From 6f604b19d3f5966e5c1d7c4fdf3703bd6ff0861c Mon Sep 17 00:00:00 2001 From: Mart Lubbers Date: Thu, 16 Apr 2015 21:22:20 +0200 Subject: update to fp2 yay, public and licence --- fp1/week4/mart/5.4.txt | 4 ++++ fp1/week4/mart/StdSet.dcl | 25 ++++++++++++++++++++++ fp1/week4/mart/StdSet.icl | 54 +++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 83 insertions(+) create mode 100644 fp1/week4/mart/5.4.txt create mode 100644 fp1/week4/mart/StdSet.dcl create mode 100644 fp1/week4/mart/StdSet.icl (limited to 'fp1/week4/mart') diff --git a/fp1/week4/mart/5.4.txt b/fp1/week4/mart/5.4.txt new file mode 100644 index 0000000..50521d3 --- /dev/null +++ b/fp1/week4/mart/5.4.txt @@ -0,0 +1,4 @@ +1. 4+2 en 2+4. Dit geeft zelfde uitkomst ivm commutativiteit van + +2. 4-2 en 2-4. Dit geeft 2 en -2. - is niet commutitatief. +3. 4*2 en 2*4. Dit geeft zelfde uitkomst ivm commutativiteit van * +4. 4/2 en 2/4. Dit geeft 2 en 0. / is niet commutitatief. diff --git a/fp1/week4/mart/StdSet.dcl b/fp1/week4/mart/StdSet.dcl new file mode 100644 index 0000000..0c702ca --- /dev/null +++ b/fp1/week4/mart/StdSet.dcl @@ -0,0 +1,25 @@ +definition module StdSet + +import StdClass + +:: Set a + +toSet :: [a] -> Set a | Eq a +fromSet :: (Set a) -> [a] + +isEmptySet :: (Set a) -> Bool +isDisjoint :: (Set a) (Set a) -> Bool | Eq a +isSubset :: (Set a) (Set a) -> Bool | Eq a +isStrictSubset :: (Set a) (Set a) -> Bool | Eq a +memberOfSet :: a (Set a) -> Bool | Eq a +union :: (Set a) (Set a) -> Set a | Eq a +intersection :: (Set a) (Set a) -> Set a | Eq a +nrOfElements :: (Set a) -> Int +without :: (Set a) (Set a) -> Set a | Eq a + +product :: (Set a) (Set b) -> Set (a,b) + +instance zero (Set a) +instance == (Set a) | Eq a + +powerSet :: (Set a) -> Set (Set a) | Eq a diff --git a/fp1/week4/mart/StdSet.icl b/fp1/week4/mart/StdSet.icl new file mode 100644 index 0000000..ecb2e60 --- /dev/null +++ b/fp1/week4/mart/StdSet.icl @@ -0,0 +1,54 @@ +implementation module StdSet + +import StdEnv +import StdClass + +:: Set a = Set [a] + +toSet :: [a] -> Set a | Eq a +toSet s = Set (removeDup s) + +fromSet :: (Set a) -> [a] +fromSet (Set s) = s + +isEmptySet :: (Set a) -> Bool +isEmptySet s = isEmpty (fromSet s) + +isDisjoint :: (Set a) (Set a) -> Bool | Eq a +isDisjoint s1 s2 = nrOfElements (intersection s1 s2) == 0 + +isSubset :: (Set a) (Set a) -> Bool | Eq a +isSubset s1 s2 = nrOfElements s1 == nrOfElements (intersection s1 s2) + +isStrictSubset :: (Set a) (Set a) -> Bool | Eq a +isStrictSubset s1 s2 = isSubset s1 s2 && nrOfElements s1 < nrOfElements s2 + +memberOfSet :: a (Set a) -> Bool | Eq a +memberOfSet a (Set []) = False +memberOfSet a (Set [x:xs]) = a == x || memberOfSet a (Set xs) + +union :: (Set a) (Set a) -> Set a | Eq a +union (Set s1) (Set s2) = toSet (s1 ++ s2) + +intersection :: (Set a) (Set a) -> Set a | Eq a +intersection (Set s1) s2 = Set [e \\ e <- s1 | memberOfSet e s2] + +nrOfElements :: (Set a) -> Int +nrOfElements s = length (fromSet s) + +without :: (Set a) (Set a) -> Set a | Eq a +without (Set s1) s2 = Set [e \\ e <- s1 | not (memberOfSet e s2)] + +product :: (Set a) (Set b) -> Set (a,b) +product (Set s1) (Set s2) = Set [(e1, e2) \\ e1 <- s1, e2 <- s2] + +instance zero (Set a) +where zero = Set [] + +instance == (Set a) | Eq a +where (==) s1 s2 = isSubset s1 s2 && isSubset s2 s1 + +powerSet :: (Set a) -> Set (Set a) | Eq a +powerSet (Set []) = Set [(Set [])] +powerSet (Set [e:xs]) = union (powerSet (Set xs)) + (Set [union (Set [e]) x \\ x <- fromSet (powerSet (Set xs))]) -- cgit v1.2.3