\begin{solution}{3} \begin{enumerate} \setcounter{enumi}{1} \item See figure \ref{fig:9.3b} and \ref{fig:9.3b-clean}. \begin{figure*}[p] \centering \begin{tikzpicture}[->, node distance=2cm] \node[state,initial] (q0) {$q_0$}; \node[state] (q1) [right=of q0] {$q_1$}; \node[state] (q2) [right=of q1] {$q_2$}; \node[state] (q3) [right=of q2] {$q_3$}; \node[state] (q4) [below right=of q2] {$q_4$}; \node[state] (q5) [right=of q3] {$q_5$}; \node[state] (q6) [above right=of q2] {$q_6$}; \draw (q0) -- node[above] {$B/B,R$} ++ (q1); \draw (q1) edge[loop above] node[above,align=left] {$a/a,R$\\$b/b,R$} (q1); \draw (q1) -- node[above,align=left] {$B/B,L$\\$X/X,L$\\$Y/Y,L$} ++ (q2); \draw (q2) -- node[above] {$a/X,R$} (q3); \draw (q2) -- node[below left] {$b/Y,R$} (q4); \draw (q3) edge[out=30,in=60,looseness=8] node[above,align=left] {$a/a,R$\\$b/b,R$\\$X/X,R$\\$Y/Y,R$} (q3); \draw (q3) -- node[above] {$B/a,L$} ++ (q5); \draw (q4) edge[loop below] node[below,align=left] {$a/a,R$\\$b/b,R$\\$X/X,R$\\$Y/Y,R$} (q4); \draw (q4) -- node[below right] {$B/b,L$} ++ (q5); \draw (q5) edge[loop above] node[above,align=left] {$a/a,L$\\$b/b,L$\\$X/X,L$\\$Y/Y,L$} (q5); \draw (q5) edge[out=270,in=270,looseness=2] node[below] {$B/B,R$} (q1); \draw (q2) -- node[above left] {$B/B,R$} ++ (q6); \draw (q6) edge[loop above] node[above,align=left] {$X/a,R$\\$Y/b,R$\\$a/a,L$\\$b/b,L$} (q6); \end{tikzpicture} \caption{The state machine of exercise 9.3b.} \label{fig:9.3b} \end{figure*} \begin{figure}[h] \begin{minted}[bgcolor=mintedbg,tabsize=0,fontsize=\footnotesize]{clean} tape_9_3_b = [Just c \\ c <- fromString "abbaba"] ex_9_3_b :: TuringMachine Char ex_9_3_b = { alphabet = ['a', 'b', 'X', 'Y'], inputs = ['a', 'b'], transition = f } where f :: Int (Maybe Char) -> TuringMachineMove Char f 0 Nothing = Step 1 Nothing Right f 1 (Just 'a') = Step 1 (Just 'a') Right f 1 (Just 'b') = Step 1 (Just 'b') Right f 1 c = Step 2 c Left f 2 Nothing = Step 6 Nothing Right f 2 (Just 'a') = Step 3 (Just 'X') Right f 2 (Just 'b') = Step 4 (Just 'Y') Right f 3 (Just c) = Step 3 (Just c) Right f 3 Nothing = Step 5 (Just 'a') Left f 4 (Just c) = Step 4 (Just c) Right f 4 Nothing = Step 5 (Just 'b') Left f 5 (Just c) = Step 5 (Just c) Left f 5 Nothing = Step 1 Nothing Right f 6 (Just 'X') = Step 6 (Just 'a') Right f 6 (Just 'Y') = Step 6 (Just 'b') Right f 6 (Just c) = Step 6 (Just c) Left f _ _ = Halt \end{minted} \caption{The state machine of exercise 9.3b, for use with CleanTuringMachines.} \label{fig:9.3b-clean} \end{figure} We read $a$s and $b$s from the input string until the end in $q_1$. The last character is replaced by an $X$ or $Y$ for an $a$ or $b$, respectively, by $q_2$. Then, we place an $a$ or $b$ on the first blank on the right, depending on the last character of the input string. This happens in $q_3$ and $q_4$. We go back to the very beginning of the string in $q_5$, and repeat the process starting in $q_2$, but now stop reading at the beforelast character (and the one before that, and so on). If there are no more characters in the input string, we go to $q_6$ where we replace all $X$s by $a$s and all $Y$s by $b$s, after which we terminate. \item See figure \ref{fig:9.3c} and \ref{fig:9.3c-clean}. \begin{figure*}[p] \centering \begin{tikzpicture}[->, node distance=2cm] \node[state,initial] (q0) {$q_0$}; \node[state] (q1) [right=of q0] {$q_1$}; \node[state] (q2) [right=of q1] {$q_2$}; \node[state] (q3) [above=of q2] {$q_3$}; \node[state] (q4) [right=of q2] {$q_4$}; \node[state] (q5) [below=2.5cm of q2] {$q_5$}; \node[state] (q6) [right=of q5] {$q_6$}; \node[state] (q7) [right=of q6] {$q_7$}; \node[state] (q8) [right=of q7] {$q_8$}; \draw (q0) -- node[above] {$B/B,R$} ++ (q1); \draw (q1) edge[loop above] node[above,align=left] {$a/a,R$\\$b/b,R$} (q1); \draw (q1) -- node[above,align=left] {$X/X,L$\\$B/X,L$} ++ (q2); \draw (q2) edge[bend left] node[above left] {$a/X,R$} (q3); \draw (q3) edge[bend left] node[above right,align=left] {$B/a,R$\\$X/a,R$} (q2); \draw (q2) edge[bend left] node[above] {$b/X,R$} (q4); \draw (q4) edge[bend left] node[below,align=left] {$B/b,R$\\$X/b,R$} (q2); \draw (q2) -- node[left] {$B/B,L$} (q5); \draw (q5) edge[bend left] node[above,align=left] {$a/a,L$\\$b/b,L$} (q6); \draw (q6) edge[bend left] node[below] {$X/X,L$} (q5); \draw (q6) -- node[above] {$B/B,R$} (q7); \draw (q7) edge[loop above] node[above,align=left] {$a/a,R$\\$b/b,R$\\$X/X,R$} (q7); \draw (q7) -- node[above] {$B/B,L$} (q8); \draw (q8) edge[loop above] node[above,align=left] {$a/a,L$\\$b/b,L$\\$X/B,L$} (q8); \end{tikzpicture} \caption{The state machine of exercise 9.3c.} \label{fig:9.3c} \end{figure*} \begin{figure}[h] \begin{minted}[bgcolor=mintedbg,tabsize=0,fontsize=\footnotesize]{clean} ex_9_3_c :: TuringMachine Char ex_9_3_c = { alphabet = ['a', 'b', 'X'], inputs = ['a', 'b'], transition = f } where f :: Int (Maybe Char) -> TuringMachineMove Char f 0 Nothing = Step 1 Nothing Right f 1 (Just 'a') = Step 1 (Just 'a') Right f 1 (Just 'b') = Step 1 (Just 'b') Right f 1 (Just 'X') = Step 2 (Just 'X') Left f 1 Nothing = Step 2 (Just 'X') Left f 2 (Just 'a') = Step 3 (Just 'X') Right f 2 (Just 'b') = Step 4 (Just 'X') Right f 2 Nothing = Step 5 Nothing Left f 3 (Just 'X') = Step 2 (Just 'a') Right f 3 Nothing = Step 2 (Just 'a') Right f 4 (Just 'X') = Step 2 (Just 'b') Right f 4 Nothing = Step 2 (Just 'b') Right f 5 (Just 'a') = Step 6 (Just 'a') Left f 5 (Just 'b') = Step 6 (Just 'b') Left f 6 (Just 'X') = Step 5 (Just 'X') Left f 6 (Just 'a') = Step 2 (Just 'a') Right f 6 (Just 'b') = Step 2 (Just 'b') Right f 6 Nothing = Step 7 Nothing Right f 7 (Just c) = Step 7 (Just c) Right f 7 Nothing = Step 8 Nothing Left f 8 (Just 'X') = Step 8 Nothing Left f 8 (Just c) = Step 8 (Just c) Left f _ _ = Halt \end{minted} \caption{The state machine of exercise 9.3c, for use with CleanTuringMachines.} \label{fig:9.3c-clean} \end{figure} The idea would be to first move the last character to the right, then the last $2$ characters of the new string, then the last $3$ characters of that string, et cetera., until we are back at the leftmost position. This could be recognised by putting a marker there, if needed. \end{enumerate} \end{solution}