
Analysing embedded domain specific languages in
Haskell from Core

A case study on Yard, a Parsec-like parser combinator library

P. T. Jager
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

p.t.jager@student.utwente.nl

ABSTRACT
Many programming languages are created for a specific
purpose. These Domain Specific Languages are designed
to solve one problem in a specific domain and solve it well.
However, the implementation of these languages requires
a lot of work. Therefore a lot of these languages are em-
bedded into existing general purpose languages. Although
this saves a lot of work implementing the language, it also
has its drawbacks. One of these is that the compiler for the
genral purpose language has no knowledge of the specific
domain and therefore can not optimise the generated code
using this knowledge. In this paper we explore the usage
of Core-to-Core transformations through ghc plugins as
a method of embedding domain specific knowledge in the
Haskell compiler. We show that it is possible to analyse
which code is domain specific and which is general Haskell
code. We also provide suggestions as to which specific
problems an edsl author might encounter when embed-
ding domain specific knowledge using Core-to-Core trans-
formations and what present solutions to these problems
from an edsl author’s point of view.

Keywords
Embedded Domain Specific Language, Domain Knowl-
edge, Optimisation, Haskell, Core, GHC

1. INTRODUCTION
Many programming languages are created for a specific
purpose. These Domain Specific Languages (dsls) [5] are
designed to solve problems from a specific domain and
solve them well. Common examples of dsls include html,
sql, LATEX and the formula language in Microsoft Excel.
These dsls enable their users to easily describe problems
in the domain-specific terms they are used to. However,
the implementation of these dsls requires the implemen-
tation of a complete stack of lexer, parser, pretty printer
etc. to interpret or compile the dsl.

To overcome this, many dsls are embedded into an ex-
isting general purpose programming language (gpl) such
as Java or Haskell. These dsls, we call Embedded dsls
(edsl). Embedding the dsl has the advantage that now

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
21th Twente Student Conference on IT June 23d, 2014, Enschede, The
Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

both the expressive power of the containing gpl and its
compiler can be used. However, the compiler of the gpl
does not have any knowledge of the domain described by
the edsl. It can therefore not do any domain-specific op-
timisations on programs described with the edsl, beyond
those which can be derived from the structure of the edsl
as described in the gpl. This leaves the compiled code
less efficient than it could be.

Consider for example an edsl — in the gpl Haskell —
which describes parsers (for more on this edsl see Sec-
tion 2.4). It has primitives to construct parsers, such as
string :: String -> Parser String, which either accepts
a string that precisely matches its argument, or fails and
functions to combine these parsers, such as choice: <|>::
Parser a -> Parser a -> Parser a, which tries the left
parser and if that fails, returns the result of the right
parser, which is either a parsed a or a fail.

We consider the following program, which parses either
the string “bar” or the string “baz”.

1 barOrBaz :: Parser String

2 barOrBaz = (string "bar") <|> (string "baz")

If we compile this code using the Haskell compiler and then
try to parse the string “baz”, the parser string "bar" is
tried first. When this parser fails on the last character ‘z’
the characters already consumed (“ba”) have to be restored
and the parser string "baz" is tried. The state machine
of the compiled Haskell program for barOrBaz is, overly
simplified, the following. Note that we have omitted the
failure states and the actions which restore the already
consumed characters.

0start

1b 1ba 1bar

2 2b 2ba 2baz

b

!b

a

!a

r

!r

b a z

Since the compiler has no knowledge of the semantics of
our domain, it does not know that the states (1b, 2b), (1ba,
2ba) could be merged and that state 2 could be omitted,
resulting in the following state machine, which now does
not require any backtracking when parsing.

1

0start b ba

bar

baz

b a r

z

When, instead of this small example, we consider a larger
and more realistic grammar, it is clear that the amount of
backtracking quickly becomes prohibitive, even though a
properly generated parser does not need any backtracking.

In this research, we have done a case study on analysing an
edsl in Haskell. We provide a proof-of-concept compiler
plugin (Section 2.2), which shows that it is possible to
analyse a program described using an edsl from within
Glasgow Haskell compiler (ghc) [9]. The edsl we analyse
is a parser combinator library called Yard, more on this in
Section 2.4.

This paper makes the following contributions:

• We show that it is possible to analyse the Core (see
Section 2.1) generated by ghc to find the grammar
described using Yard (Section 4).

• We show that it is possible to recognise the Haskell
code which is interleaved with the grammar found
(Section 4).

• An evaluation of optimising an edsl from Core from
an edsl author’s point of view (Section 8).

2. BACKGROUND
2.1 Core
ghc transforms Haskell source code into an intermediate
language called Core [9, section 3.1] (Figure 1). Core is
a very minimal language, which has the same expressive
power as Haskell, but with very few syntatic constructs. In
ghc, optimisations are implemented as a pipeline of Core-
to-Core transformations. In Figure 1, we have grayed out
the constructs in Core that are not relevant for this paper.
To give some intuition of Core for the remainder of this
paper the relevant ones are shortly explained:

Var is a variable, which has both a name and a type, like
Prelude.(+) :: Num a => a -> a -> a or foo ::

Maybe String

CoreBind is a binding of a left hand side (name) to a
right hand side (expression). This can either be a
non recursive binding, or a list of mutually recursive
bindings, that is, bindings that reference each other,
e.g. ones = 1 : ones.

CoreExpr

Var Var is an expression of just a variable. Note
that Var could be a function.

Lit Literal is an expression of just a literal, e.g. 5

or 'c '

App CoreExpr CoreExpr is an application of a
function to its arument, i.e. f a

Lam Var CoreExpr is a lambda expression bind-
ing a name in a given expression, i.e. \a -> f a

2.2 GHC plugins
Since version 7.2.1 of the ghc Haskell Compiler [1] it is
possible to define compiler plugins which are run as opti-
misations. These plugins can then do Core-to-Core trans-
formations on the module that is currently being com-
piled. The plugin adds a function of type ModGuts ->

CoreM Modguts (Figure 1) to the Core-to-Core optimisa-
tion pipeline. This function can then change the Core-
binders in the ModGuts and thereby change the Core pro-
gram in the module.

2.3 Parsers as functions
In functional languages, parsers can be modeled as func-
tions which can then be combined using higher order com-
binator functions [6]. These combinator functions have
parsers as arguments and result in a new parser which is
a combination of the given arguments. A very short ex-
ample of this approach is given in Section 1. These parser
functions and their combinators are a monad, an algebraic
structure. This allows us to treat parser functions as com-
putations with context. For our parsers, this context is
threefold: it holds the input to be consumed, the accumu-
lated result and whether or not the parser has failed.

Failure needs to be tracked because when two parsers are
combined, e.g. using parser1 >> parser2, where >> is se-
quence, this chain is a new parser. This parser only succes-
fully consumes input when parser1, followed by parser2,
both succesfully parse input. It is therefore necessary that
failure is propagated.

Using this monadic structure, it is also possible to have
dependent parsers, that is, parsers that depend on param-
eters which are the result of a previous parser. Because of
this dependent nature, it is possible to construct parsers
which parse context sensitive grammars [8].

2.4 Yard
The edsl this case study focusses on is Yard, that is Yet
Another Research Dsl. It is a dsl which offers monadic
parser and combinator functions as described in Section 2.3.
Yard is inspired by Parsec [8], which is a popular parser
combinator library for Haskell. Unlike Parsec, in which
parsers with lookahead larger than 1 have to be anno-
tated, Yards parsers have infinite lookahead by default.
In Parsec this decision was made for performance reasons.
Yard however was created to be optimised and therefore
does not require this annotation.

In Figure 2, an overview of the Yard edsl is given using its
functions’ type signatures. It exists of a few basic pars-
ing functions, some of which are parametric, and a few
functions which combine parsers into new parsers.

3. PROBLEM STATEMENT
Describing context sensitive grammars using the monadic
parser combinator approach from Section 2.3 is a very nat-
ural and powerful way to do so. However, implementing
a complete language to express parsers this way is a very
large and time consuming task. It would be better to
reuse parts of an existing general purpose programming
language and implement the parser functions as a library.
Such a library can then be used to express parsers in the
containing gpl and the complete range of functionality of
the containing gpl can be used to expand the expressive
power of the parser functions.

In the above case, the parser library is considered a dsl,
embedded in a gpl. By embedding the dsl, it is both
faster to implement and more powerful. However, by em-

2

1 type Var = -- ...

2 data ModGuts = ModGuts { mg_binds :: [CoreBind], ... }

3 data CoreBind = NonRec Var CoreExpr | Rec [(Var, CoreExpr)]

4 data CoreExpr = Var Var | Lit Literal | Type Type | App CoreExpr CoreExpr | Lam Var CoreExpr

5 | Let CoreBind CoreExpr | Case CoreExpr Var Type [CoreAlt] | Cast CoreExpr Coercion

6 | Coercion Coercion | Tick CoreTickisch CoreExpr

Figure 1. The Core language as seen by GHC plugins

1 -- parser functions

2 item :: Parser Char -- reads the next char

3 zero :: Parser a -- always fails

4 char :: Char -> Parser Char -- matches the given Char, or fails

5 alpha :: Parser Char -- matches any letter, or fails

6 string :: String -> Parser String -- matches the given string, or fails

7 digit :: Parser Char -- matches any digit, or fails

8 number :: Parser String -- matches one or more digits, or fails

9 -- combinator functions

10 >> :: Parser a -> Parser b -> Parser b -- chains two parsers

11 <|> :: Parser a -> Parser a -> Parser a
12 -- trys the left parser first and returns its result when it succeeds, or returns the result of the

right parser when the left failed.

13 >>= :: Parser a -> (a -> Parser b) -> Parser b -- monadic bind, runs the first parser and then uses

its result as parameter for the second.

14 many :: Parser a -> Parser [a] -- zero or more

15 optional :: a -> Parser a -> Parser a
16 -- trys the parser and when its succeeds returns its result, or a default value when it fails

Figure 2. Overview of Yard

bedding the dsl, it is also compiled using the compiler of
the containing gpl. This compiler has no knowledge of
the domain of the dsl, which means it can not do any
domain-specific optimisations, beyond that which can be
derived from the structure of the edsl.

This is true for any edsl. Any compiler of a gpl can
not extract more information of a domain beyond that
which can be derived from the structure of the (imple-
mentation of an) edsl. All compilers therefore compile to
(potentially) less than optimal code when compiling code
which uses an edsl. Depending on the edsl and gpl the
performance impact of this could be significant, in either
computational time, code size, or both. This problem is
therefore not only relevant in Haskell or for a parser com-
binator edsl, but for all edsls in general.

Even though the performance hit of edsls is potentially
prohibitive, there have not been any real structural solu-
tions, which aid edsl designers in bringing their domain-
specific knowledge into the compiler to the extend that
the compiler can optimise their edsl. We discuss some
existing approaches in Section 5.

We aim to find a natural and easy way for edsl authors to
aid the gpl compiler in optimising their edsl. Ultimately,
this approach allows edsl authors to bundle their domain-
specific knowledge with their edsl and have the compiler
run domain specific optimisations as one of the compiler
passes.

4. GHC PLUGINS FOR EDSL OPTIMISA-
TIONS

In this paper, we propose a method to analyse shallow
embedded dsls from within the Haskell compiler using

ghc plugins (see Section 2.2). This method could then be
used to optimise the edsl from within a ghc plugin. We
show a proof-of-concept implementation (freely available
[7]) of an analyser for the edsl Yard (Section 2.4).

In our analysis we transform a program, descibed using
Yard, to a grammar tree (Figure 4). This datatype de-
scribes grammars in terms we understand. Note how the
first twelve constructors correspond to the twelve functions
from Yard (Figure 2) and the types Var and Literal are
those discussed in Section 2.1. Haskell constructs we do
not understand, such as let or case are saved, packed
in GUnknown. Below we expand on the grammar tree and
how it is constructed from the Core ast, which has already
been introduced in Section 2.1.

When analysing programs, described using Yard, several
kinds of parser functions and interleaved Haskell constructs
and functions need to be considered. In ascending order
of complexity:

‘simple’ parsers Parsers that are described using only
fully applied functions from Yard, e.g. string "foo"

>> (char 'c ' <|> (string "bar" >> char 'd '))
.

Non-terminals Parsers described using multiple non-terminals.
Such as the grammar described in Figure 3.

Lambda expressions Parsers which contain lambda con-
structs, i.e. p1 >>= \x -> p2 <|> return x. Un-
derstanding these requires knowledge of the seman-
tics of the lambda Core construct.

Dependent parsers Parsers which depend on the pro-
duction of a previous parser, that is, those which are

3

1 foo :: Parser String

2 foo = string " foo" >> string "bar"
3 baz :: Parser String

4 baz = foo >> string "baz"

Figure 3. Gammar with non-terminals

context sensitive, e.g. alpha >>= \a -> char a.

General functions Parsers which are interleaved with
general functions, e.g. \x -> string $ f x, where
f is any function.

We analyse programs by recursively walking the Core ast
as shown in Figure 5. The function unwind unwinds an
App to a Stack of arguments and the function to which
they are applied on top. The function readVar reads a
variable and resolves it to a Grammar, applying possible
arguments from the argument list. Possible variables are
the functions from Yard, which are mapped to one of the
first twelve constructors from Grammar, non-terminals, or
other functions.

Using this method we analyse all Core constructs and
functions that are meaningfull in relation to Yard, i.e.
functions from Yard itself, functions which result in type
Parser a and lambda constructs. We observe that other
general functions exist and we also analyse their variables
if those are parsers. Other Core constructs are simply
packed, placed in the grammar and ignored (see Section 7).

5. RELATED WORK
Farmer et al. have done considerable amounts of work
on Core-to-Core transformations with their hermit tool
[4]. This tool allows user interaction with Core directly
within the ghc pipeline. Sculthorpe et al. have also done
some evaluation of the hermit tool in which they found
it works well for Core-to-Core transformations, but that
it could benefit from more high level transformation func-
tions [11]. hermit uses the kure rewrite engine [12], a
Haskell library which allows for typed data transforma-
tions, to do transformations on Core.

Adams et al. have used Core-to-Core optimisations in
hermit to optimise the Scrap Your Boilerplate (syb) edsl
[2]. Their results eliminate the performance impact of
generic programming with syb by removing run-time type
inspection. They do so by constant propagation and dead
code removal. Ultimately we aim to do optimisations
which transform the optimised program, as discussed in
Section 1.

In an (yet) unpublished paper Farmer and Gill have de-
scribed and implemented a dsl to describe Core-to-Core
transformations for hermit [3]. This allows for the opti-
misations to be described directly in the source files de-
scribing the edsl, instead of seperate files for hermit.

Ghc also features rules pragmas, which are simple rewrite
rules Haskell developers can embed in their source files to
instruct ghc to rewrite certain function calls to other func-
tion calls [10]. Although rewite rules are a powerful tool,
they are limited to local, small step transformations. The
rewrites they describe are however expressed in a syntax
that is quite similar to the expressions rewritten. This is
an advantage from an edsl authors point of view, as it
eliminates the need to study Core.

6. CONCLUSIONS
We have shown that it is possible to analyse an edsl from
Core. We have shown that it is possible te recognise which
Core constructs correspond to functions from the edsl and
which do not. We have also shown that it is possible to
safely deal with those that do not and that, due to the
recursive nature of our transformation functions, it is even
possible to analyse their arguments.

7. FUTURE WORK
It would be interesting to use the method proposed in
this paper to implement an edsl optimisation ghc-Plugin,
which actually implements an optimisation as a Core-to-
Core transformation.

It would also be interesting to expand the understood Core
constructs. Most notably the Let and Case constructs.
Which would allow the analyses of parsers that use either
let-bindings (e.g. let x = y in string x) or case state-
ments.

As we discuss in Section 8, analysing the complete Core
representation of a module is not a trivial task and might
be a lot to ask from an edsl author. It would therefore be
benefitial to have a library which would aid edsl authors
in their optimisations, by tackling some of the problems
discussed.

8. DISCUSSION
Analysing an edsl from Core is not a trivial task. One of
the main problems we have run into during the develop-
ment of our proof-of-concept is that there does not appear
to be an easy way to check if a variable is of a certain type
or if it is in a certain module. It is possible to get the
type or module of encountered variables, but there does
not appear to be an easy way to check it against a type or
module known by name. In our proof-of-concept we have
overcome this by using the pretty printer to get string rep-
resentations of the encountered variables and their types,
however this is not a solution which is viable in a real
world application. It would be benefitial for edsl authors
if they could simply check for a type or module, i.e.:

1 f :: CoreExpr -> a
2 f (Var v) | v 8 inModule 8 "Text.Yard" -> ...

3 | v 8 ofType 8 "Text.Yard.Parser a" ->

...

Another problem is that it appears to be difficult to con-
struct CoreExprs. For example, if we want an expression
for the variable foo :: Int -> Int or the ast for foo 2

there is no easy way to create these. The ability to do so
would be beneficial as it would allow for easy replacement
of CoreExprs similar to ghc rules (see Section 5). A li-
brary aimed at helping edsl authors should provide this
functionality.

Another issue is that due to the structure of the Core ast
it is not easy to get all arguments for a function. Since
the leftmost function in an expression is in the bottom
leftmost leaf of the branch in the Core ast corresponding
to that expression, it is necessary to traverse the ast up-
wards to rediscover all of its arguments. In Figure 6 we
illustrate this for the expression f 3 4 5. Edsl authors
might benefit from a library function which allows for easy
inspection and changing of function arguments, which in
themself might be other functions. In our proof-of-concept
we have worked around this issue by transforming the en-
tire Core ast into a stack.

4

1 data Grammar = GDontCare {-item-} | GFail {-zero-} | GChar String | GAlpha | GString String | GDigit

2 | GNumber | GSequence Grammar Grammar | GChoice Grammar Grammar | GBind Grammar Grammar

3 | GMany Grammar | GOptional String Grammar

4 | GUnknown (CoreExpr) {- Packed unknown Core construct -}

5 | GUnpack Var Grammar {- GHC function which unpack literals -}

6 | GLiteral Literal {- A literal -}

7 | GNonTerminal Var [Grammar] {- Local parser function -}

8 | GLambda Literal Grammar {- Lambda expression -}

9 | GVariable Var [Grammar] {- Other function -}

Figure 4. Grammar

1 type Stack = [CoreExpr]

2 unwind :: CoreExpr -> Stack

3 readVar :: Var -> [Grammar] -> Grammar

4
5 compile :: Stack -> (Stack, Grammar)

6 compile (x:xs) = case x of

7 Lit l -> (xs, GLiteral l)
8 Var v -> case arity $ varType v of a
9 | a > 0 -> let (xs ', args) = (\(args, xs ') -> (xs ', map (compile . unwind) args)) $ splitAt a xs

10 in (xs ', readVar v args)
11 | a == 0 -> (xs, readVar v [])

12 Lam l e -> (xs, GLambda l $ compile $ unwind e)
13 _ -> (xs, GUnknown x)

Figure 5. Compiling Core to Grammar

App

5App

4App

3f

Figure 6. Core ast for the expression f 3 4 5

Another problem is the poor documentation of the Core
datatypes in ghc and the functions which deal with it.
Most function are hardly documented at all. When writ-
ing our proof-of-concept most functions used were found
through a combination of patience, tracking type signa-
tures and the help of others. Often it was necessary to
check the source code of ghc to learn what a function
did. To easily be able to use ghc Plugins to implement
domain-specific optimisations it would help edsl authors
to have a manual for the most used functions.

9. ACKNOWLEDGEMENTS
We would like to thank Philip Hölzenspies for his patience,
feedback and help in writing this paper. Further we would
like to thank Marieke Huisman, Nick ten Veen and Marcel
Boersma for their helpfull reviews.

10. REFERENCES
[1] New plugins work. https:

//ghc.haskell.org/trac/ghc/wiki/NewPlugins.
Accessed: 05-2014.

[2] M. D. Adams, A. Farmer, and J. P. Magalhães.
Optimizing SYB is easy! In Proceedings of the ACM
SIGPLAN 2014 workshop on Partial evaluation and
program manipulation, pages 71–82. ACM, 2014.

[3] A. Farmer and A. Gill. A language for domain
specific optimizations in Haskell.

[4] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe.
The HERMIT in the machine: a plugin for the
interactive transformation of GHC core language
programs. In ACM SIGPLAN Notices, volume 47,
pages 1–12. ACM, 2012.

[5] M. Fowler. Domain-specific languages. Pearson
Education, 2010.

[6] G. Hutton and E. Meijer. Monadic parser
combinators. 1996.

[7] P. T. Jager. Yard - proof-of-concept GHC plugin.
https://github.com/PimJager/Yard/. Accessed:
06-2014.

[8] D. Leijen and E. Meijer. Parsec: Direct style
monadic parser combinators for the real world. 2001.

[9] S. Marlow, S. Peyton Jones, et al. The Glasgow
Haskell Compiler, 2004.

[10] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing
by the rules: rewriting as a practical optimisation
technique in GHC. In Haskell Workshop, volume 1,
pages 203–233, 2001.

[11] N. Sculthorpe, A. Farmer, and A. Gill. The
HERMIT in the Tree. In Implementation and
Application of Functional Languages, pages 86–103.
Springer, 2013.

[12] N. Scultorpe, N. Frisby, and A. Gill. The kansas
university rewrite engine.

5

