East = east

Finally, of a Trax we need to know its current number of tiles (nr_of_tiles),
the minimum and maximum values of the coordinates (bounds), the number of
columns and rows that a trax occupies (dimension), and which tile, if any, can be
found at a coordinate (tile_at). We wind up this section with their definitions:

nr_of_tiles :: !Trax -> Int

nr_of_tiles trax = length trax.tiles

bounds :: !Trax -> (!(!Int,!Int), !(!Int,!Int))

bounds trax

| nr_of_tiles trax > 0 = ((minList cols,maxList cols), (minList rows,maxList rows))

| otherwise = abort "bounds␣applied␣to␣empty␣set␣of␣tiles.\n"

where coords = map fst trax.tiles

cols = map col coords

rows = map row coords

dimension :: !Trax -> (!Int,!Int)

dimension trax

| nr_of_tiles trax > 0 = (maxx - minx + 1, maxy - miny + 1)

| otherwise = abort "dimension␣applied␣to␣empty␣set␣of␣tiles.\n"

where ((minx,maxx),(miny,maxy)) = bounds trax

tile_at :: !Trax !Coordinate -> Maybe Tile

tile_at trax c = case lookup c trax.tiles of
[tile : _] = Just tile

none_found = Nothing

2.2 Matching of Tiles

A new tile can only be added to the current trax at a specific location if the colors
of the lines at its edges match with those of the currently present neighbouring
tiles. For this purpose, I need to know the line colors of an empty location and
the line colors of a tile. If some edge at a coordinate is not next to a tile, there
is no color (Nothing), otherwise the color is associated with the edge (Just color).

:: LineColors :== [(Edge,Maybe LineColor)]

The core function to determine line colors of empty locations and tiles is tile-
colors which inspects a tile and returns all edge-color pairs. The derived function
color_at_tile tells what color the tile has at some edge.



tilecolors :: !Tile -> LineColors

tilecolors tile = [(North,Just n),(East,Just e),(South,Just s),(West,Just w)]

where (n,e,s,w) = lookup1 tile [(horizontal,(WhiteLine,RedLine,WhiteLine,RedLine))

,(vertical, (RedLine,WhiteLine,RedLine,WhiteLine))

,(northwest, (RedLine,WhiteLine,WhiteLine,RedLine))

,(northeast, (RedLine,RedLine,WhiteLine,WhiteLine))

,(southwest, (WhiteLine,WhiteLine,RedLine,RedLine))

,(southeast, (WhiteLine,RedLine,RedLine,WhiteLine))

]

color_at_tile :: !Edge !Tile -> LineColor

color_at_tile edge tile = fromJust (lookup1 edge (tilecolors tile))

The line colors of an empty location are assembled by looking at the line
color of the opposite edge of a neighbour tile at each of its edges. In this def-
inition, gFDomain{|*|} enumerates all Edge values, and gMap{|*->*|} is the functor
that applies its first function argument to Just a value if there is one.

linecolors :: !Trax !Coordinate -> LineColors

linecolors trax c

= [ (edge,gMap{|*->*|} (color_at_tile (~edge)) (tile_at trax (go edge c)))

\\ edge <- gFDomain{|*|}

]

Two such line colors match if at each edge they either have the same color
or if either one has no color:

linecolors_match :: !LineColors !LineColors -> Bool

linecolors_match a b = and [match c1 c2 \\ (_,c1) <- sortBy fst_smaller a

& (_,c2) <- sortBy fst_smaller b

]

where
match (Just c1) (Just c2) = c1 == c2

match _ _ = True

With the matching function, the collection of tiles that match particular line
colors can be determined:

possible_tiles :: !LineColors -> [Tile]

possible_tiles colors

= [tile \\ tile <- gFDomain{|*|} | linecolors_match colors (tilecolors tile)]

2.3 Correct Configurations by Construction

In a trax a new tile must be placed at one of the free edges. The collection of
free coordinates is the union of all free neighbours of all tiles.

free_coordinates :: !Trax -> [Coordinate]

free_coordinates trax = removeDupSortedList

(sort (flatten (map (free_neighbours trax)

(map fst trax.tiles))))



free_neighbours :: !Trax !Coordinate -> [Coordinate]

free_neighbours trax c = [ c‘ \\ c‘ <- neighbours c | isNothing (tile_at trax c‘) ]

neighbours :: !Coordinate -> [Coordinate]

neighbours c = map (flip go c) gFDomain{|*|}

Using the matching function and knowing valid free locations, it is now possible
to safely add a tile to a trax:

add_tile :: !Coordinate !Tile !Trax -> Trax

add_tile c tile trax

| nr_of_tiles trax == 0 || isMember c (free_coordinates trax)

&&

linecolors_match (linecolors trax c) (tilecolors tile)

= {trax & tiles = [(c,tile) : trax.tiles]}

| otherwise = trax

Starting with the zero instance of Trax and using only add_tile it is guaranteed
that the trax is always in a valid configuration.

2.4 Mandatory Moves

After a player has added a tile to a trax all free locations that have no freedom
as to what tile can be placed must be filled with their only tile candidate. These
are the mandatory moves. It is sufficient to examine only the free neighbours of
the placed tile. Those at which red or white occurs more than once belong to
the collection of mandatory tiles.

mandatory_tiles :: !Trax !Coordinate -> [Coordinate]

mandatory_tiles trax c

= case tile_at trax c of
Nothing = []

_ = [free \\ free <- free_neighbours trax c

| hasDup (filter isJust (map snd (linecolors trax free)))

]

The mandatory moves need to be performed until there are no more manda-
tory tiles. Each move adds one tile to a trax. Hence, the structure of this algo-
rithm is similar to the classic fold functions, except that each move may append
extra list elements to be folded. Let’s introduce queued fold functions that have
an extra first function that determines which elements are to be appended:

qfoldl :: (a -> b -> [b]) (a -> b -> a) a ![b] -> a

qfoldl _ _ a [] = a

qfoldl f g a [b:bs] = let a‘ = g a b in qfoldl f g a‘ (bs ++ f a‘ b)

qfoldr :: (a -> b -> [b]) (b -> a -> a) a ![b] -> a

qfoldr _ _ a [] = a

qfoldr f g a [b:bs] = let a‘ = g b a in qfoldr f g a‘ (bs ++ f a‘ b)



The computation mandatory_tiles determines which free locations need to be filled,
and is the first argument of the queued fold function. The function move updates
the trax by adding the only possible tile at a given location.

mandatory_moves :: !Trax !Coordinate -> Trax

mandatory_moves trax c

| isNothing (tile_at trax c)

= abort ("mandatory_moves:␣no␣tile␣at␣" <+++ c <+++ "\n")

| otherwise = qfoldl mandatory_tiles move trax (mandatory_tiles trax c)

where move trax filler

= add_tile filler (hd (possible_tiles (linecolors trax filler))) trax

2.5 Closed Loops and Winning Lines

As illustrated in Fig. 1, a game of TraxTM ends as soon as a player constructs a
closed loop or a winning line. In either case, it is necessary to extract a line of
some given color from a trax. This results in a core function, track:

:: Line :== [Coordinate]

track :: !Trax !LineColor !Edge !Coordinate -> Line

track trax color edge c

= case tile_at trax c of
Nothing = []

Just tile = let edge‘ = other_edge (perspective color tile) edge

in [c : track trax color (~edge‘) (go edge‘ c)]

perspective :: !LineColor !Tile -> Tile

perspective colour tile = if (colour == RedLine) tile (~tile)

other_edge :: !Tile !Edge -> Edge

other_edge tile edge = if (edge == tile.end1) tile.end2 tile.end1

As explained at the start of Sect. 2.1, tiles are defined from the point of view
of the red line. The function perspective gives the proper representation of a tile
from the given perspective. The line is constructed by ‘following’ tiles at some
edge and determining at which next edge to proceed. A line either terminates at
an empty location or it does not terminate, in which case it is a closed loop. In
the latter case, the track algorithm computes an infinitely long line, but thanks
to lazy evaluation this is not a problem. Despite their infinite nature, closed
loops can be detected and made finite:

is_loop :: !Line -> Bool

is_loop [c:cs] = isMember c cs

is_loop empty = False

cut_loop :: !Line -> Line

cut_loop [c:cs] = [c : takeWhile ((<>) c) cs]

Let’s first find all closed loops in a trax and do this separately for the two colors:



loops :: !Trax -> [(LineColor,Line)]

loops trax = [(RedLine, loop) \\ loop <- color_loops trax trax.tiles RedLine]

++

[(WhiteLine,loop) \\ loop <- color_loops trax trax.tiles WhiteLine]

The basic idea is to inspect each tile in a trax, use track to follow it, and collect
the found line if it is a loop. Before proceeding with another tile, the tiles from
the line can be removed from the trax because they cannot be part of another
line of the same color:

color_loops :: !Trax ![(Coordinate,Tile)] !LineColor -> [Line]

color_loops trax [(c,tile):tiles] color

| is_loop line = [line : loops]

| otherwise = loops

where line = track trax color (start_edge tile color) c

tiles‘ = removeMembersBy (\(c,t) c‘ -> c == c‘) tiles (cut_loop line)

loops = color_loops trax tiles‘ color

color_loops _ [] _ = []

start_edge :: !Tile !LineColor -> Edge

start_edge tile color = choose (lookup1 tile [(horizontal,(West, North))

,(vertical, (North,West ))

,(northwest, (North,South))

,(northeast, (North,South))

,(southeast, (South,North))

,(southwest, (South,North))

])

where choose = if (color == RedLine) fst snd

Determining all winning lines in a trax is a matter of finding lines that
connect either the far west with the far east or the far north with the far south.
Obviously, an empty trax cannot contain a winning line:

winning_lines :: !Trax -> [(LineColor,Line)]

winning_lines trax

| nr_of_tiles trax == 0 = []

| otherwise = winning_lines_at trax West ++ winning_lines_at trax North

The set of winning lines can be specified with a single list comprehension:

winning_lines_at :: !Trax !Edge -> [(LineColor,Line)]

winning_lines_at trax edge

| max - min + 1 < minimum_winning_line_length = []

| otherwise
= [ (color,line)

\\ (c,tile) <- trax.tiles | min == coord c

, color <- [color_at_tile edge tile]

, line <- [track trax color edge c] | not (is_loop line)

, end <- [last line] | max == coord end

, Just tile <- [tile_at trax end] | color_at_tile (~edge) tile == color

]

where ((minx,maxx),(miny,maxy)) = bounds trax



(min,max,coord) = lookup1 edge [ (West, (minx,maxx,col))

, (East, (maxx,minx,col))

, (North,(miny,maxy,row))

, (South,(maxy,miny,row))

]

If the trax is not big enough, then a winning line is not found. The first tile of
a winning line must start at the given edge of the trax. Following its track must
not result in a closed loop. Moreover, its last tile must be at the far other end
of the trax, and also its line color must be at the opposite edge.

3 How to Play Trax

This part of the specification of TraxTM is concerned with coordinating and vi-
sualizing the actions of the two players. The iTask formalism is used to model
this behavior. This is done in three stages: first, the concept of turns is for-
malized (Sect. 3.1); second, the peculiarities of TraxTM are abstracted away to
create a general specification of n-player turn-based games (Sect. 3.2); third, the
abstraction is used to implement a two player TraxTM game (Sect. 3.3).

3.1 Turns

A Turn is specified as follows:

:: Turn = { bound :: !Int, current :: !Int }

derive class iTask Turn

instance == Turn where == t1 t2 = t1 === t2

instance toInt Turn where toInt turn = turn.current

new bound | bound > 0 = {bound = bound, current = 0}

next turn=:{current,bound} = {turn & current = (current + 1) rem bound}

prev turn=:{current,bound} = {turn & current = (current - 1 + bound) rem bound}

match nr turn = nr == turn.current

Thus, in a game with a bounded number of players, each player is identified with
a unique number. The functions next and prev identify the next and previous
player, and with the function match a player can check whether her number
matches with the current turn.

3.2 n-Person Turn-Based Games

To abstract away from the details of a specific n-person turn-based game, a
collection of characteristics functions that operate on a state st is introduced:

:: Game st = { game :: String

, state :: [User] -> st

, over :: (Turn,st) -> Bool

, winner :: (Turn,st) -> Task Turn



, move :: (Turn,st) -> Task st

, board :: (Turn,st) -> [HtmlTag]

}

The game field identifies the game. The state function makes the players known
to the game state. The zero-based index position i in this list of users matches
with a players turn in the game, so match i t is True only if it is player i’s turn.
When the game is over, the winner task declares which player has won. The move

task prescribes a single move by the current player. Finally, the state is rendered
by means of the board function.

Given these characteristic functions, it is possible to define the general struc-
ture of n-person turn-based games:

play_for_N :: !Int !(Game st) -> Task Turn | iTask st

play_for_N n game

= get_players n

>>= \all -> withShared (new n,game.Game.state all)

(\sharedGameSt -> anyTask [ user @: play_for_1 game nr sharedGameSt

\\ user <- all & nr <- [0..]

])

A game is a task that returns a winner defined by the turn. First, n players are
selected, using the get_players task that is described below. During the game,
players can see the current state of the game at all times. Only one of them
can actually change the state of the game. Hence, their task descriptions share
the state, which is captured with the withShared task combinator. The player
actions are controlled with the play_for_1 task. The anyTask combinator evaluates
all tasks in the list until one terminates.

The get_players task describes the selection of the participants, which is mod-
eled as a multiple choice of all currently registered users:

get_players :: !Int -> Task [User]

get_players n

= enterSharedMultipleChoice ("Select␣" <+++ max 0 n <+++ "␣players") [] users

>>* [ WhenValid (\selection -> length selection == max 0 n) return

, Always ActionCancel (throw "Selection␣of␣players␣cancelled.")

]

Whenever the correct number of players are chosen, the list can be returned by
the current user. It is also always possible to simply terminate this task, in which
case the entire game terminates.

Each player basically does two things: gaze at the rendered game and make
a move during their turn:

play_for_1 :: !(Game st) !Int !(Shared (Turn,st)) -> Task Turn | iTask st

play_for_1 game my_turn sharedGameSt

= gaze ||- play

where gaze = viewSharedInformation ("Play␣with␣" <+++ my_turn)

[ ViewWith game.board ] sharedGameSt

play = watch sharedGameSt

>>* [ WhenValid game.over game.winner



, WhenValid (\(turn,_) -> match my_turn turn)

(\(turn,st) -> game.move (turn,st)

>>= \st -> set (next turn,st) sharedGameSt

>>| play

)

]

Gazing at the game is realized with the viewSharedInformation task which uses the
rendering function to display the current value of the shared game state. Not
only the player gazes at the game, the task also monitors the current value of the
shared game state, using the watch task function which merely echoes the current
value of the shared game state. Whenever it is detected that the game is over,
the winner is declared and the game terminates. At a player’s turn, she performs
the move task, the next player is chosen, and the game state is updated.

3.3 The Specialization of Trax

With the generalized framework for n-person turn-based games available, the
specification of TraxTM amounts to deciding upon a suitable game state and
characteristic functions. The game state needs to know the current trax and the
persons who are playing the game.

:: TraxSt = { trax :: !Trax, names :: ![User] }

derive class iTask TraxSt

initial_state :: ![User] -> TraxSt

initial_state users = { trax = zero, names = users }

play_trax :: Task Turn

play_trax = play_for_N 2 { game = "Trax"

, state = initial_state

, over = game_over

, winner = declare_winner

, move = make_a_move

, board = show_board

}

The game is over as soon as a closed loop or winning line exists:

game_over :: !(Turn,TraxSt) -> Bool

game_over (_,traxSt)

= not (isEmpty (loops traxSt.trax ++ winning_lines traxSt.trax))

If the previous player managed to create a closed loop or winning line, then that
player has won the game, otherwise the current player has won:

declare_winner :: !(Turn,TraxSt) -> Task Turn

declare_winner (turn,traxSt=:{trax,names})

= viewInformation "The␣winner␣is:" [ViewWith (toString o (player names))] winner

where winners = loops trax ++ winning_lines trax

last_player = prev turn



winner = if (isMember (toLineColor last_player) (map fst winners))

last_player turn

toLineColor turn = if (match 0 turn) RedLine WhiteLine

player [a,b] turn = if (match 0 turn) a b

Performing a move in the game amounts to letting the player choose a free
coordinate, and then select a matching tile. This tile is added to the current
trax, and the mandatory moves are performed.

make_a_move :: !(Turn,TraxSt) -> Task TraxSt

make_a_move (turn,traxSt=:{trax})

= chooseCoordinate trax

>>= \new -> chooseTile new trax

>>= \tile -> return {traxSt & trax = mandatory_moves

(add_tile new tile trax) new}

At the start of the game, only the zero coordinate is free. In any other case, the
player can select one of the available free coordinates:

chooseCoordinate :: !Trax -> Task Coordinate

chooseCoordinate trax

| nr_of_tiles trax == 0 = return zero

| otherwise = enterChoice "Choose␣coordinate:"

[ChooseWith ChooseFromComboBox toString]

(free_coordinates trax)

At the start of the game, any tile can be selected. If the free coordinate is known,
the player must select a tile that matches the line colors at that specific location.

chooseTile :: !Coordinate !Trax -> Task Tile

chooseTile c trax

= enterChoice "Choose␣tile:"

[ChooseWith ChooseFromRadioButtons (TileTag (16,16))]

(if (nr_of_tiles trax == 0) gFDomain{|*|}

(possible_tiles (linecolors trax c))

)

All that is left to do is to define a rendering of the trax. To this end, it is useful
to specify a few helper definitions to create this html -based rendering:

TileTag :: !(!Int,!Int) !Tile -> HtmlTag

TileTag (w,h) tile = ImgTag [ SrcAttr ("/" <+++ toString tile <+++ ".png")

, WidthAttr (toString w)

, HeightAttr (toString h)

]

tr = TrTag []

td = TdTag []

h3 x = H3Tag [] [text x]

text x = TdTag [AlignAttr "center"] [Text (toString x)]

In the iTask architecture, a task can place additional resources in a folder named
Static. For each of the possible tiles, it contains a .png file (in fact, the ones of



Fig. 2). The TileTag function generates an image tag that displays this file with
suitable dimensions. With these helper definitions, the trax is rendered as a html
table. A cell displays either a tile, or the coordinate of a free location, or nothing
at all. In addition, the name of the current player is displayed.

show_board :: !(Turn,TraxSt) -> [HtmlTag]

show_board (turn,traxSt=:{trax,names})

| nr_of_tiles trax == 0 = [h3 ("Select␣any␣tile,␣" <+++ current_player)]

| otherwise = [h3 current_player, board]

where board = TableTag [BorderAttr "0"]

[ tr [ cell {col=minx + x - 1,row=miny + y - 1}

\\ x <- [0 .. nrcol + 1]

]

\\ y <- [0 .. nrrow + 1]

]

cell c = case tile_at trax c of
Nothing = if (isMember c free) (text c) (text "")

Just tile = td [TileTag (42,42) tile]

current_player = player names turn

free = free_coordinates trax

(nrcol,nrrow) = dimension trax

((minx,maxx),(miny,maxy)) = bounds trax

4 Related Work

The n-person turn-based game abstraction that is described in Sect. 3.2 bears
a striking similarity with the big-bang abstraction that is provided in the Racket
world approach [10]. This approach is designed to lower the threshold for begin-
ning programmers to create interactive applications [12, 11]. The key element of
this abstraction is the big-bang expression:

(big-bang state-expr clause+)

in which state-expr represents the initial state value that is shared in the world
program (similar to the st type parameter of the Game st record) and clause is a
tagged list that specifies the attributes and event handlers of the world program:

clause = (on-tick tick-expr)
| (on-tick tick-expr rate-expr)
| (on-tick tick-expr rate-expr limit-expr)
| (on-key key-expr)
| (on-pad pad-expr)
| (on-release release-expr)
| (on-mouse mouse-expr)
| (to-draw draw-expr)
| (to-draw draw-expr width-expr height-expr)
| (stop-when stop-expr)
| (stop-when stop-expr last-scene-expr)
| (check-with world?-expr)



| (record? r-expr)
| (state boolean-expr)
| (on-receive rec-expr)
| (register IP-expr)
| (name name-expr)

The event handlers are only concerned with the logical state of the world program
and can be expressed as pure functions. For instance, the tick-expr of the on-tick
clause is a pure function that computes a new state from the current one. The
clause list must contain at least one to-drawmember: draw-expr is a function that
computes an image from the current state. Each time a new state is computed,
this function is evaluated to create a new rendering of the game. In the n-person
turn-based Game st abstraction, this corresponds with the board function, except
that the latter generates a html rendering. The stop-expr of the stop-when clause
has a similar role as the over predicate of the game abstraction and the name-expr
of the name clause corresponds with the game member.

Racket world programs can be part of a distributed application using the
universe abstraction. In a nutshell, a world program registers itself on a server
identified by IP-expr. Event handlers either compute only a new state, as de-
scribed above, or a pair of a new state and a message of some type. In the latter
case, the message is sent to the server. A world program can receive messages
from the server via the on-receive rec-expr function. The final component to be
defined is the server which keeps track of registered world programs and the
messages that are sent. It can serve as a broadcasting unit, or inspect messages
to decide to what other worlds these should be sent.

The Racket universe approach to create distributed applications differs from
the iTask approach. The main difference is that in iTask task distribution is
accomplished from within the task specification and that communication occurs
via observing each other’s task value and shared data. In the Racket universe,
world applications are more or less independent applications that use explicit
message passing and receiving for communication.

5 Why Functional Programming Matters To Me

The case study in sections 2 and 3 shows that the glue that was identified by
John Hughes is put to good use: higher order functions and lazy evaluation
are used throughout the specification. This is also the case for other functional
language features: list comprehensions deal with sets, lists, and streams in a
uniform manner, the type class system unlocks useful functions for dedicated
model data types, and generic functions capture type-dependent functionality in
a single definition. However, having these language features available in a func-
tional language only partially answers the question why functional programming
matters to me. The other part of the answer concerns their impact on the way
they help me to solve problems. Regardless of the programming paradigm, when
solving a programming problem, I need to answer questions about that problem.



I illustrate this in terms of the case study. The first kind of question is always
about the entities of the problem domain:

1. What are the entities in a game of TraxTM?

The answer is a collection of data types and their basic operations (most of them
were defined in Sect. 2.1). Except for the choice to use streams to represent closed
loops (Sect. 2.5), the data types in the case study are likely to result in similar
representations in other programming languages and paradigms.

The second kind of question investigates the relation between these entities:

2. Which are the line colors of a (possibly empty) location in a trax?
3. When do two sets of line colors match?
4. Which tiles can be placed correctly at a free locations in a trax?
5. What trax results from performing the mandatory moves in a trax?
6. Which closed loops and winning lines does a trax contain?

The key observation is that these questions want to discover the relation between
the entities and a well-defined result: this is exactly what functions and functional
programming are about. Functions are computable answers. (Sections 2.2 – 2.5.)

The third kind of question investigates the relation with the end-users:

7. What is the order in which players take turns?
8. What is a player allowed to do?
9. When is a game of TraxTM over and who is the winner?

They investigate the concerted action between computable functions and user
actions: this is exactly what tasks and iTask is about. Therefore, by specifying
the corresponding tasks, you make the entities and functions tangible for users
in the form of an executable application (Sect. 3).

Functional programming matters to me because it is a way of thinking and
speaking that helps me to give the right answers to the right questions when
solving computational problems.
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