/* module owner: Ronny Wichers Schreur */ implementation module convertDynamics import syntax, transform, utilities, convertcases, compilerSwitches // import RWSDebug from type_io_common import PredefinedModuleName // Optional extended_unify_and_coerce no yes :== no; // change also _unify and _coerce in StdDynamic import type_io; //import pp; /*2.0 from type_io_common import class toString (..),instance toString GlobalTCType; 0.2*/ :: TypeCodeVariableInfo = TCI_TypeTerm | TCI_TypeVar !Expression :: DynamicValueAliasInfo :== BoundVar :: *ConversionState = { ci_predef_symb :: !*PredefinedSymbols , ci_var_heap :: !*VarHeap , ci_expr_heap :: !*ExpressionHeap , ci_new_variables :: ![FreeVar] , ci_type_pattern_var_count :: !Int // data needed to generate coercions , ci_module_id_symbol :: Expression , ci_module_id_var :: Optional LetBind , ci_type_constructor_used_in_dynamic_patterns :: !*{#Bool} } :: DynamicRepresentation = { dr_type_ident :: SymbIdent , dr_dynamic_type :: Global Index , dr_dynamic_symbol :: Global DefinedSymbol } :: ConversionInput = { cinp_glob_type_inst :: !{! GlobalTCType} , cinp_dynamic_representation :: DynamicRepresentation , cinp_st_args :: ![FreeVar] , cinp_subst_var :: !BoundVar } F :: !a .b -> .b F a b = b //write_tcl_file :: !Int {#DclModule} CommonDefs !*File [String] -> (.Bool,.File) //write_tcl_file :: !Int {#DclModule} CommonDefs !*File [String] _ _ !*TypeHeaps !*PredefinedSymbols -> (.Bool,.File,!*TypeHeaps,!*PredefinedSymbols) // write_tcl_file ({#},{!},{#},[{#Char}],CommonDefs,{#}) :: !.Int !{#y:DclModule} CommonDefs !*File [{#Char}] !{!x:GlobalTCType} {#w:Bool} !*TypeHeaps !{#v:PredefinedSymbol} -> (.Bool,.File,.TypeHeaps,{#PredefinedSymbol}), [u <= write_tcl_file main_dcl_module_n dcl_mods=:{[main_dcl_module_n] = main_dcl_module} common_defs tcl_file directly_imported_dcl_modules global_type_instances ci_type_constructor_used_in_dynamic_patterns type_heaps predefined_symbols # (pre_mod, predefined_symbols) = predefined_symbols![PD_PredefinedModule] # write_type_info_state2 = { WriteTypeInfoState | wtis_type_heaps = type_heaps , wtis_n_type_vars = 0 , wtis_predefined_module_def = pre_mod.pds_module }; # (j,tcl_file) = fposition tcl_file #! (tcl_file,write_type_info_state) = write_type_info common_defs tcl_file write_type_info_state2 #! (tcl_file,write_type_info_state) = write_type_info directly_imported_dcl_modules tcl_file write_type_info_state // dynamic pattern matches #! type_constructors_in_dynamic_patterns = collect_type_constructors_in_dynamic_patterns 0 (size global_type_instances) [] #! (tcl_file,write_type_info_state) = write_type_info type_constructors_in_dynamic_patterns tcl_file write_type_info_state #! (tcl_file,write_type_info_state) = write_type_info (help_20_compiler { dcl_name.id_name\\ {dcl_name} <-: dcl_mods }) tcl_file write_type_info_state with help_20_compiler :: {#{#Char}} -> {#{#Char}} help_20_compiler l = l #! (type_heaps,_) = f write_type_info_state; #! tcl_file = fwritei (size main_dcl_module.dcl_common.com_type_defs) tcl_file #! tcl_file = fwritei (size main_dcl_module.dcl_common.com_cons_defs) tcl_file = (True,tcl_file,type_heaps,predefined_symbols) where collect_type_constructors_in_dynamic_patterns :: !Int !Int [TypeSymbIdent] -> [TypeSymbIdent] collect_type_constructors_in_dynamic_patterns i limit type_constructors_in_dynamic_patterns | i == limit = type_constructors_in_dynamic_patterns | isGTT_Constructor global_type_instances.[i] # (GTT_Constructor type_name=:{type_name={id_name}} module_name used_in_application_of_type_dependent_function) = global_type_instances.[i] | used_in_application_of_type_dependent_function || ci_type_constructor_used_in_dynamic_patterns.[i] = collect_type_constructors_in_dynamic_patterns (inc i) limit [type_name:type_constructors_in_dynamic_patterns] = collect_type_constructors_in_dynamic_patterns (inc i) limit type_constructors_in_dynamic_patterns = collect_type_constructors_in_dynamic_patterns (inc i) limit type_constructors_in_dynamic_patterns where isGTT_Constructor (GTT_Constructor _ _ _) = True isGTT_Constructor _ = False f write_type_info_state=:{wtis_type_heaps} = (wtis_type_heaps,{write_type_info_state & wtis_type_heaps = abort "convertDynamics.icl"}); /*2.0 f (Yes tcl_file) = tcl_file; 0.2*/ convertDynamicPatternsIntoUnifyAppls :: {! GlobalTCType} !{# CommonDefs} !Int !*{! Group} !*{#FunDef} !*PredefinedSymbols !*VarHeap !*TypeHeaps !*ExpressionHeap (Optional *File) {# DclModule} !IclModule [String] -> (!*{! Group}, !*{#FunDef}, !*PredefinedSymbols, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap, (Optional *File)) convertDynamicPatternsIntoUnifyAppls global_type_instances common_defs main_dcl_module_n groups fun_defs predefined_symbols var_heap type_heaps expr_heap tcl_file dcl_mods icl_mod directly_imported_dcl_modules #! (dynamic_representation,predefined_symbols) = create_dynamic_and_selector_idents common_defs predefined_symbols /* # (module_symb,module_id,predefined_symbols) = get_module_id_app predefined_symbols # ({pds_module=pds_type_id_module, pds_def=pds_type_id_def} , predefined_symbols) = predefined_symbols![PD_TypeID] # type_id = { type_name = common_defs.[pds_type_id_module].com_type_defs.[pds_type_id_def].td_name , type_arity = 0 , type_index = { glob_object = pds_type_id_def, glob_module = pds_type_id_module} , type_prop = { tsp_sign = BottomSignClass, tsp_propagation = NoPropClass, tsp_coercible = True } } */ # type_id = undef # (module_symb,module_id,predefined_symbols) = get_module_id_app predefined_symbols #! nr_of_funs = size fun_defs #! s_global_type_instances = size global_type_instances # imported_types = {com_type_defs \\ {com_type_defs} <-: common_defs } # (groups, (fun_defs, {ci_predef_symb, ci_var_heap, ci_expr_heap, ci_type_constructor_used_in_dynamic_patterns})) = convert_groups 0 groups global_type_instances type_id module_id dynamic_representation (fun_defs, { ci_predef_symb = predefined_symbols, ci_var_heap = var_heap, ci_expr_heap = expr_heap, ci_new_variables = [], ci_type_pattern_var_count = 0, ci_module_id_symbol = App module_symb, ci_module_id_var = No, ci_type_constructor_used_in_dynamic_patterns = createArray s_global_type_instances False }) // store type info # (tcl_file,type_heaps,ci_predef_symb) = case tcl_file of No -> (No,type_heaps,ci_predef_symb) _ # tcl_file = f tcl_file; # (ok,tcl_file,type_heaps,ci_predef_symb) = write_tcl_file main_dcl_module_n dcl_mods icl_mod.icl_common tcl_file directly_imported_dcl_modules global_type_instances ci_type_constructor_used_in_dynamic_patterns type_heaps ci_predef_symb | not ok -> abort "convertDynamicPatternsIntoUnifyAppls: error writing tcl file" -> (Yes tcl_file,type_heaps,ci_predef_symb) = (groups, fun_defs, ci_predef_symb, imported_types, [], ci_var_heap, type_heaps, ci_expr_heap, tcl_file) where convert_groups group_nr groups global_type_instances type_id module_id dynamic_representation fun_defs_and_ci | group_nr == size groups = (groups, fun_defs_and_ci) # (group, groups) = groups![group_nr] = convert_groups (inc group_nr) groups global_type_instances type_id module_id dynamic_representation (foldSt (convert_function group_nr global_type_instances type_id module_id dynamic_representation) group.group_members fun_defs_and_ci) convert_function group_nr global_type_instances type_id module_id dynamic_representation fun (fun_defs, ci) # (fun_def, fun_defs) = fun_defs![fun] {fun_body, fun_type, fun_info} = fun_def | isEmpty fun_info.fi_dynamics = (fun_defs, ci) // For each function which uses dynamics, a module id is constructed regardless // of its use. In some very specific cases, the let generated here is superfluous. # (TransformedBody fun_body=:{tb_rhs}) = fun_body # (tb_rhs, ci) = share_module_identification tb_rhs module_id ci # fun_body = {fun_body & tb_rhs = tb_rhs} # fun_body = TransformedBody fun_body # (unify_subst_var, ci) = newVariable "unify_subst" VI_Empty ci # ci = {ci & ci_type_pattern_var_count = 0} # (fun_body, ci) = convertDynamics {cinp_st_args = [], cinp_dynamic_representation = dynamic_representation, cinp_glob_type_inst = global_type_instances, cinp_subst_var = unify_subst_var} fun_body ci = ({fun_defs & [fun] = { fun_def & fun_body = fun_body, fun_info = { fun_info & fi_local_vars = ci.ci_new_variables ++ fun_info.fi_local_vars }}}, { ci & ci_new_variables = [] }) where share_module_identification rhs module_id ci # (dst=:{var_info_ptr},ci) = newVariable "module_id" VI_Empty ci # dst_fv = varToFreeVar dst 1 # let_bind = { lb_src = module_id , lb_dst = dst_fv , lb_position = NoPos } # ci = { ci & ci_new_variables = [ dst_fv : ci.ci_new_variables ] , ci_module_id_var = Yes let_bind } # (let_info_ptr, ci) = let_ptr2 [toAType TE] ci # rhs = Let { let_strict_binds = [], let_lazy_binds = [let_bind], let_expr = rhs, let_info_ptr = let_info_ptr, let_expr_position = NoPos } = (rhs, ci) class convertDynamics a :: !ConversionInput !a !*ConversionState -> (!a, !*ConversionState) instance convertDynamics [a] | convertDynamics a where convertDynamics cinp xs ci = mapSt (convertDynamics cinp) xs ci instance convertDynamics (Optional a) | convertDynamics a where convertDynamics cinp (Yes x) ci # (x, ci) = convertDynamics cinp x ci = (Yes x, ci) convertDynamics _ No ci = (No, ci) instance convertDynamics FunctionBody where convertDynamics cinp (TransformedBody body) ci # (body, ci) = convertDynamics cinp body ci = (TransformedBody body, ci) instance convertDynamics TransformedBody where convertDynamics cinp body=:{tb_args,tb_rhs} ci=:{ci_var_heap} // this actually marks all arguments as type terms (also the regular arguments // and dictionaries) # ci_var_heap = foldSt mark_var tb_args ci_var_heap # (tb_rhs, ci) = convertDynamics cinp tb_rhs {ci & ci_var_heap = ci_var_heap} # (global_tpvs, subst, ci) = foldSt collect_global_type_pattern_var tb_args ([], cinp.cinp_subst_var, ci) # (tb_rhs, ci) = share_init_subst subst global_tpvs tb_rhs ci = ({body & tb_rhs = tb_rhs}, ci) where mark_var :: FreeVar *VarHeap -> *VarHeap mark_var {fv_info_ptr} var_heap = writePtr fv_info_ptr (VI_TypeCodeVariable TCI_TypeTerm) var_heap collect_global_type_pattern_var :: FreeVar ([LetBind], BoundVar, *ConversionState) -> ([LetBind], BoundVar, *ConversionState) collect_global_type_pattern_var {fv_info_ptr} (l, subst, ci) # (var_info, ci_var_heap) = readPtr fv_info_ptr ci.ci_var_heap # ci = {ci & ci_var_heap = ci_var_heap} = case var_info of VI_TypeCodeVariable (TCI_TypeVar tpv) # (bind_global_tpv_symb, ci) = getSymbol PD_Dyn_bind_global_type_pattern_var SK_Function 3 ci # type_code = {var_name = a_ij_var_name, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} # (unify_subst_var, ci) = newVariable "gtpv_subst" VI_Empty ci unify_subst_fv = varToFreeVar unify_subst_var 1 # let_bind = { lb_src = App { app_symb = bind_global_tpv_symb, app_args = [tpv, Var type_code, Var unify_subst_var], app_info_ptr = nilPtr } , lb_dst = varToFreeVar subst 1 , lb_position = NoPos } -> ([let_bind:l], unify_subst_var, ci) _ -> (l, subst, ci) share_init_subst :: BoundVar [LetBind] Expression *ConversionState -> (Expression, *ConversionState) share_init_subst subst global_tpv_binds rhs ci=:{ci_type_pattern_var_count} # (initial_unifier_symb, ci) = getSymbol PD_Dyn_initial_unifier SK_Function 1 ci # let_bind_initial_subst = { lb_src = App { app_symb = initial_unifier_symb, app_args = [BasicExpr (BVInt ci_type_pattern_var_count)], app_info_ptr = nilPtr } , lb_dst = varToFreeVar subst 1 , lb_position = NoPos } # let_binds = [let_bind_initial_subst : global_tpv_binds] # (let_info_ptr, ci) = let_ptr (length let_binds) ci # ci = { ci & ci_new_variables = [lb_dst \\ {lb_dst} <- let_binds] ++ ci.ci_new_variables } # rhs = Let { let_strict_binds = [], let_lazy_binds = let_binds, let_expr = rhs, let_info_ptr = let_info_ptr, let_expr_position = NoPos } = (rhs, ci) instance convertDynamics LetBind where convertDynamics cinp binding=:{lb_src} ci # (lb_src, ci) = convertDynamics cinp lb_src ci = ({binding & lb_src = lb_src}, ci) instance convertDynamics (Bind a b) | convertDynamics a where convertDynamics cinp binding=:{bind_src} ci # (bind_src, ci) = convertDynamics cinp bind_src ci = ({binding & bind_src = bind_src}, ci) instance convertDynamics Expression where convertDynamics cinp (TypeCodeExpression tce) ci # (type_code, ci) = convertExprTypeCode cinp tce ci # (normalise_symb, ci) = getSymbol PD_Dyn_normalise SK_Function 2 ci # normalise_call = App { app_symb = normalise_symb, app_args = [ Var cinp.cinp_subst_var, type_code], app_info_ptr = nilPtr } = (normalise_call, ci) convertDynamics cinp (Var var) ci # (info, ci_var_heap) = readPtr var.var_info_ptr ci.ci_var_heap # ci = {ci & ci_var_heap = ci_var_heap} = case (info, ci) of (VI_DynamicValueAlias value_var, ci) -> (Var value_var, ci) (_, ci) -> (Var var, ci) convertDynamics cinp (App app) ci # (app, ci) = convertDynamics cinp app ci = (App app, ci) convertDynamics cinp (expr @ exprs) ci # (expr, ci) = convertDynamics cinp expr ci (exprs, ci) = convertDynamics cinp exprs ci = (expr @ exprs, ci) convertDynamics cinp (Let letje) ci # (letje, ci) = convertDynamics cinp letje ci = (Let letje, ci) convertDynamics cinp (Case kees) ci # (kees, ci) = convertDynamics cinp kees ci = (Case kees, ci) convertDynamics cinp (Selection opt_symb expression selections) ci # (expression,ci) = convertDynamics cinp expression ci # (selections,ci) = convertDynamics cinp selections ci = (Selection opt_symb expression selections, ci) convertDynamics cinp (Update expression1 selections expression2) ci # (expression1, ci) = convertDynamics cinp expression1 ci # (selections, ci) = convertDynamics cinp selections ci # (expression2, ci) = convertDynamics cinp expression2 ci = (Update expression1 selections expression2, ci) convertDynamics cinp (RecordUpdate cons_symbol expression expressions) ci # (expression, ci) = convertDynamics cinp expression ci # (expressions, ci) = convertDynamics cinp expressions ci = (RecordUpdate cons_symbol expression expressions, ci) convertDynamics cinp (TupleSelect definedSymbol int expression) ci # (expression, ci) = convertDynamics cinp expression ci = (TupleSelect definedSymbol int expression, ci) convertDynamics _ be=:(BasicExpr _) ci = (be, ci) convertDynamics _ code_expr=:(AnyCodeExpr _ _ _) ci = (code_expr, ci) convertDynamics _ code_expr=:(ABCCodeExpr _ _) ci = (code_expr, ci) convertDynamics cinp (MatchExpr symb expression) ci # (expression, ci) = convertDynamics cinp expression ci = (MatchExpr symb expression, ci) convertDynamics cinp (DynamicExpr dyno) ci = convertDynamic cinp dyno ci convertDynamics cinp EE ci = (EE, ci) convertDynamics cinp expr=:(NoBind _) ci = (expr,ci) instance convertDynamics App where convertDynamics cinp app=:{app_args} ci # (app_args,ci) = convertDynamics cinp app_args ci = ({app & app_args = app_args}, ci) instance convertDynamics Let where convertDynamics cinp letje=:{let_strict_binds, let_lazy_binds, let_expr, let_info_ptr} ci # (let_strict_binds, ci) = convertDynamics cinp let_strict_binds ci (let_lazy_binds, ci) = convertDynamics cinp let_lazy_binds ci (let_expr, ci) = convertDynamics cinp let_expr ci letje = { letje & let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = let_expr} = (letje, ci) instance convertDynamics Case where convertDynamics cinp kees=:{case_expr, case_guards, case_default} ci # (case_expr, ci) = convertDynamics cinp case_expr ci # (case_default, ci) = convertDynamics cinp case_default ci # kees = {kees & case_expr=case_expr, case_default=case_default} = case case_guards of DynamicPatterns alts -> convertDynamicCase cinp kees ci _ # (case_guards, ci) = convertDynamics cinp case_guards ci # kees = {kees & case_explicit=False, case_guards=case_guards} -> (kees, ci) instance convertDynamics CasePatterns where convertDynamics cinp (BasicPatterns type alts) ci # (alts, ci) = convertDynamics cinp alts ci = (BasicPatterns type alts, ci) convertDynamics cinp (AlgebraicPatterns type alts) ci # (alts, ci) = convertDynamics cinp alts ci = (AlgebraicPatterns type alts, ci) convertDynamics cinp (OverloadedListPatterns type decons alts) ci # (alts, ci) = convertDynamics cinp alts ci = (OverloadedListPatterns type decons alts, ci) convertDynamic cinp=:{cinp_dynamic_representation={dr_type_ident}} {dyn_expr, dyn_type_code} ci # (dyn_expr, ci) = convertDynamics cinp dyn_expr ci # (dyn_type_code, ci) = convertExprTypeCode cinp dyn_type_code ci # (normalise_symb, ci) = getSymbol PD_Dyn_normalise SK_Function 2 ci # normalise_call = App { app_symb = normalise_symb, app_args = [ Var cinp.cinp_subst_var, dyn_type_code], app_info_ptr = nilPtr } = (App { app_symb = dr_type_ident, app_args = [dyn_expr, normalise_call], app_info_ptr = nilPtr }, ci) convertDynamicCase cinp=:{cinp_dynamic_representation={dr_dynamic_symbol, dr_dynamic_type}} kees=:{case_guards=DynamicPatterns alts, case_info_ptr, case_default} ci # (value_var, ci) = newVariable "value" VI_Empty ci # (type_var, ci) = newVariable "type" VI_Empty ci # ci = {ci & ci_new_variables = [varToFreeVar value_var 1, varToFreeVar type_var 1 : ci.ci_new_variables ]} # (result_type, ci) = getResultType case_info_ptr ci # (matches, ci) = case convertDynamicAlts cinp kees type_var value_var result_type case_default alts ci of (Yes matches, ci) -> (matches, ci) _ -> abort "where are those converted dynamics?" # match = { ap_symbol = dr_dynamic_symbol , ap_vars = [varToFreeVar value_var 1, varToFreeVar type_var 1] , ap_expr = matches , ap_position = position alts } # (case_info_ptr, ci) = dummy_case_ptr result_type ci # kees = {kees & case_explicit=False, case_guards=AlgebraicPatterns dr_dynamic_type [match], case_default=No, case_info_ptr = case_info_ptr} = (kees, ci) convertDynamicAlts _ _ _ _ _ defoult [] ci = (defoult, ci) convertDynamicAlts cinp kees type_var value_var result_type defoult [{dp_rhs, dp_position, dp_type_code, dp_var}:alts] ci # (type_code, binds, ci) = convertPatternTypeCode cinp dp_type_code ci # (unify_symb, ci) = getSymbol PD_Dyn_unify SK_Function (extended_unify_and_coerce 3 4) /*3 was 2 */ ci # unify_call = App { app_symb = unify_symb, app_args = [ Var cinp.cinp_subst_var, Var type_var, type_code], app_info_ptr = nilPtr } // FIXME, more precise types (not all TEs) # (let_info_ptr, ci) = let_ptr (/* 4 */ 3+length binds) ci (unify_result_var, ci) = newVariable "result" VI_Empty ci unify_result_fv = varToFreeVar unify_result_var 1 (unify_bool_var, ci) = newVariable "unify_bool" VI_Empty ci unify_bool_fv = varToFreeVar unify_bool_var 1 (unify_subst_var, ci) = newVariable "unify_subst" VI_Empty ci unify_subst_fv = varToFreeVar unify_subst_var 1 # ci_var_heap = writePtr dp_var.fv_info_ptr (VI_DynamicValueAlias value_var) ci.ci_var_heap # ci = {ci & ci_var_heap = ci_var_heap} # (dp_rhs, ci) = convertDynamics {cinp & cinp_subst_var=unify_subst_var} dp_rhs ci # (case_info_ptr, ci) = bool_case_ptr result_type ci # case_guards = BasicPatterns BT_Bool [{bp_value = BVB True, bp_expr = dp_rhs, bp_position = dp_position}] # (case_default, ci) = convertDynamicAlts cinp kees type_var value_var result_type defoult alts ci # kees = {kees & case_info_ptr=case_info_ptr, case_guards=case_guards, case_default=case_default, case_explicit=False, case_expr=Var unify_bool_var} # ci = {ci & ci_new_variables = [unify_result_fv, unify_bool_fv, unify_subst_fv : ci.ci_new_variables ]} (twotuple, ci) = getTupleSymbol 2 ci letje = { let_strict_binds = [{ lb_src = unify_call, lb_dst = unify_result_fv, lb_position = NoPos }, { lb_src = TupleSelect twotuple 0 (Var unify_result_var), lb_dst = unify_bool_fv, lb_position = NoPos }] , let_lazy_binds = [ // { lb_src = Var value_var, lb_dst = dp_var, lb_position = NoPos }, { lb_src = TupleSelect twotuple 1 (Var unify_result_var), lb_dst = unify_subst_fv, lb_position = NoPos }] ++ binds , let_info_ptr = let_info_ptr , let_expr = Case kees , let_expr_position = NoPos // FIXME, add correct position } = (Yes (Let letje), ci) class position a :: a -> Position instance position [a] | position a where position [] = NoPos position [h:_] = position h instance position DynamicPattern where position {dp_position} = dp_position instance convertDynamics BasicPattern where convertDynamics cinp alt=:{bp_expr} ci # (bp_expr, ci) = convertDynamics cinp bp_expr ci = ({alt & bp_expr=bp_expr}, ci) instance convertDynamics AlgebraicPattern where convertDynamics cinp alt=:{ap_expr} ci # (ap_expr, ci) = convertDynamics cinp ap_expr ci = ({alt & ap_expr=ap_expr}, ci) instance convertDynamics Selection where convertDynamics cinp selection=:(RecordSelection _ _) ci = (selection, ci) convertDynamics cinp (ArraySelection selector expr_ptr expr) ci # (expr, ci) = convertDynamics cinp expr ci = (ArraySelection selector expr_ptr expr, ci) convertDynamics cinp (DictionarySelection var selectors expr_ptr expr) ci # (expr, ci) = convertDynamics cinp expr ci = (DictionarySelection var selectors expr_ptr expr, ci) convertExprTypeCode :: !ConversionInput !TypeCodeExpression !*ConversionState -> (!Expression, !*ConversionState) convertExprTypeCode cinp tce ci # (expr, binds, ci) = convertTypeCode cinp tce [] ci // sanity check ... | not (isEmpty binds) = abort "unexpected binds in expression type code" // ... sanity check = (expr, ci) convertPatternTypeCode :: !ConversionInput !TypeCodeExpression !*ConversionState -> (!Expression, ![LetBind], !*ConversionState) convertPatternTypeCode cinp tce ci = convertTypeCode cinp tce [] ci convertTypeCode :: !ConversionInput !TypeCodeExpression ![LetBind] !*ConversionState -> (!Expression, ![LetBind], !*ConversionState) convertTypeCode _ (TCE_Var var_info_ptr) binds ci=:{ci_var_heap} # (var_info, ci_var_heap) = readPtr var_info_ptr ci_var_heap ci = {ci & ci_var_heap = ci_var_heap} = case var_info of // sanity check ... VI_TypeCodeVariable TCI_TypeTerm -> abort "unexpected type term" // ... sanity check VI_TypeCodeVariable (TCI_TypeVar expr) -> (expr, binds, ci) _ # (expr, ci) = createTypePatternVariable ci # ci = {ci & ci_var_heap = writePtr var_info_ptr (VI_TypeCodeVariable (TCI_TypeVar expr)) ci.ci_var_heap} -> (expr, binds, ci) convertTypeCode _ (TCE_TypeTerm var_info_ptr) binds ci=:{ci_var_heap} // sanity check ... # (var_info, ci_var_heap) = readPtr var_info_ptr ci_var_heap ci = {ci & ci_var_heap = ci_var_heap} // # ci = case var_info of VI_TypeCodeVariable TCI_TypeTerm # (expr, ci) = createTypePatternVariable ci # ci = {ci & ci_var_heap = writePtr var_info_ptr (VI_TypeCodeVariable (TCI_TypeVar expr)) ci.ci_var_heap} -> (expr, binds, ci) VI_TypeCodeVariable (TCI_TypeVar expr) -> (expr, binds, ci) info -> abort "type term expected instead of unknown" /* // ... sanity check # var // FIXME, share vars & proper name = {var_name = a_ij_var_name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr} = (Var var, binds, ci) */ convertTypeCode cinp (TCE_Constructor index typecode_exprs) binds ci # (typeapp_symb, ci) = getSymbol PD_Dyn_TypeApp SK_Constructor 2 ci # (constructor, ci) = get_constructor cinp.cinp_glob_type_inst index ci (module_id, ci) = get_module_id ci (typecode_exprs, binds, ci) = convertTypeCodes cinp typecode_exprs binds ci = (App {app_symb = typeapp_symb, app_args = [constructor, module_id, typecode_exprs], app_info_ptr = nilPtr}, binds, ci) where get_module_id ci=:{ci_module_id_var=Yes {lb_dst}} = (Var (freeVarToVar lb_dst),ci) get_constructor :: !{!GlobalTCType} Index !*ConversionState -> (Expression,!*ConversionState) get_constructor glob_type_inst index ci=:{ci_type_constructor_used_in_dynamic_patterns} # cons_string = BasicExpr (BVS ("\"" +++ toString glob_type_inst.[index] +++ "\"")) = (cons_string, ci) convertTypeCodes _ [] binds ci # (nil_symb, ci) = getSymbol PD_NilSymbol SK_Constructor 0 ci = (App { app_symb = nil_symb, app_args = [], app_info_ptr = nilPtr},binds, ci) convertTypeCodes cinp [typecode_expr : typecode_exprs] binds ci # (cons_symb, ci) = getSymbol PD_ConsSymbol SK_Constructor 2 ci # (expr, binds, ci) = convertTypeCode cinp typecode_expr binds ci # (exprs, binds, ci) = convertTypeCodes cinp typecode_exprs binds ci = (App { app_symb = cons_symb, app_args = [expr , exprs], app_info_ptr = nilPtr}, binds, ci) convertTypeCode cinp (TCE_UniType uni_vars type_code) binds ci # (type_scheme_sym, ci) = getSymbol PD_Dyn_TypeScheme SK_Constructor 2 ci # (tv_symb, ci) = getSymbol PD_Dyn_TypeVar SK_Constructor 1 ci // assign unique numbers for all type variables in the module (for testing) # init_count = ci.ci_type_pattern_var_count # (count, ci_var_heap) = foldSt (mark_uni_var (build_tv tv_symb)) uni_vars (init_count, ci.ci_var_heap) # ci = {ci & ci_type_pattern_var_count = count, ci_var_heap = ci_var_heap} // (type_code_expr, binds, ci) = convertTypeCode cinp type_code binds ci /* = (App { app_symb = type_scheme_sym, app_args = [BasicExpr (BVInt (count - init_count)), type_code_expr], app_info_ptr = nilPtr }, binds, ci) */ where mark_uni_var :: (Int -> Expression) VarInfoPtr (Int, *VarHeap) -> (Int, *VarHeap) mark_uni_var build_var_code var_info_ptr (count, var_heap) # var_info = VI_TypeCodeVariable (TCI_TypeVar (build_var_code count)) = (count+1, writePtr var_info_ptr var_info var_heap) build_tv :: SymbIdent Int -> Expression build_tv tv_symb number = App { app_symb = tv_symb, app_args = [BasicExpr (BVInt number)], app_info_ptr = nilPtr } convertTypeCode cinp (TCE_Selector selections var_info_ptr) binds ci # (var, binds, ci) = convertTypeCode cinp (TCE_Var var_info_ptr) binds ci = (Selection NormalSelector var selections, binds, ci) createTypePatternVariable :: !*ConversionState -> (!Expression, !*ConversionState) createTypePatternVariable ci # (tpv_symb, ci) = getSymbol PD_Dyn_TypePatternVar SK_Constructor 1 ci = (App { app_symb = tpv_symb, app_args = [BasicExpr (BVInt ci.ci_type_pattern_var_count)], app_info_ptr = nilPtr }, {ci & ci_type_pattern_var_count = ci.ci_type_pattern_var_count + 1}) /**************************************************************************************************/ newVariable :: String !VarInfo !*ConversionState -> *(!BoundVar,!*ConversionState) newVariable var_name var_info ci=:{ci_var_heap} # (var_info_ptr, ci_var_heap) = newPtr var_info ci_var_heap = ( { var_name = {id_name = var_name, id_info = nilPtr}, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr}, { ci & ci_var_heap = ci_var_heap }) varToFreeVar :: BoundVar Int -> FreeVar varToFreeVar {var_name, var_info_ptr} count = {fv_def_level = NotALevel, fv_name = var_name, fv_info_ptr = var_info_ptr, fv_count = count} freeVarToVar :: FreeVar -> BoundVar freeVarToVar {fv_name, fv_info_ptr} = { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} getResultType :: ExprInfoPtr !*ConversionState -> (!AType, !*ConversionState) getResultType case_info_ptr ci=:{ci_expr_heap} # (EI_CaseType {ct_result_type}, ci_expr_heap) = readPtr case_info_ptr ci_expr_heap = (ct_result_type, {ci & ci_expr_heap = ci_expr_heap}) getSymbol :: Index ((Global Index) -> SymbKind) Int !*ConversionState -> (SymbIdent, !*ConversionState) getSymbol index symb_kind arity ci=:{ci_predef_symb} # ({pds_module, pds_def}, ci_predef_symb) = ci_predef_symb![index] # pds_ident = predefined_idents.[index] ci = {ci & ci_predef_symb = ci_predef_symb} symbol = { symb_name = pds_ident, symb_kind = symb_kind { glob_module = pds_module, glob_object = pds_def} } = (symbol, ci) getTupleSymbol arity ci=:{ci_predef_symb} # ({pds_def}, ci_predef_symb) = ci_predef_symb![GetTupleConsIndex arity] # pds_ident = predefined_idents.[GetTupleConsIndex arity] = ( {ds_ident = pds_ident, ds_arity = arity, ds_index = pds_def}, {ci & ci_predef_symb = ci_predef_symb }) a_ij_var_name :== { id_name = "a_ij", id_info = nilPtr } bool_case_ptr :: !AType !*ConversionState -> (ExprInfoPtr, !*ConversionState) bool_case_ptr result_type ci=:{ci_expr_heap} # (expr_info_ptr, ci_expr_heap) = newPtr (EI_CaseType { ct_pattern_type = toAType (TB BT_Bool), ct_result_type = result_type, //empty_attributed_type, ct_cons_types = [[toAType (TB BT_Bool)]]}) ci_expr_heap = (expr_info_ptr, {ci & ci_expr_heap = ci_expr_heap}) dummy_case_ptr :: !AType !*ConversionState -> (ExprInfoPtr, !*ConversionState) dummy_case_ptr result_type ci=:{ci_expr_heap} # (expr_info_ptr, ci_expr_heap) = newPtr (EI_CaseType { ct_pattern_type = toAType (TB BT_Bool), ct_result_type = result_type, //empty_attributed_type, ct_cons_types = [[empty_attributed_type, empty_attributed_type]]}) ci_expr_heap = (expr_info_ptr, {ci & ci_expr_heap = ci_expr_heap}) let_ptr :: !Int !*ConversionState -> (ExprInfoPtr, !*ConversionState) let_ptr nr_of_binds ci=:{ci_expr_heap} = let_ptr2 (repeatn nr_of_binds empty_attributed_type) ci typed_let_ptr :: TypeSymbIdent !*ConversionState -> (ExprInfoPtr, !*ConversionState) typed_let_ptr type_id ci=:{ci_expr_heap} = let_ptr2 [toAType (TA type_id [])] ci let_ptr2 :: [AType] !*ConversionState -> (ExprInfoPtr, !*ConversionState) let_ptr2 let_types ci=:{ci_expr_heap} # (expr_info_ptr, ci_expr_heap) = newPtr (EI_LetType let_types) ci_expr_heap = (expr_info_ptr, {ci & ci_expr_heap = ci_expr_heap}) toAType :: Type -> AType toAType type = { at_attribute = TA_Multi, at_type = type } empty_attributed_type :: AType empty_attributed_type = toAType TE instance <<< (Ptr a) where (<<<) file ptr = file <<< ptrToInt ptr create_dynamic_and_selector_idents common_defs predefined_symbols | predefined_symbols.[PD_StdDynamic].pds_module == NoIndex = ({ dr_type_ident = undef , dr_dynamic_type = undef , dr_dynamic_symbol = undef },predefined_symbols) // otherwise # ({pds_module=pds_module1, pds_def=pds_def1} , predefined_symbols) = predefined_symbols![PD_Dyn_DynamicTemp] # {td_rhs=RecordType {rt_constructor,rt_fields}} = common_defs.[pds_module1].com_type_defs.[pds_def1] # dynamic_defined_symbol = {glob_module = pds_module1, glob_object = rt_constructor} # dynamic_type = {glob_module = pds_module1, glob_object = pds_def1} # dynamic_temp_symb_ident = { SymbIdent | symb_name = rt_constructor.ds_ident , symb_kind = SK_Constructor {glob_module = pds_module1, glob_object = rt_constructor.ds_index} } = ({ dr_type_ident = dynamic_temp_symb_ident , dr_dynamic_type = dynamic_type , dr_dynamic_symbol = dynamic_defined_symbol }, predefined_symbols) get_module_id_app :: !*PredefinedSymbols -> (App,Expression,!*PredefinedSymbols) get_module_id_app predef_symbols // get module id symbol # ({pds_module, pds_def}, predef_symbols) = predef_symbols![PD_ModuleConsSymbol] # pds_ident = predefined_idents.[PD_ModuleConsSymbol] # module_symb = { app_symb = { symb_name = pds_ident, symb_kind = SK_Constructor { glob_module = pds_module, glob_object = pds_def} } , app_args = [] , app_info_ptr = nilPtr } # ({pds_module, pds_def}, predef_symbols) = predef_symbols![PD_Dyn_ModuleID] # pds_ident = predefined_idents.[PD_Dyn_ModuleID] # module_id_symb = { app_symb = { symb_name = pds_ident, symb_kind = SK_Constructor { glob_module = pds_module, glob_object = pds_def} } , app_args = [App module_symb] , app_info_ptr = nilPtr } = (module_symb,App module_id_symb,predef_symbols)