diff options
Diffstat (limited to 'frontend/trans.icl')
-rw-r--r-- | frontend/trans.icl | 1172 |
1 files changed, 1172 insertions, 0 deletions
diff --git a/frontend/trans.icl b/frontend/trans.icl new file mode 100644 index 0000000..77f7e0d --- /dev/null +++ b/frontend/trans.icl @@ -0,0 +1,1172 @@ +implementation module trans + +import StdEnv + +import syntax, transform, checksupport, StdCompare, check, utilities + +import RWSDebug + +:: PartitioningInfo = + { pi_marks :: !.{# Int} + , pi_next_num :: !Int + , pi_next_group :: !Int + , pi_groups :: ![[Int]] + , pi_deps :: ![Int] + } + +NotChecked :== -1 + +partitionateFunctions :: !*{# FunDef} ![IndexRange] -> (!*{! Group}, !*{# FunDef}) +partitionateFunctions fun_defs ranges + #! max_fun_nr = size fun_defs + # partitioning_info = { pi_marks = createArray max_fun_nr NotChecked, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] } + (fun_defs, {pi_groups,pi_next_group}) = + foldSt (partitionate_functions max_fun_nr) ranges (fun_defs, partitioning_info) + groups = { {group_members = group} \\ group <- reverse pi_groups } + = (groups, fun_defs) +where + partitionate_functions :: !Index !IndexRange !(!*{# FunDef}, !*PartitioningInfo) -> (!*{# FunDef}, !*PartitioningInfo) + partitionate_functions max_fun_nr ir=:{ir_from,ir_to} (fun_defs, pi=:{pi_marks}) + | ir_from == ir_to + = (fun_defs, pi) + | pi_marks.[ir_from] == NotChecked + # (_, fun_defs, pi) = partitionate_function ir_from max_fun_nr fun_defs pi + = partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi) + = partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi) + + partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) + partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num} + #! fd = fun_defs.[fun_index] + # {fi_calls} = fd.fun_info + (min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi) + = try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi + +/* + partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) + partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num} + #! fd = fun_defs.[fun_index] + | fd.fun_kind + # {fi_calls} = fd.fun_info + (min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi) + = try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi + = (max_fun_nr, fun_defs, pi) +*/ + push_on_dep_stack :: !Int !*PartitioningInfo -> *PartitioningInfo; + push_on_dep_stack fun_index pi=:{pi_deps,pi_marks,pi_next_num} + = { pi & pi_deps = [fun_index : pi_deps], pi_marks = { pi_marks & [fun_index] = pi_next_num}, pi_next_num = inc pi_next_num} + + visit_functions :: ![FunCall] !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) + visit_functions [{fc_index}:funs] min_dep max_fun_nr fun_defs pi=:{pi_marks} + #! mark = pi_marks.[fc_index] + | mark == NotChecked + # (mark, fun_defs, pi) = partitionate_function fc_index max_fun_nr fun_defs pi + = visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi + = visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi + visit_functions [] min_dep max_fun_nr fun_defs pi + = (min_dep, fun_defs, pi) + + + try_to_close_group :: !Int !Int !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) + try_to_close_group fun_index fun_nr min_dep max_fun_nr fun_defs pi=:{pi_marks, pi_deps, pi_groups, pi_next_group} + | fun_nr <= min_dep + # (pi_deps, pi_marks, group, fun_defs) + = close_group fun_index pi_deps pi_marks [] max_fun_nr pi_next_group fun_defs + pi = { pi & pi_deps = pi_deps, pi_marks = pi_marks, pi_next_group = inc pi_next_group, pi_groups = [group : pi_groups] } + = (max_fun_nr, fun_defs, pi) + = (min_dep, fun_defs, pi) + where + close_group :: !Int ![Int] !*{# Int} ![Int] !Int !Int !*{# FunDef} -> (![Int], !*{# Int}, ![Int], !*{# FunDef}) + close_group fun_index [d:ds] marks group max_fun_nr group_number fun_defs + # marks = { marks & [d] = max_fun_nr } + #! fd = fun_defs.[d] + # fun_defs = { fun_defs & [d] = { fd & fun_info.fi_group_index = group_number }} + | d == fun_index + = (ds, marks, [d : group], fun_defs) + = close_group fun_index ds marks [d : group] max_fun_nr group_number fun_defs + +:: BitVector :== Int + +:: *AnalyseInfo = + { ai_heap :: !*VarHeap + , ai_cons_class :: !*{! ConsClasses} + , ai_class_subst :: !* ConsClassSubst + , ai_next_var :: !Int + } + +:: ConsClassSubst :== {# ConsClass} + +/* + The argument classification (i.e. 'accumulating', 'active' or 'passive') of consumers + is represented by an negative integer value. + Possitive classifications are used to identify variables. + Unification of classifications is done on-the-fly +*/ + + +cPassive :== -1 +cActive :== -2 +cAccumulating :== -3 + +IsAVariable cons_class :== cons_class >= 0 + +combineClasses cc1 cc2 + | IsAVariable cc1 + = cAccumulating + | IsAVariable cc2 + = cAccumulating + = min cc1 cc2 + +unifyClassifications :: !ConsClass !ConsClass !*ConsClassSubst -> *ConsClassSubst +unifyClassifications cc1 cc2 subst + # (cc1,subst) = skip_indirections_of_variables cc1 subst + (cc2,subst) = skip_indirections_of_variables cc2 subst + = combine_cons_classes cc1 cc2 subst +where + + skip_indirections_of_variables :: Int !*ConsClassSubst -> (!Int,!*ConsClassSubst) + skip_indirections_of_variables cc subst + | IsAVariable cc + #! cc = skip_indirections cc subst + = (cc, subst) + = (cc, subst) + where + skip_indirections cons_var subst + #! redir = subst.[cons_var] + | IsAVariable redir + = skip_indirections redir subst + = cons_var + + combine_cons_classes :: !Int !Int !*ConsClassSubst -> *ConsClassSubst + combine_cons_classes cc1 cc2 subst + | cc1 == cc2 + = subst + | IsAVariable cc1 + #! cc_val1 = subst.[cc1] + | IsAVariable cc2 + #! cc_val2 = subst.[cc2] + = { subst & [cc2] = cc1, [cc1] = combine_cons_constants cc_val1 cc_val2 } + = { subst & [cc1] = combine_cons_constants cc_val1 cc2 } + | IsAVariable cc2 + #! cc_val2 = subst.[cc2] + = { subst & [cc2] = combine_cons_constants cc1 cc_val2 } + = subst + + combine_cons_constants cc1 cc2 + = min cc1 cc2 + +write_ptr ptr val heap mess + | isNilPtr ptr + = abort mess + = heap <:= (ptr,val) + +class consumerRequirements a :: !a !AnalyseInfo -> (!ConsClass, !AnalyseInfo) + +instance consumerRequirements BoundVar +where + consumerRequirements {var_info_ptr} ai=:{ai_heap} + #! var_info = sreadPtr var_info_ptr ai_heap + = case var_info of + VI_AccVar temp_var + -> (temp_var, ai) + _ + -> (cPassive, ai) + +instance consumerRequirements Expression where + consumerRequirements (Var var) ai + = consumerRequirements var ai + consumerRequirements (App app) ai + = consumerRequirements app ai + consumerRequirements (fun_expr @ exprs) ai + # (cc_fun, ai) = consumerRequirements fun_expr ai + ai_class_subst = unifyClassifications cActive cc_fun ai.ai_class_subst + = consumerRequirements exprs { ai & ai_class_subst = ai_class_subst } + consumerRequirements (Let {let_binds,let_expr}) ai=:{ai_next_var,ai_heap} + # (new_next_var, ai_heap) = init_variables let_binds ai_next_var ai_heap + # ai = acc_requirements_of_let_binds let_binds ai_next_var { ai & ai_next_var = new_next_var, ai_heap = ai_heap } + = consumerRequirements let_expr ai + where + init_variables [{bind_dst={fv_info_ptr}} : binds] ai_next_var ai_heap + = init_variables binds (inc ai_next_var) (write_ptr fv_info_ptr (VI_AccVar ai_next_var) ai_heap "init_variables") + init_variables [] ai_next_var ai_heap + = (ai_next_var, ai_heap) + + acc_requirements_of_let_binds [ {bind_src, bind_dst={fv_info_ptr}} : binds ] ai_next_var ai + # (bind_var, ai) = consumerRequirements bind_src ai + ai_class_subst = unifyClassifications ai_next_var bind_var ai.ai_class_subst + = acc_requirements_of_let_binds binds (inc ai_next_var) { ai & ai_class_subst = ai_class_subst } + acc_requirements_of_let_binds [] ai_next_var ai + = ai + + consumerRequirements (Case case_expr) ai + = consumerRequirements case_expr ai + consumerRequirements (BasicExpr _ _) ai + = (cPassive, ai) + consumerRequirements (MatchExpr _ _ expr) ai + = consumerRequirements expr ai + consumerRequirements (Selection _ expr selectors) ai + # (cc, ai) = consumerRequirements expr ai + ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst + ai = requirementsOfSelectors selectors { ai & ai_class_subst = ai_class_subst } + = (cPassive, ai) + consumerRequirements (Update expr1 selectors expr2) ai + # (cc, ai) = consumerRequirements expr1 ai + ai = requirementsOfSelectors selectors ai + (cc, ai) = consumerRequirements expr2 ai + = (cPassive, ai) + consumerRequirements (RecordUpdate cons_symbol expression expressions) ai + # (cc, ai) = consumerRequirements expression ai + (cc, ai) = consumerRequirements expressions ai + = (cPassive, ai) + consumerRequirements (TupleSelect tuple_symbol arg_nr expr) ai + = consumerRequirements expr ai + consumerRequirements (AnyCodeExpr _ _ _) ai + = (cPassive, ai) + consumerRequirements (ABCCodeExpr _ _) ai + = (cPassive, ai) + consumerRequirements (DynamicExpr dynamic_expr) ai + = consumerRequirements dynamic_expr ai + consumerRequirements (TypeCodeExpression _) ai + = (cPassive, ai) + consumerRequirements EE ai + = (cPassive, ai) + consumerRequirements expr ai + = abort ("consumerRequirements " <<- expr) + +requirementsOfSelectors selectors ai + = foldSt reqs_of_selector selectors ai +where + reqs_of_selector (ArraySelection _ _ index_expr) ai + # (_, ai) = consumerRequirements index_expr ai + = ai + reqs_of_selector (DictionarySelection dict_var _ _ index_expr) ai + # (_, ai) = consumerRequirements index_expr ai + (cc_var, ai) = consumerRequirements dict_var ai + = { ai & ai_class_subst = unifyClassifications cActive cc_var ai.ai_class_subst } + reqs_of_selector _ ai + = ai + +instance consumerRequirements App where + consumerRequirements {app_symb={symb_kind = SK_Function {glob_module,glob_object}, symb_arity, symb_name}, app_args} ai=:{ai_cons_class} + | glob_module == cIclModIndex + | glob_object < size ai_cons_class + #! fun_class = ai_cons_class.[glob_object] + = reqs_of_args fun_class.cc_args app_args cPassive ai + = consumerRequirements app_args ai + = consumerRequirements app_args ai + where + reqs_of_args _ [] cumm_arg_class ai + = (cumm_arg_class, ai) + reqs_of_args [] _ cumm_arg_class ai + = (cumm_arg_class, ai) + reqs_of_args [form_cc : ccs] [arg : args] cumm_arg_class ai + # (act_cc, ai) = consumerRequirements arg ai + ai_class_subst = unifyClassifications form_cc act_cc ai.ai_class_subst + = reqs_of_args ccs args (combineClasses act_cc cumm_arg_class) { ai & ai_class_subst = ai_class_subst } +/* + consumerRequirements {app_symb={symb_kind = SK_InternalFunction _}, app_args=[arg:_]} ai + # (cc, ai) = consumerRequirements arg ai + ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst + = (cPassive, { ai & ai_class_subst = ai_class_subst }) +*/ + consumerRequirements {app_args} ai + = consumerRequirements app_args ai + +instance consumerRequirements Case where + consumerRequirements {case_expr,case_guards,case_default} ai + # (cce, ai) = consumerRequirements case_expr ai +// ai_class_subst = unifyClassifications cActive cce ai.ai_class_subst + (ccgs, ai) = consumerRequirements (case_guards,case_default) ai //{ ai & ai_class_subst = ai_class_subst } + = (ccgs, ai) + +instance consumerRequirements DynamicExpr where + consumerRequirements {dyn_expr} ai + = consumerRequirements dyn_expr ai + +/* +instance consumerRequirements TypeCase where + consumerRequirements {type_case_dynamic,type_case_patterns,type_case_default} ai + # (_, ai) = consumerRequirements type_case_dynamic ai + (ccgs, ai) = consumerRequirements (type_case_patterns,type_case_default) ai + = (ccgs, ai) +*/ + +instance consumerRequirements DynamicPattern where + consumerRequirements {dp_rhs} ai + = consumerRequirements dp_rhs ai + +instance consumerRequirements CasePatterns where + consumerRequirements (AlgebraicPatterns type patterns) ai + = consumerRequirements patterns ai + consumerRequirements (BasicPatterns type patterns) ai + = consumerRequirements patterns ai + consumerRequirements (DynamicPatterns dyn_patterns) ai + = consumerRequirements dyn_patterns ai + +instance consumerRequirements AlgebraicPattern where + consumerRequirements {ap_vars,ap_expr} ai=:{ai_heap} + # ai_heap = bind_pattern_vars ap_vars ai_heap + = consumerRequirements ap_expr { ai & ai_heap = ai_heap } + where + bind_pattern_vars [{fv_info_ptr,fv_count} : vars] var_heap + | fv_count > 0 + = bind_pattern_vars vars (write_ptr fv_info_ptr (VI_AccVar cPassive) var_heap "bind_pattern_vars") + = bind_pattern_vars vars var_heap + bind_pattern_vars [] var_heap + = var_heap + +instance consumerRequirements BasicPattern where + consumerRequirements {bp_expr} ai + = consumerRequirements bp_expr ai + +instance consumerRequirements (Optional a) | consumerRequirements a where + consumerRequirements (Yes x) ai + = consumerRequirements x ai + consumerRequirements No ai + = (cPassive, ai) + +instance consumerRequirements (!a,!b) | consumerRequirements a & consumerRequirements b where + consumerRequirements (x, y) ai + # (ccx, ai) = consumerRequirements x ai + (ccy, ai) = consumerRequirements y ai + = (combineClasses ccx ccy, ai) + +instance consumerRequirements [a] | consumerRequirements a where + consumerRequirements [x : xs] ai + # (ccx, ai) = consumerRequirements x ai + (ccxs, ai) = consumerRequirements xs ai + = (combineClasses ccx ccxs, ai) + consumerRequirements [] ai + = (cPassive, ai) + +instance consumerRequirements (Bind a b) | consumerRequirements a where + consumerRequirements {bind_src} ai + = consumerRequirements bind_src ai + +analyseGroups :: !*{! Group} !*{#FunDef} !*VarHeap -> (!*{! ConsClasses}, !*{! Group}, !*{#FunDef}, !*VarHeap) +analyseGroups groups fun_defs var_heap + #! nr_of_funs = size fun_defs + = analyse_groups 0 groups var_heap (createArray nr_of_funs { cc_size = 0, cc_args = [] }) fun_defs +where + analyse_groups group_nr groups var_heap class_env fun_defs + | group_nr == size groups + = (class_env, groups, fun_defs, var_heap) + #! fun_indexes = groups.[group_nr] + # (class_env, fun_defs, var_heap) = analyse_group fun_indexes.group_members var_heap class_env fun_defs + = analyse_groups (inc group_nr) groups var_heap class_env fun_defs + + analyse_group group var_heap class_env fun_defs + # (nr_of_vars, nr_of_local_vars, var_heap, class_env, fun_defs) = initial_cons_class group 0 0 var_heap class_env fun_defs + initial_subst = createArray (nr_of_vars + nr_of_local_vars) cPassive + (ai, fun_defs) = analyse_functions group { ai_heap = var_heap, ai_cons_class = class_env, + ai_class_subst = initial_subst, ai_next_var = nr_of_vars } fun_defs + class_env = collect_classifications group ai.ai_cons_class ai.ai_class_subst + = (class_env, fun_defs, ai.ai_heap) + + + initial_cons_class [fun : funs] next_var_number nr_of_local_vars var_heap class_env fun_defs + #! fun_def = fun_defs.[fun] + # (TransformedBody {tb_args}) = fun_def.fun_body + (fresh_vars, next_var_number, var_heap) = fresh_variables tb_args next_var_number var_heap + = initial_cons_class funs next_var_number (length fun_def.fun_info.fi_local_vars + nr_of_local_vars) var_heap + { class_env & [fun] = { cc_size = 0, cc_args = fresh_vars }} fun_defs + initial_cons_class [] next_var_number nr_of_local_vars var_heap class_env fun_defs + = (next_var_number, nr_of_local_vars, var_heap, class_env, fun_defs) + + fresh_variables [{fv_name,fv_info_ptr} : vars] next_var_number var_heap + # (fresh_vars, last_var_number, var_heap) = fresh_variables vars (inc next_var_number) var_heap + var_heap = write_ptr fv_info_ptr (VI_AccVar next_var_number) var_heap "fresh_variables" + = ([next_var_number : fresh_vars], last_var_number, var_heap) + fresh_variables [] next_var_number var_heap + = ([], next_var_number, var_heap) + + analyse_functions [fun : funs] ai fun_defs + #! fun_def = fun_defs.[fun] + # (TransformedBody {tb_rhs}) = fun_def.fun_body + (_, ai) = consumerRequirements tb_rhs ai + = analyse_functions funs ai fun_defs + analyse_functions [] ai fun_defs + = (ai, fun_defs) + + collect_classifications [] class_env class_subst + = class_env + collect_classifications [fun : funs] class_env class_subst + #! fun_class = class_env.[fun] + = collect_classifications funs { class_env & [fun] = determine_classification fun_class.cc_args class_subst } class_subst + where + determine_classification cc class_subst + # (cc_size, cc_args) = mapAndLength (skip_indirections class_subst) cc + = { cc_size = cc_size, cc_args = cc_args } + + skip_indirections class_subst cc + | IsAVariable cc + = skip_indirections class_subst class_subst.[cc] + = cc + +mapAndLength f [x : xs] + #! x = f x + (length, xs) = mapAndLength f xs + = (inc length, [x : xs]) +mapAndLength f [] + = (0, []) + +:: *TransformInfo = + { ti_fun_defs :: !*{# FunDef} + , ti_instances :: !*{! InstanceInfo } + , ti_cons_args :: !{! ConsClasses} + , ti_new_functions :: ![FunctionInfoPtr] + , ti_fun_heap :: !*FunctionHeap + , ti_var_heap :: !*VarHeap + , ti_symbol_heap :: !*ExpressionHeap + , ti_type_heaps :: !*TypeHeaps + , ti_next_fun_nr :: !Index + } + +class transform a :: !a !{# {# FunType} } !TransformInfo -> (!a, !TransformInfo) + +instance transform Expression +where + transform expr=:(App app=:{app_symb,app_args}) imported_funs ti + # (app_args, ti) = transform app_args imported_funs ti + = transformApplication { app & app_args = app_args } [] imported_funs ti + transform appl_expr=:(expr @ exprs) imported_funs ti + # (expr, ti) = transform expr imported_funs ti + (exprs, ti) = transform exprs imported_funs ti + = case expr of + App app + -> transformApplication app exprs imported_funs ti + _ + -> (expr @ exprs, ti) + transform (Let lad=:{let_binds, let_expr}) imported_funs ti + # (let_binds, ti) = transform let_binds imported_funs ti + (let_expr, ti) = transform let_expr imported_funs ti + = (Let { lad & let_binds = let_binds, let_expr = let_expr}, ti) + transform (Case case_expr) imported_funs ti +// = transformCase case_expr imported_funs ti + # (case_expr, ti) = transform case_expr imported_funs ti + = (Case case_expr, ti) + transform (Selection opt_type expr selectors) imported_funs ti + # (expr, ti) = transform expr imported_funs ti + = transformSelection opt_type selectors expr ti + transform (DynamicExpr dynamic_expr) imported_funs ti + # (dynamic_expr, ti) = transform dynamic_expr imported_funs ti + = (DynamicExpr dynamic_expr, ti) + transform expr imported_funs ti + = (expr, ti) + +neverMatchingCase = { case_expr = EE, case_guards = NoPattern, case_default = No, case_ident = No, case_info_ptr = nilPtr } + +instance transform Case +where + transform kees=:{case_expr, case_guards, case_default} imported_funs ti + # (case_expr, ti) = transform case_expr imported_funs ti + (case_guards, ti) = transform case_guards imported_funs ti + (case_default, ti) = transform case_default imported_funs ti + = ({kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default}, ti) + +instance transform DynamicExpr where + transform dyn=:{dyn_expr} imported_funs ti + # (dyn_expr, ti) = transform dyn_expr imported_funs ti + = ({dyn & dyn_expr = dyn_expr}, ti) + +instance transform DynamicPattern where + transform dp=:{dp_rhs} imported_funs ti + # (dp_rhs, ti) = transform dp_rhs imported_funs ti + = ({ dp & dp_rhs = dp_rhs }, ti) + +/* +transformCase :: !Case !*TransformInfo -> *(!Expression, !*TransformInfo) +transformCase this_case=:{case_expr,case_guards,case_default,case_ident} imported_funs ti + = case case_expr of + Case case_in_case + -> lift_case case_in_case case_guards case_default case_ident ti + App {app_symb,app_args} + -> case app_symb.symb_kind of + SK_Constructor cons_index + # (may_be_match_expr, ti) = match_and_instantiate cons_index app_args case_guards case_default ti + -> case may_be_match_expr of + Yes match_expr + -> (match_expr, ti) + No + -> (Case neverMatchingCase, ti) + _ + # (may_be_unfolded_expr, ti) = tryToUnfoldExpression app_symb app_args ti + -> case may_be_unfolded_expr of + (Yes unfolded_expr) + -> transformCase {this_case & case_expr = unfolded_expr } ti + No + # (this_case, ti) = transform this_case ti + -> (Case this_case, ti) + _ + # (this_case, ti) = transform this_case ti + -> (Case this_case, ti) + +where + lift_case :: !Case ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(!Expression, !*TransformInfo) + lift_case nested_case=:{case_guards,case_default} outer_guards outer_default outer_ident ti + # (case_guards, ti) = lift_patterns case_guards outer_guards outer_default outer_ident ti + (case_default, ti) = lift_default case_default outer_guards outer_default outer_ident ti + = (Case {nested_case & case_guards = case_guards, case_default = case_default}, ti) + + lift_patterns :: ![PatternExpression] ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(![PatternExpression], !*TransformInfo) + lift_patterns [guard=:{guard_expr}] outer_guards outer_default outer_ident ti + # (guard_expr, ti) = transformCase {case_expr = guard_expr,case_guards = outer_guards,case_default = outer_default, case_ident = outer_ident} ti + = ([{guard & guard_expr = guard_expr}], ti) + lift_patterns [guard=:{guard_expr} : nested_guards] outer_guards outer_default outer_ident ti=:{ti_var_heap} + # (outer_guards, ti_var_heap) = copy_guards outer_guards ti_var_heap + # (guard_expr, ti) = transformCase {case_expr = guard_expr,case_guards = outer_guards,case_default = outer_default, case_ident = outer_ident} { ti & ti_var_heap = ti_var_heap } + (nested_guards, ti) = lift_patterns nested_guards outer_guards outer_default outer_ident ti + = ([{guard & guard_expr = guard_expr} : nested_guards], ti) + lift_patterns [] outer_guards outer_default outer_ident ti + = ([], ti) + + copy_guards [guard : guards] var_heap + # (guard, _, var_heap) = unfold guard 0 var_heap + (guards, var_heap) = copy_guards guards var_heap + = ([ guard : guards ], var_heap) + copy_guards [] var_heap + = ([], var_heap) + + lift_default :: !(Optional Expression) ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(!Optional Expression, !*TransformInfo) + lift_default (Yes default_expr) outer_guards outer_default outer_ident ti + # (default_expr, ti) = transformCase {case_expr = default_expr, case_guards = outer_guards, case_default = outer_default, case_ident = outer_ident} ti + = (Yes default_expr, ti) + lift_default No outer_guards outer_default outer_ident ti + = (No, ti) + + match_and_instantiate :: !(Global Index) ![Expression] ![PatternExpression] !(Optional Expression) !*TransformInfo -> *(!Optional Expression, !*TransformInfo) + match_and_instantiate cons_index app_args [{guard_pattern = AlgebraicPattern {glob_module,glob_object={ds_index}} vars, guard_expr} : guards] + case_default ti + | cons_index.glob_module == glob_module && cons_index.glob_object == ds_index + # (unfolded_guard_expr, _, ti_var_heap) = unfold guard_expr 0 (bindVariables vars app_args ti.ti_var_heap) + (guard_expr, ti) = transform unfolded_guard_expr { ti & ti_var_heap = ti_var_heap } + = (Yes guard_expr, ti) + = match_and_instantiate cons_index app_args guards case_default ti + match_and_instantiate cons_index app_args [guard : guards] case_default ti + = match_and_instantiate cons_index app_args guards case_default ti + match_and_instantiate cons_index app_args [] default_expr ti + = transform default_expr ti + + +tryToUnfoldExpression :: !SymbIdent ![Expression] !*TransformInfo -> *(!Optional Expression, ! *TransformInfo) +tryToUnfoldExpression {symb_kind = SK_Function {glob_module,glob_object},symb_arity} app_args ti=:{ti_fun_defs, ti_var_heap, ti_symbol_heap} + | glob_module == cIclModIndex + #! fd = ti_fun_defs.[glob_object] + | fd.fun_arity == symb_arity + # (expr, ti_var_heap, ti_symbol_heap) = unfoldFunction fd.fun_body app_args ti_var_heap ti_symbol_heap + = (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap}) + = (No, ti) + = (No, ti) +tryToUnfoldExpression {symb_kind = SK_GeneratedFunction fun_ptr fun_index,symb_arity} app_args ti=:{ti_fun_heap, ti_var_heap, ti_symbol_heap} + #! fun_info = sreadPtr fun_ptr ti_fun_heap + # (FI_Function {gf_fun_def}) = fun_info + | gf_fun_def.fun_arity == symb_arity + # (expr, ti_var_heap, ti_symbol_heap) = unfoldFunction gf_fun_def.fun_body app_args ti_var_heap ti_symbol_heap + = (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap }) + = (No, ti) +tryToUnfoldExpression expr app_args ti + = (No, ti) + +unfoldFunction :: !FunctionBody ![Expression] !*VarHeap !*ExpressionHeap -> (!Expression, !*VarHeap, !*ExpressionHeap) +unfoldFunction (TransformedBody {tb_args,tb_rhs}) act_args var_heap symbol_heap + # var_heap = foldr2 (\{fv_info_ptr} arg -> writePtr fv_info_ptr (VI_Expression arg)) var_heap tb_args act_args + # (unfolded_rhs, {us_var_heap,us_symbol_heap}) = unfold tb_rhs { us_var_heap = var_heap, us_symbol_heap = symbol_heap } + = (unfolded_rhs, us_var_heap, us_symbol_heap) +*/ + +instance transform Bind a b | transform a +where + transform bind=:{bind_src} imported_funs ti + # (bind_src, ti) = transform bind_src imported_funs ti + = ({ bind & bind_src = bind_src }, ti) + +instance transform BasicPattern +where + transform pattern=:{bp_expr} imported_funs ti + # (bp_expr, ti) = transform bp_expr imported_funs ti + = ({ pattern & bp_expr = bp_expr }, ti) + +instance transform AlgebraicPattern +where + transform pattern=:{ap_expr} imported_funs ti + # (ap_expr, ti) = transform ap_expr imported_funs ti + = ({ pattern & ap_expr = ap_expr }, ti) + +instance transform CasePatterns +where + transform (AlgebraicPatterns type patterns) imported_funs ti + # (patterns, ti) = transform patterns imported_funs ti + = (AlgebraicPatterns type patterns, ti) + transform (BasicPatterns type patterns) imported_funs ti + # (patterns, ti) = transform patterns imported_funs ti + = (BasicPatterns type patterns, ti) + transform (DynamicPatterns patterns) imported_funs ti + # (patterns, ti) = transform patterns imported_funs ti + = (DynamicPatterns patterns, ti) + +instance transform Optional a | transform a +where + transform (Yes x) imported_funs ti + # (x, ti) = transform x imported_funs ti + = (Yes x, ti) + transform no imported_funs ti + = (no, ti) + +instance transform [a] | transform a +where + transform [x : xs] imported_funs ti + # (x, ti) = transform x imported_funs ti + (xs, ti) = transform xs imported_funs ti + = ([x : xs], ti) + transform [] imported_funs ti + = ([], ti) + +compareProducers prods1 prods2 + #! nr_of_prods = size prods1 + = compare_producers 0 nr_of_prods prods1 prods2 +where + compare_producers prod_index nr_of_prods prods1 prods2 + | prod_index == nr_of_prods + = Equal + # cmp = prods1.[prod_index] =< prods2.[prod_index] + | cmp == Equal + = compare_producers (inc prod_index) nr_of_prods prods1 prods2 + = cmp + +instance =< Producer +where + (=<) pr1 pr2 + | equal_constructor pr1 pr2 + = compare_constructor_arguments pr1 pr2 + | less_constructor pr1 pr2 + = Smaller + = Greater + where + compare_constructor_arguments (PR_Function _ index1) (PR_Function _ index2) + = index1 =< index2 + compare_constructor_arguments (PR_GeneratedFunction _ index1) (PR_GeneratedFunction _ index2) + = index1 =< index2 + compare_constructor_arguments (PR_Class app1 _ _) (PR_Class app2 _ _) + = app1.app_args =< app2.app_args + compare_constructor_arguments _ _ + = Equal + +cIsANewFunction :== True +cIsNotANewFunction :== False + +tryToFindInstance :: !{! Producer} !InstanceInfo !*(Heap FunctionInfo) -> (!Bool, !FunctionInfoPtr, !InstanceInfo, !.FunctionHeap) +tryToFindInstance new_prods II_Empty fun_heap + # (fun_def_ptr, fun_heap) = newPtr FI_Empty fun_heap + = (cIsANewFunction, fun_def_ptr, II_Node new_prods fun_def_ptr II_Empty II_Empty, fun_heap) +tryToFindInstance new_prods instances=:(II_Node prods fun_def_ptr left right) fun_heap + # cmp = compareProducers new_prods prods + | cmp == Equal + = (cIsNotANewFunction, fun_def_ptr, instances, fun_heap) + | cmp == Greater + # (is_new, new_fun_def_ptr, right, fun_heap) = tryToFindInstance new_prods right fun_heap + = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) + # (is_new, new_fun_def_ptr, left, fun_heap) = tryToFindInstance new_prods left fun_heap + = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) + + +generateFunction :: !FunDef ![Int] !{! Producer} !FunctionInfoPtr !{# {# FunType} } !*TransformInfo -> (!Index, !Int, !*TransformInfo) +generateFunction fd=:{fun_body = TransformedBody {tb_args,tb_rhs},fun_info = info =: {fi_group_index}} cc_args prods fun_def_ptr + imported_funs ti=:{ti_var_heap,ti_next_fun_nr,ti_new_functions,ti_fun_heap,ti_symbol_heap,ti_fun_defs,ti_type_heaps,ti_cons_args} + #! fi_group_index = max_group_index 0 prods fi_group_index ti_fun_defs ti_fun_heap ti_cons_args + # (Yes fun_type=:{st_vars,st_attr_vars,st_args,st_result}) = fd.fun_type + + th_vars = foldSt (\tv type_var_heap -> type_var_heap <:= (tv.tv_info_ptr, TVI_Type (TV tv))) st_vars ti_type_heaps.th_vars + th_attrs = foldSt (\av attr_var_heap -> attr_var_heap <:= (av.av_info_ptr, AVI_Attr (TA_Var av))) st_attr_vars ti_type_heaps.th_attrs + + (new_fun_args, new_arg_types, new_cons_args, th_vars, ti_var_heap) = determine_args cc_args 0 prods tb_args st_args th_vars ti_var_heap + + (fresh_arg_types, ti_type_heaps) = substitute new_arg_types { ti_type_heaps & th_vars = th_vars, th_attrs = th_attrs } + (fresh_result_type, ti_type_heaps) = substitute st_result ti_type_heaps + + new_gen_fd = { gf_fun_def = { fd & fun_body = Expanding, fun_info = { info & fi_group_index = fi_group_index }}, + gf_instance_info = II_Empty, + gf_fun_index = ti_next_fun_nr, gf_cons_args = {cc_args = new_cons_args, cc_size = length new_cons_args} } + ti_fun_heap = writePtr fun_def_ptr (FI_Function new_gen_fd) ti_fun_heap + + (tb_rhs, {us_var_heap,us_symbol_heap}) = unfold tb_rhs { us_var_heap = ti_var_heap, us_symbol_heap = ti_symbol_heap } + + (new_fun_rhs, ti) = transform tb_rhs imported_funs { ti & ti_var_heap = us_var_heap, ti_fun_heap = ti_fun_heap, ti_symbol_heap = us_symbol_heap, + ti_next_fun_nr = inc ti_next_fun_nr, ti_new_functions = [fun_def_ptr : ti_new_functions], ti_type_heaps = ti_type_heaps } + fun_arity = length new_fun_args + new_fd = { fd & fun_body = TransformedBody {tb_args = new_fun_args, tb_rhs = new_fun_rhs}, fun_arity = fun_arity, fun_index = ti_next_fun_nr, + fun_type = Yes { fun_type & st_args = fresh_arg_types, st_result = fresh_result_type }} + = (ti_next_fun_nr, fun_arity, { ti & ti_fun_heap = ti.ti_fun_heap <:= (fun_def_ptr, FI_Function { new_gen_fd & gf_fun_def = new_fd })}) +where + determine_args [] prod_index producers forms types type_var_heap var_heap + # (vars, var_heap) = new_variables forms var_heap + = (vars, types, [], type_var_heap, var_heap) + determine_args [cons_arg : cons_args ] prod_index producers [form : forms] [type : types] type_var_heap var_heap + | cons_arg == cActive + # new_args = determine_args cons_args (inc prod_index) prods forms types type_var_heap var_heap + = determine_arg producers.[prod_index] form type new_args + # (vars, types, new_cons_args, type_var_heap, var_heap) = determine_args cons_args prod_index prods forms types type_var_heap var_heap + (new_info_ptr, var_heap) = newPtr VI_Empty var_heap + = ([{ form & fv_info_ptr = new_info_ptr } : vars], [type : types], [cons_arg : new_cons_args], type_var_heap, + var_heap <:= (form.fv_info_ptr, VI_Variable form.fv_name new_info_ptr)) + where +/* + build_var_args new_name arity form_vars act_vars var_heap + | arity == 0 + = (form_vars, act_vars, var_heap) + # (info_ptr, var_heap) = newPtr VI_Empty var_heap + form_var = { fv_name = new_name, fv_info_ptr = info_ptr, fv_count = 0, fv_def_level = NotALevel } + act_var = { var_name = new_name, var_info_ptr = info_ptr, var_expr_ptr = nilPtr } + = build_var_args new_name (dec arity) [form_var : form_vars] [Var act_var : act_vars] var_heap +*/ + determine_arg PR_Empty form=:{fv_name,fv_info_ptr} type (vars, types, new_cons_args, type_var_heap, var_heap) + # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap + = ([{ form & fv_info_ptr = new_info_ptr } : vars], [ type : types ], [cActive : new_cons_args], type_var_heap, + var_heap <:= (fv_info_ptr, VI_Variable fv_name new_info_ptr)) +/* + determine_arg (PR_Function symbol _) vars {fv_info_ptr,fv_name} new_cons_args var_heap + # (form_vars, act_vars, var_heap) = build_var_args fv_name symbol.symb_arity vars [] var_heap + = (form_vars, writePtr fv_info_ptr ( + VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr })) var_heap) + determine_arg (PR_GeneratedFunction symbol _) vars {fv_info_ptr,fv_name} var_heap + # (form_vars, act_vars, var_heap) = build_var_args fv_name symbol.symb_arity vars [] var_heap + = (form_vars, writePtr fv_info_ptr ( + VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr })) var_heap) +*/ + determine_arg (PR_Class class_app free_vars class_types) {fv_info_ptr,fv_name} type (vars, types, new_cons_args, type_var_heap, var_heap) + = (mapAppend (\{var_info_ptr,var_name} -> { fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0 }) free_vars vars, + mapAppend (\_ -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = TE }) free_vars types, + mapAppend (\_ -> cActive) free_vars new_cons_args, + bind_class_types type.at_type class_types type_var_heap, + var_heap <:= (fv_info_ptr, VI_Expression (App class_app))) + + bind_class_types (TA _ context_types) instance_types type_var_heap + = bind_context_types context_types instance_types type_var_heap + where + bind_context_types [atype : atypes] [type : types] type_var_heap + = bind_context_types atypes types (bind_type atype.at_type type type_var_heap) + bind_context_types [] [] type_var_heap + = type_var_heap + bind_class_types _ _ type_var_heap + = type_var_heap + + bind_type (TV {tv_info_ptr}) type type_var_heap + = type_var_heap <:= (tv_info_ptr, TVI_Type type) + bind_type (TA _ arg_types1) (TA _ arg_types2) type_var_heap + = bind_types arg_types1 arg_types2 type_var_heap + bind_type _ _ type_var_heap + = type_var_heap + + bind_types [type1 : types1] [type2 : types2] type_var_heap + = bind_types types1 types2 (bind_type type1.at_type type2.at_type type_var_heap) + bind_types [] [] type_var_heap + = type_var_heap + + new_variables [] var_heap + = ([], var_heap) + new_variables [form=:{fv_name,fv_info_ptr}:forms] var_heap + # (vars, var_heap) = new_variables forms var_heap + (new_info_ptr, var_heap) = newPtr VI_Empty var_heap + = ([{ form & fv_info_ptr = new_info_ptr } : vars], writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) var_heap) + + max_group_index prod_index producers current_max fun_defs fun_heap cons_args + | prod_index == size producers + = current_max + # current_max = max_group_index_of_producer producers.[prod_index] current_max fun_defs fun_heap cons_args + = max_group_index (inc prod_index) producers current_max fun_defs fun_heap cons_args + + max_group_index_of_producer PR_Empty current_max fun_defs fun_heap cons_args + = current_max + max_group_index_of_producer (PR_Class {app_args} _ _) current_max fun_defs fun_heap cons_args + = max_group_index_of_members app_args current_max fun_defs fun_heap cons_args + max_group_index_of_producer prod current_max fun_defs fun_heap cons_args + = abort ("trans.icl: max_group_index_of_producer" ---> prod) + + max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_name, symb_kind = SK_Function { glob_object = fun_index, glob_module = mod_index}}}) + | mod_index == cIclModIndex + | fun_index < size cons_args + # {fun_info = {fi_group_index}} = fun_defs.[fun_index] + = max fi_group_index current_max + = current_max + = current_max + max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_GeneratedFunction fun_ptr fun_index }}) + # (FI_Function {gf_fun_def={fun_info = {fi_group_index}}}) = sreadPtr fun_ptr fun_heap + = max fi_group_index current_max + max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_Constructor _}, app_args}) + = max_group_index_of_members app_args current_max fun_defs fun_heap cons_args + + max_group_index_of_members members current_max fun_defs fun_heap cons_args + = foldl (max_group_index_of_member fun_defs fun_heap cons_args) current_max members + + +transformFunctionApplication fun_def instances {cc_size, cc_args} app=:{app_symb,app_args} extra_args imported_funs ti + # (app_symb, app_args, extra_args) = complete_application app_symb fun_def.fun_arity app_args extra_args + | cc_size > 0 + # (producers, new_args, ti) = determineProducers cc_args app_args 0 (createArray cc_size PR_Empty) ti + | containsProducer cc_size producers + # (is_new, fun_def_ptr, instances, ti_fun_heap) = tryToFindInstance producers instances ti.ti_fun_heap + | is_new + # (fun_index, fun_arity, ti) = generateFunction fun_def cc_args producers fun_def_ptr imported_funs + (update_instance_info app_symb.symb_kind instances { ti & ti_fun_heap = ti_fun_heap }) + app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr fun_index, symb_arity = length new_args} + (app_symb, app_args, extra_args) = complete_application app_symb fun_arity new_args extra_args + = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) + # (FI_Function {gf_fun_index, gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap + app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr gf_fun_index, symb_arity = length new_args} + (app_symb, app_args, extra_args) = complete_application app_symb gf_fun_def.fun_arity new_args extra_args + = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, {ti & ti_fun_heap = ti_fun_heap }) + = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) + = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) +where + update_instance_info (SK_Function {glob_object}) instances ti=:{ti_instances} + = { ti & ti_instances = { ti_instances & [glob_object] = instances } } + update_instance_info (SK_GeneratedFunction fun_def_ptr _) instances ti=:{ti_fun_heap} + # (FI_Function fun_info, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap + = { ti & ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function { fun_info & gf_instance_info = instances })} + + complete_application symb form_arity args [] + = (symb, args, []) + complete_application symb=:{symb_arity} form_arity args extra_args + # arity_diff = min (form_arity - symb_arity) (length extra_args) + = ({ symb & symb_arity = symb_arity + arity_diff }, args ++ take arity_diff extra_args, drop arity_diff extra_args) + + build_application app [] + = App app + build_application app extra_args + = App app @ extra_args + +transformApplication :: !App ![Expression] !{# {# FunType} } !*TransformInfo -> *(!Expression,!*TransformInfo) +transformApplication app=:{app_symb=symb=:{symb_kind = SK_Function {glob_module, glob_object},symb_arity}, app_args} extra_args + imported_funs ti=:{ti_cons_args,ti_instances,ti_fun_defs} + | glob_module == cIclModIndex + | glob_object < size ti_cons_args + #! cons_class = ti_cons_args.[glob_object] + instances = ti_instances.[glob_object] + fun_def = ti_fun_defs.[glob_object] + = transformFunctionApplication fun_def instances cons_class app extra_args imported_funs ti +// It seems as if we have an array function + | isEmpty extra_args + = (App app, ti) + = (App { app & app_symb = { symb & symb_arity = symb_arity + length extra_args}, app_args = app_args ++ extra_args}, ti) +// This function is imported + | isEmpty extra_args + = (App app, ti) + # ar_diff = imported_funs.[glob_module].[glob_object].ft_arity - symb_arity + nr_of_extra_args = length extra_args + | nr_of_extra_args <= ar_diff + = (App {app & app_args = app_args ++ extra_args, app_symb = { symb & symb_arity = symb_arity + nr_of_extra_args }}, ti) + = (App {app & app_args = app_args ++ take ar_diff extra_args, app_symb = { symb & symb_arity = symb_arity + ar_diff }} @ + drop ar_diff extra_args, ti) + +transformApplication app=:{app_symb={symb_kind = SK_GeneratedFunction fun_def_ptr fun_index}} extra_args imported_funs ti=:{ti_fun_heap} + # (FI_Function {gf_fun_def,gf_instance_info,gf_cons_args}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap + = transformFunctionApplication gf_fun_def gf_instance_info gf_cons_args app extra_args imported_funs { ti & ti_fun_heap = ti_fun_heap } +transformApplication app [] imported_funs ti + = (App app, ti) +transformApplication app extra_args imported_funs ti + = (App app @ extra_args, ti) + +transformSelection opt_type [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti + = transform_selections selectors (app_args !! field_index) ti +where + transform_selections [] expr ti + = (expr, ti) + transform_selections [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti + = transform_selections selectors (app_args !! field_index) ti + transform_selections selectors expr ti + = (Selection No expr selectors, ti) +transformSelection opt_type selectors expr ti + = (Selection opt_type expr selectors, ti) + +determineProducers :: ![Int] ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer},![Expression],!*TransformInfo) +determineProducers cons_args [] prod_index producers ti + = (producers, [], ti) +determineProducers [ cons_arg : cons_args ] [ arg : args ] prod_index producers ti + | cons_arg == cActive + # (producers, new_args, ti) = determineProducers cons_args args (inc prod_index) producers ti + = determine_producer arg new_args prod_index producers ti + # (producers, new_args, ti) = determineProducers cons_args args prod_index producers ti + = (producers, [arg : new_args], ti) +where + determine_producer arg=:(App app=:{app_info_ptr}) new_args prod_index producers ti + | isNilPtr app_info_ptr + = (producers, [arg : new_args], ti) + # (app_info, ti_symbol_heap) = readPtr app_info_ptr ti.ti_symbol_heap + = determineProducer app app_info new_args prod_index producers { ti & ti_symbol_heap = ti_symbol_heap } + determine_producer arg new_args prod_index producers ti + = (producers, [arg : new_args], ti) + +determineProducer :: !App !ExprInfo ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer}, ![Expression], !*TransformInfo) +determineProducer app=:{app_symb = symb=:{symb_kind = SK_Constructor _}, app_args} (EI_ClassTypes types) new_args prod_index producers ti + # (app_args, (new_vars, ti_var_heap)) = renewVariables app_args ([], ti.ti_var_heap) + (new_args, ti_var_heap) = mapAppendSt retrieve_old_var new_vars new_args ti_var_heap + = ({ producers & [prod_index] = PR_Class { app & app_args = app_args } new_vars types}, new_args, { ti & ti_var_heap = ti_var_heap }) +where + retrieve_old_var {var_info_ptr} var_heap + #! var_info = sreadPtr var_info_ptr var_heap + # (VI_Forward var) = var_info + = (Var var, writePtr var_info_ptr VI_Empty (writePtr var.var_info_ptr VI_Empty var_heap)) +/* +determineProducer app=:{app_symb = symb=:{symb_kind = SK_Function { glob_module, glob_object }}, app_args} new_args prod_index producers ti + | glob_module == cIclModIndex + = ({ producers & [prod_index] = PR_Function symb glob_object}, app_args ++ new_args, ti) + = (producers, [App app : new_args ], ti) +determineProducer app=:{app_symb = symb=:{ symb_kind = SK_GeneratedFunction _ fun_index}, app_args} new_args prod_index producers ti=:{ti_fun_heap} + = ({ producers & [prod_index] = PR_GeneratedFunction symb fun_index }, app_args ++ new_args, ti) +determineProducer {app_symb = symb=:{symb_kind = SK_Constructor glob_index}, app_args} new_args prod_index producers ti + = ({ producers & [prod_index] = PR_Constructor symb app_args}, new_args, ti) +*/ +determineProducer app _ new_args _ producers ti + = (producers, [App app : new_args ], ti) + + +/* + verify_class_members [ App {app_symb, app_args} : mems] + = verify_class_members app_args && verify_class_members mems + verify_class_members [ _ : mems] + = False + verify_class_members [] + = True + + + verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions} + | fun_nr < size ti_fun_defs + #! fd = ti_fun_defs.[fun_nr] + = (True, ti) + = (verify_new_function fun_nr act_arity ti_new_functions, ti) + where + verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions] + | fun_nr == fun_index + = True + = verify_new_function fun_nr act_arity new_functions + verify_new_function fun_nr _ [] + = False +/* + verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions} + | fun_nr < size ti_fun_defs + #! fd = ti_fun_defs.[fun_nr] + = (fd.fun_arity > act_arity, ti) + = (verify_new_function fun_nr act_arity ti_new_functions, ti) + where + verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions] + | fun_nr == fun_index + = fun_arity > act_arity + = verify_new_function fun_nr act_arity new_functions + verify_new_function fun_nr _ [] + = False ---> fun_nr +*/ +*/ + +containsProducer prod_index producers + | prod_index == 0 + = False + #! prod_index = dec prod_index + = is_a_producer producers.[prod_index] || containsProducer prod_index producers +where + is_a_producer PR_Empty = False + is_a_producer _ = True + +class renewVariables a :: !a !(![BoundVar], !*VarHeap) -> (!a, !(![BoundVar], !*VarHeap)) + +instance renewVariables Expression +where + renewVariables (Var var=:{var_info_ptr}) (new_vars, var_heap) + #! var_info = sreadPtr var_info_ptr var_heap + = case var_info of + VI_Forward new_var + -> (Var { var & var_info_ptr = new_var.var_info_ptr }, (new_vars, var_heap)) + _ + # (new_info_ptr, var_heap) = newPtr (VI_Forward var) var_heap + new_var = { var & var_info_ptr = new_info_ptr } + var_heap = writePtr var_info_ptr (VI_Forward new_var) var_heap + -> (Var new_var, ([new_var : new_vars], var_heap)) + renewVariables (App app=:{app_args}) state + # (app_args, state) = renewVariables app_args state + = (App { app & app_args = app_args }, state) + renewVariables expr state + = (expr, state) + +instance renewVariables [a] | renewVariables a +where + renewVariables l state = mapSt renewVariables l state + +:: ImportedConstructors :== [Global Index] + +transformGroups :: !*{! Group} !*{#FunDef} !{!.ConsClasses} !{# CommonDefs} !{# {# FunType} } !*VarHeap !*TypeHeaps !*ExpressionHeap + -> (!*{! Group}, !*{#FunDef}, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap) +transformGroups groups fun_defs cons_args common_defs imported_funs var_heap type_heaps symbol_heap + #! nr_of_funs = size fun_defs + # imported_types = {com_type_defs \\ {com_type_defs} <-: common_defs } + (groups, imported_types, collected_imports, {ti_fun_defs,ti_new_functions,ti_var_heap,ti_symbol_heap,ti_fun_heap,ti_next_fun_nr,ti_type_heaps}) + = transform_groups 0 groups common_defs imported_funs imported_types [] + {ti_fun_defs = fun_defs, ti_instances = createArray nr_of_funs II_Empty, ti_cons_args = cons_args, + ti_new_functions = [], ti_fun_heap = newHeap, ti_var_heap = var_heap, ti_symbol_heap = symbol_heap, + ti_type_heaps = type_heaps, ti_next_fun_nr = nr_of_funs} + (groups, new_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) + = foldSt (add_new_function_to_group common_defs ti_fun_heap) ti_new_functions + (groups, [], imported_types, collected_imports, ti_type_heaps, ti_var_heap) + = ( groups, { fundef \\ fundef <- [ fundef \\ fundef <-: ti_fun_defs ] ++ new_fun_defs }, imported_types, collected_imports, + ti_var_heap, ti_type_heaps, ti_symbol_heap) + +where + transform_groups group_nr groups common_defs imported_funs imported_types collected_imports ti + | group_nr < size groups + #! group = groups.[group_nr] + # {group_members} = group + # (ti_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) = foldSt (convert_function_type common_defs) group_members + (ti.ti_fun_defs, imported_types, collected_imports, ti.ti_type_heaps, ti.ti_var_heap) + = transform_groups (inc group_nr) groups common_defs imported_funs imported_types collected_imports + (foldSt (transform_function imported_funs) group_members + { ti & ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_var_heap = ti_var_heap }) + = (groups, imported_types, collected_imports, ti) + + transform_function imported_funs fun ti=:{ti_fun_defs} + #! fun_def = ti_fun_defs.[fun] + # {fun_body = TransformedBody tb} = fun_def + (fun_rhs, ti) = transform tb.tb_rhs imported_funs ti + = { ti & ti_fun_defs = {ti.ti_fun_defs & [fun] = { fun_def & fun_body = TransformedBody { tb & tb_rhs = fun_rhs }}}} + + add_new_function_to_group :: !{# CommonDefs} !FunctionHeap !FunctionInfoPtr !(!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) + -> (!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) + add_new_function_to_group common_defs ti_fun_heap fun_ptr (groups, fun_defs, imported_types, collected_imports, type_heaps, var_heap) + # (FI_Function {gf_fun_def,gf_fun_index}) = sreadPtr fun_ptr ti_fun_heap + group_index = gf_fun_def.fun_info.fi_group_index + (Yes ft=:{st_args,st_result}) = gf_fun_def.fun_type + ((st_result,st_args), {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs (st_result,st_args) + { ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps = type_heaps, ets_var_heap = var_heap } + #! group = groups.[group_index] + = ({ groups & [group_index] = { group & group_members = [gf_fun_index : group.group_members]} }, + [ { gf_fun_def & fun_type = Yes { ft & st_result = st_result, st_args = st_args }} : fun_defs], + ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) + + convert_function_type common_defs fun_index (fun_defs, imported_types, collected_imports, type_heaps, var_heap) + # (fun_def=:{fun_type = Yes fun_type}, fun_defs) = fun_defs![fun_index] + (fun_type, imported_types, collected_imports, type_heaps, var_heap) + = convertSymbolType common_defs fun_type imported_types collected_imports type_heaps var_heap + = ({ fun_defs & [fun_index] = { fun_def & fun_type = Yes fun_type }}, imported_types, collected_imports, type_heaps, var_heap) + +convertSymbolType :: !{# CommonDefs} !SymbolType !*{#{# CheckedTypeDef}} !ImportedConstructors !*TypeHeaps !*VarHeap + -> (!SymbolType, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) +convertSymbolType common_defs st imported_types collected_imports type_heaps var_heap + # (st, {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs st + { ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps= type_heaps, ets_var_heap = var_heap } + = (st, ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) + + +:: ExpandTypeState = + { ets_type_defs :: !.{#{#CheckedTypeDef}} + , ets_collected_conses :: !ImportedConstructors + , ets_type_heaps :: !.TypeHeaps + , ets_var_heap :: !.VarHeap + } + +class expandSynTypes a :: !{# CommonDefs} !a !*ExpandTypeState -> (!a, !*ExpandTypeState) + +/* +class expandSynTypes a :: !a (!*{#{#CheckedTypeDef}}, !*TypeHeaps) -> (!a, (!*{#{#CheckedTypeDef}}, !*TypeHeaps)) +*/ + +instance expandSynTypes SymbolType +where + expandSynTypes common_defs st=:{st_args,st_result,st_context} ets + # ((st_args,st_result), ets) = expandSynTypes common_defs (st_args,st_result) ets + # st_args = mapAppend (add_types_of_dictionary common_defs) st_context st_args + = ({st & st_args = st_args, st_result = st_result, st_arity = length st_args, st_context = [] }, ets) + where + add_types_of_dictionary common_defs {tc_class = {glob_module, glob_object={ds_index}}, tc_types} + # {class_arity, class_dictionary={ds_ident,ds_index}} = common_defs.[glob_module].com_class_defs.[ds_index] + dict_type_symb = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident class_arity + = { at_attribute = TA_Multi, at_annotation = AN_Strict, at_type = TA dict_type_symb ( + map (\type -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = type }) tc_types) } + +instance expandSynTypes Type +where + expandSynTypes common_defs (TA type_symb=:{type_index={glob_object,glob_module},type_name} types) ets=:{ets_type_defs} + # ({td_rhs,td_name,td_args},ets_type_defs) = ets_type_defs![glob_module].[glob_object] + ets = { ets & ets_type_defs = ets_type_defs } + = case td_rhs of + SynType rhs_type + # (type, ets_type_heaps) = substitute rhs_type.at_type (fold2St bind_var_and_attr td_args types ets.ets_type_heaps) + // ---> (td_name, td_args, rhs_type.at_type)) + -> expandSynTypes common_defs type { ets & ets_type_heaps = ets_type_heaps } + _ + # (types, ets) = expandSynTypes common_defs types ets + | glob_module == cIclModIndex + -> (TA type_symb types, ets) + -> (TA type_symb types, collect_imported_constructors common_defs glob_module td_rhs ets) + where + bind_var_and_attr { atv_attribute = TA_Var {av_info_ptr}, atv_variable = {tv_info_ptr} } {at_attribute,at_type} type_heaps=:{th_vars,th_attrs} + = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type), th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr at_attribute) } + bind_var_and_attr { atv_variable = {tv_info_ptr}} {at_type} type_heaps=:{th_vars} + = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type) } + + collect_imported_constructors common_defs mod_index (RecordType {rt_constructor}) ets=:{ets_collected_conses,ets_var_heap} + # (ets_collected_conses, ets_var_heap) + = collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs rt_constructor (ets_collected_conses, ets_var_heap) + = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } + collect_imported_constructors common_defs mod_index (AlgType constructors) ets=:{ets_collected_conses,ets_var_heap} + # (ets_collected_conses, ets_var_heap) + = foldSt (collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs) constructors (ets_collected_conses, ets_var_heap) + = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } + collect_imported_constructors common_defs mod_index _ ets + = ets + + collect_imported_constructor mod_index cons_defs {ds_index} (collected_conses, var_heap) + # {cons_type_ptr} = cons_defs.[ds_index] + (type_info, var_heap) = readPtr cons_type_ptr var_heap + | has_been_collected (sreadPtr cons_type_ptr var_heap) + = (collected_conses, var_heap) + = ([{ glob_module = mod_index, glob_object = ds_index } : collected_conses ], var_heap <:= (cons_type_ptr, VI_Used)) + + has_been_collected VI_Used = True + has_been_collected (VI_ExpandedType _) = True + has_been_collected _ = False + + + expandSynTypes common_defs (arg_type --> res_type) ets + # ((arg_type, res_type), ets) = expandSynTypes common_defs (arg_type, res_type) ets + = (arg_type --> res_type, ets) + expandSynTypes common_defs (cons_var :@: types) ets + # (types, ets) = expandSynTypes common_defs types ets + = (cons_var :@: types, ets) + expandSynTypes common_defs type ets + = (type, ets) + +instance expandSynTypes [a] | expandSynTypes a +where + expandSynTypes common_defs list ets + = mapSt (expandSynTypes common_defs) list ets + + +instance expandSynTypes (a,b) | expandSynTypes a & expandSynTypes b +where + expandSynTypes common_defs tuple ets + = app2St (expandSynTypes common_defs, expandSynTypes common_defs) tuple ets + +instance expandSynTypes AType +where + expandSynTypes common_defs atype=:{at_type} ets + # (at_type, ets) = expandSynTypes common_defs at_type ets + = ({ atype & at_type = at_type }, ets) + + +/* +instance <<< InstanceInfo +where + (<<<) file (II_Node prods _ left right) = file <<< left <<< prods <<< right + (<<<) file II_Empty = file +*/ + + +instance <<< Producer +where + (<<<) file (PR_Function symbol index) + = file <<< "F" <<< symbol.symb_name + (<<<) file (PR_GeneratedFunction symbol index) + = file <<< "G" <<< symbol.symb_name <<< index + (<<<) file PR_Empty = file <<< 'E' + (<<<) file _ = file + +instance <<< FunCall +where + (<<<) file {fc_index} = file <<< fc_index + + |