\documentclass[10pt,a4paper]{article} \usepackage[margin=2cm]{geometry} \usepackage{enumitem} \setenumerate[1]{label=\arabic*.} \setenumerate[2]{label=(\alph*)} % textcomp package is not available everywhere, and we only need the Copyright symbol % taken from http://tex.stackexchange.com/a/1677/23992 \DeclareTextCommandDefault{\textregistered}{\textcircled{\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}} \usepackage{fancyhdr} \renewcommand{\headrulewidth}{0pt} \renewcommand{\footrulewidth}{0pt} \fancyhead{} \fancyfoot[C]{Copyright {\textcopyright} 2015 Camil Staps} \pagestyle{fancy} \usepackage{amsmath} \usepackage{amsfonts} \parindent0pt \title{Calculus en Kansrekenen - assignment 2} \author{Camil Staps\\\small{s4498062, group Bram}} \begin{document} \maketitle \thispagestyle{fancy} \begin{enumerate} \item \begin{enumerate} \item $$\lim\limits_{x\to-\infty}\frac{x^3+2x^2+2}{3x^3+x+4} = \lim\limits_{x\to-\infty}\frac{1+\frac2x+\frac2{x^3}}{3+\frac1x+\frac4{x^3}} = \frac13.$$ \item $$\lim\limits_{x\to\infty}\frac{3x^2+8}{x+1}=\frac{3x+\frac8x}{1+\frac1x}=\lim\limits_{x\to\infty}3x+\frac8x=\lim\limits_{x\to\infty}3x=\infty.$$ \item $$\lim\limits_{x\to\infty}\frac{2x+1}{x^2+x}=\lim\limits_{x\to\infty}\frac{\frac2x+\frac1{x^2}}{1+\frac1x}=\frac01=0.$$ \item \begin{align*} & \lim\limits_{x\to a}\frac{x^n-a^n}{x-a}\\ = & \lim\limits_{a+h\to a}\frac{(a+h)^n-a^n}{a+h-a}\qquad\text{with $h=x-a$}\\ = & \lim\limits_{h\to0}\frac{(a+h)^n - a^n}{h}\\ = & \left(a^n\right)'\\ = & n\cdot a^{n-1}. \end{align*} \end{enumerate} \item \begin{enumerate} \item $$f'(2) = \lim\limits_{h\to0}\frac{f(2+h)-f(2)}{h}=\lim\limits_{h\to0}\frac0h=0.$$ \item $$f'(x) = \lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h} = \lim\limits_{h\to0}\frac{2(x+h)+3-(2x+3)}{h} = \lim\limits_{h\to0}2 = 2.$$ \item $$f'(3) = \lim\limits_{h\to0}\frac{f(3+h)-f(3)}{h} = \lim\limits_{h\to0}\frac{h^2+6h+9+6+2h+1-(9+6+1)}{h} = \lim\limits_{h\to0}h+8=8.$$ \item \begin{align*} f'(x) &= \lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h}\\ &= \lim\limits_{h\to0}\frac{\frac{5(x+h)-7}{4(x+h)+3} - \frac{5x-7}{4x+3}}{h}\\ &= \lim\limits_{h\to0}\frac{\frac{43h}{(4x+4h+3)(4x+3)}}{h}\\ &= \lim\limits_{h\to0}\frac{43}{(4x+4h+3)(4x+3)}\\ &= \frac{43}{(4x+3)^2}. \end{align*} \end{enumerate} \item \begin{enumerate} \item We rewrite this to something of the form $y=ax+b$: \begin{align*} 4y - x + 2(1-\ln2) &= 0\\ 4y &= x - 2(1-\ln2)\\ y &= \frac14x - \frac12(1-\ln2) \end{align*} For a line $y=ax+b$, $a$ is the slope, so in this case we have the slope $\frac14$. \item We equate $f(x)$ and $y$ for $x=2$: \begin{align*} \frac14\cdot2 - \frac12(1-\ln2) &= a\ln2 \\ \frac12\ln2 &= a\ln2 \\ a &= \frac12. \end{align*} \item For the slope we take the derivative of $f$, i.e. $f'(x) = \frac ax = \frac12a$. Then as intercept we take $f(2)-2\cdot f'(2) = a\ln2 - 2\cdot\frac a2 = a\ln2-a$. The tangent line is then $y=\frac12ax+a\ln2-a$. \end{enumerate} \item \begin{enumerate} \item $f'(x) = 4x^3-6x^2.$ \item $f'(x) = \frac{(x-7)(2x)-(x^2+5)(1)}{(x-7)^2} = \frac{x+2}{x-7}.$ \item \begin{align*} f'(x) &= \left(\sin{\sqrt x}\cdot\sin{\sqrt x}\right) \\ &= 2\cdot\sin\sqrt x\cdot\left(\sin\sqrt x\right)' \\ &= 2\cdot\sin\sqrt x\cdot\cos\sqrt x\cdot\frac12\cdot x^{-\frac12} \\ &= \frac12\sin\left(2\sqrt x\right)\cdot\frac1{\sqrt x} \\ &= \frac{\sin\left(2\sqrt x\right)}{2\sqrt x}. \end{align*} \item %todo \item $f'(x) = \left(e^{\tan x}\right)' = e(\tan x)\cdot\tan'x = \frac{e(\tan x)}{\cos^2x}$. \item $f'(x) = -\frac1{\cos x}\cdot-\sin x=\frac{\sin x}{\tan x}$. \item \begin{align*} f'(x) &= \frac1{\sqrt{1-(1-2x)^2}}\cdot-2 \\ &= -2\cdot\frac1{\sqrt{4x^2+4x}} \\ &= -2\cdot\frac1{2\sqrt{x^2+x}} \\ &= -\left(x^2+x\right)^{-\frac12}. \end{align*} \item %todo \end{enumerate} \item % todo \end{enumerate} \end{document}